Dual Enhancement Mode MOSFET

HCT802, HCT802TX, HCT802TXV

Features:

- 6 pad surface mount package
- V_{DS} = 90V
- $R_{DS}(on) < 5\Omega$
- ID(on) N-Channel = 1.5A | P-Channel = 1.1A
- Two devices selected for V_{DS} $I_{D(on)}$ and $R_{DS(on)}$ similarity
- Full TX Processing Available
- Gold plated contacts

Description:

HCT802 offers an N-Channel and P-Channel MOS transistor in a hermetic ceramic surface mount package. The devices used are similar to industry standards 2N6661 N-Channel device and VP1008 P-Channel device. These two enhancement mode MOSFETS are particularly well matched for V_{DS} , $I_{DS(on)}$, $R_{DS(on)}$ and G_{fs} .

TX and TXV devices are processed to OPTEK's military screening program patterned after MIL-PRF-19500. TX products receive a V_{GS} HTRB at 24 V for 48 hrs. at 150° C and a V_{DS} HTRB at 48 V for 260 hrs.at 150° C.

Applications:

- Drivers: Solid State Relays, Lamps, Solenoids, Displays, Memories, etc.
- Motor Control
- Power Supply Circuits

Part Number	Sensor Type	V _{DSS} Min	I _{D(ON)} (mA) Min	G _{fs} (ms) Min	t _(ON) / t _(OFF) (ns) Max	Package
HCT801	N & P -Channel Enhancement MOSFET		1.5 & -1.1	170 & 200	15/17 & 50/50	6-pin Ceramic
HCT801TX		Enhancement 90				
HCT801TXV						

DIMENSIONS ARE IN INCHES (MILLIMETERS)

Dual Enhancement Mode MOSFET

HCT802, HCT802TX, HCT802TXV

Absolute Maximum Ratings				
Drain Source Voltage	90V			
Gate-Source Voltage	±20 V			
Drain Current (Limited by Tj max) N-Channel	2A			
P-Channel	1.1A			
Operating and Storage Temperature	-55° C to +150° C			

Power Dissipation

TA = 25°C (Both devices equally driven)	0.5 W Total
TA = 25°C (Both devices equally driven)	1.5 W Total ⁽¹⁾
(TS = Substrate that the package is soldered to)	

Electrical Characteristics (T_A = 25° C unless otherwise noted)

SYMBOL	PARAMETER	DEVICE B=BOTH	MIN	MAX	UNITS	TEST CONDITIONS
B _{VDSS}	Drain-Source Breakdown	В	90 ⁽²⁾		V	$I_D = 10 \ \mu A^{(2)}, \ V_{GS} = 0$
V_{TH}	Gate Threshold Voltage	N	0.75	2.5	V	$V_{GS} = V_{DS}$, $I_D = 1 \text{ mA}$
		Р	-2.0	-4.5	V	I _D = -1 mA
I _{GSS}	Gate-Body Leakage	В		±100	nA	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0$
I _{DSS}	Zero Gate Voltage Drain Current	В		10 ⁽²⁾	μΑ	$V_{DS} = 90 V^{(2)}, V_{GS} = 0 V$
		В		500 ⁽²⁾	μΑ	Tj = 150° C
I _{D(on)}	On-State Drain Current	N	1.5		А	V _{DS} = 25 V, V _{GS} = 10 V
		Р	-1.1		А	V _{DS} = -15 V, V _{GS} = -10 V
R _{DS(on)}	Drain-Source on Resistance	В		5	Ω	$V_{GS} = 10 V^{(2)}, I_D = 1 A^{(2)}$
G _{fs}	Forward Transconductance	N	170		mmho	V _{DS} = 25V, I _D = 0.5 A
		Р	200		Mmho	$V_{DS} = -10 \text{ V}, I_{D} = -0.5 \text{ A}$
C _{ISS}	Input Capacitance	N		70	pf	$V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$
		Р		150	pf	$V_{DS} = -25 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$
C _{oss}	Common Source Output Capacitance	N		40	pf	V _{DS} = 25 V, V _{GS} = 0 V, f = 1 MHz
		Р		60	pf	$V_{DS} = -25 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$
C _{RSS}	Reverse Transfer Capacitance	N		10	pf	V _{DS} = 25 V, V _{GS} = 0 A, f = 1 MHz
		Р		25	pf	V _{DS} = -25 V, V _{GS} = 0 A, f = 1 MHz

Note

Issue A 11/2016 Page 2

¹⁾ This rating is provided as an aid to designers. It is dependent upon mounting material and methods and is not measurable as an outgoing test.

²⁾ Reverse polarity for P-Channel device

Dual Enhancement Mode MOSFET

HCT802, HCT802TX, HCT802TXV

Electrical Characteristics (T_A = 25° C unless otherwise noted)

SYMBOL	PARAMETER	DEVICE B=BOTH	MIN	МАХ	UNITS	TEST CONDITIONS
t _(on)	Turn-on-time	N		15	ns	V_{DD} = 25 v, I_D = 1 A, R_L = 50 Ω
		Р		50	ns	$V_{DD} = -25 \text{ v, } I_D = -0.5 \text{ A, } R_L = 50 \Omega$
t _(off)	Turn-off-time	N		17	ns	$V_{DD} = 25 \text{ v}, I_D = 1 \text{ A}, R_L = 50 \Omega$
		Р		50	ns	$V_{DD} = -25 \text{ v, } I_D = -0.5 \text{ A, } R_L = 50 \Omega$

Issue A 11/2016 Page 3