
© Freescale Semiconductor, Inc., 2012. All rights reserved.

Freescale Semiconductor MPC5534RM
Rev. 2.1, 04/2012

This MPC5534 Reference Manual set consists of the following files:

• MPC5534 Reference Manual Addendum, Rev 3

• MPC5534 Microcontroller Reference Manual, Rev 2

MPC5534 Microcontroller
Reference Manual

Freescale Semiconductor
Reference Manual Addendum

MPC5534RMAD
Rev. 3, 04/2012

Table of Contents

MPC5534 Reference Manual
Addendum

Addendum for Revision 2.0. 2
Revision history. 12
This errata document describes corrections to the
MPC5534 Microcontroller Reference Manual, order
number MPC5534RM. For convenience, the addenda
items are grouped by revision. Please check our website
at http://www.freescale.com/powerarchitecture for the
latest updates.

The current version available of the MPC5534
Microcontroller Reference Manual is Revision 2.0.

1
2

© Freescale Semiconductor, Inc., 2009–2012. All rights reserved.

Addendum for Revision 2.0
1 Addendum for Revision 2.0
Table 1. MPC5534RM Rev 2.0 addendum

Location Description

Table 9-23, “DMA Request
Summary for eDMA”/Page

9-39

Change one row in the table to correct information about eSCI COMBTX DMA request. Only the
Transmit Data Register Empty and LIN Transmit Data Ready flags drive the DMA request. The
Transmit Complete flag is not used.

Figure 5-2, “Master Privilege
Control Registers”/Page 5-3

Change read status for bits 16–31 from zero to reserved.

Table A-2, “MPC5534 Detailed
Register Map”/Page A-2

Correct name of peripheral bridge A control register by adding underscore (PBRIDGEA_x
becomes PBRIDGE_A_x).

Table A-2, “MPC5534 Detailed
Register Map”/Pages A-27

Correct names of peripheral bridge B control registers by adding underscore (PBRIDGEB_x
becomes PBRIDGE_B_x).

Chapter 1, “Overview”/ Page
1-1

Delete the word “dual” from eTPU in the sentence “The complex I/O timer functions of MPC5534
are performed by a dual Enhanced Time Processor Unit engine (eTPU)”.

Section 6.4.1.9: “IRQ
Rising-Edge Event Enable

Register (SIU_IREER)”/Page
6-20

Correct offset address of SIU_IERRR by changing it from “Address: Base + 0x0002” to “Address:
Base + 0x0028.”

Table 6-12, “SIU_DIRER Field
Descriptions”/Page 6-18

Correct the table heading by replacing SIU_DIRER with SIU_DIRSR.

DMA Request Channel Source Description

eSCIA_COMBTX 18 ESCIA.SR[TDRE] ||
ESCIA.SR[TC] ||

ESCIA.SR[TXRDY]

eSCIA combined DMA
request of the Transmit
Data Register Empty

and LIN Transmit Data
Ready DMA requests

Register Description Register Name
Used
Size

Address

Peripheral bridge A master privilege
control register

PBRIDGE_A_MPCR 32-bit Base + 0x0000

Register Description Register Name
Used
Size

Address

Peripheral bridge B master privilege
control register

PBRIDGE_B_MPCR 32-bit Base + 0x0000
MPC5534 Reference Manual Addendum, Rev. 3

Freescale Semiconductor2

Addendum for Revision 2.0
Figure 16-12,” Unified
Channel Block Diagram”/Page

16-25

Reverse the arrow between the “Programmable Filter” and “Edge Detect”. Align the junction point
on the signal path from “Edge Detect” in the direction of “Internal Counter”.

Section 9.3.1: eDMA
Microarchitecture/ Page 9-29

In the Memory controller sub-bullet, delete the line “The hooks to a BIST controller for the local
TCD memory are included in this module”.

Section 9.2.2.13: eDMA
Interrupt Request Register

(EDMA_IRQRL)/ Page 9-17

In the third paragraph, remove the last line “without the need to perform a read-modify-write
sequence to the EDMA_IRQRL”.

Section 10.5.5.1: Elevating
Priority/ Page 10-31

 • From:
After they release the resource, they must lower the PRI value in INTC_CPR to prevent further
priority inversion

 • To:
After they release the resource, the PRI value in INTC_CPR can be lowered.

 • From:
Using the PCP instead of disabling processor recognition of all interrupts reduces the priority
inversion time when accessing a shared resource.

 • To:
Using the PCP instead of disabling processor recognition of all interrupts eliminates the time
when accessing a shared resource that all higher priority interrupts are blocked.”

Table 1. MPC5534RM Rev 2.0 addendum (continued)

Location Description
MPC5534 Reference Manual Addendum, Rev. 3

Freescale Semiconductor 3

Addendum for Revision 2.0
Section 10.5.6: Selecting
Priorities According to

Request Rates
and Deadlines/ Page 10-32

 • From:
Reducing the number of priorities does cause some priority inversion which reduces the
processor's ability to meet its deadlines. It also allows easier management of ISRs with similar
deadlines that share a resource. They can be placed at the same priority without any further
priority inversion, and they do not need to use the PCP to access the shared resource”

 • To:
Reducing the number of priorities does reduce the processor's ability to meet its deadlines.
However, it also allows easier management of ISRs with similar deadlines that share a
resource. They do not need to use the PCP to access the shared resource.

Section 10.5.7.1, “Scheduling
a Lower Priority Portion of an

ISR/ Page 10-33

 • From:
Therefore, executing this later portion which does not need to be executed at this higher
priority can block the execution of ISRs which do not have a higher priority than the earlier
portion of the ISR but do have a higher priority than what the later portion of the ISR needs.
This priority inversion reduces the processor's ability to meet its deadlines.

 • To:
Therefore, executing this later portion which does not need to be executed at this higher
priority can prevent the execution of ISRs which do not have a higher priority than the earlier
portion of the ISR but do have a higher priority than what the later portion of the ISR needs.
This preemptive scheduling inefficiency reduces the processor's ability to meet its deadlines.

 • From:
This software settable interrupt request, which usually will have a lower PRIn value in the
INTC_PSRn, therefore will not cause priority inversion.

 • To:
This software settable interrupt request, which usually will have a lower PRIn value in the
INTC_PSRn, therefore will not cause preemptive scheduling inefficiencies.

Section 10.5.8, “Lowering
Priority Within an ISR/ Page

10-33

 • From:
the only way (besides scheduling a task through an RTOS) to prevent priority inversion with
an ISR whose work spans multiple priorities”

 • To:
a way (besides scheduling a task through an RTOS) to prevent preemptive scheduling
inefficiencies with an ISR whose work spans multiple priorities

 • From:
Therefore, the INTC does not support lowering the current priority within an ISR as a way to
avoid priority inversion.

 • To:
Therefore, through its use of the LIFO the INTC does not support lowering the current priority
within an ISR as a way to avoid preemptive scheduling inefficiencies.

Table 6-29, “SIU_DISR Field
Descriptions”/ Page 6-71

 • Bit 14-15–TRIGSELB bit: Correct the input select description as follows:
00: Replace the term “Invalid value” with “No Trigger”
01: Replace the term “Invalid value” with “No Trigger”

 • Bit 22-23–TRIGSELC bit: Correct the input select description as follows:
00: Replace the term “Invalid value” with “No Trigger”
01: Replace the term “Invalid value” with “No Trigger”

 • Bit 30-31–TRIGSELD bit: Correct the input select description as follows:
00: Replace the term “Invalid value” with “No Trigger”
01: Replace the term “Invalid value” with “No Trigger”

Table 1. MPC5534RM Rev 2.0 addendum (continued)

Location Description
MPC5534 Reference Manual Addendum, Rev. 3

Freescale Semiconductor4

Addendum for Revision 2.0
Table 7-2, “XBAR Register
Memory Map”/ Page 7-3

Add the following rows in the memory map table to include XBAR_MGPCRn registers.

Table 1. MPC5534RM Rev 2.0 addendum (continued)

Location Description

Address Register Name Register Description Bits

Base + 0x0800 XBAR_MGPCR0 Master General-purpose control
register for master port 0

32

Base +
0x0804–0x08FF

— Reserved —

Base + 0x0900 XBAR_MGPCR1 Master General-purpose control
register for master port 1

32

Base +
0x0904–0x09FF

— Reserved —

Base + 0x0A00 XBAR_MGPCR2 Master General-purpose control
register for master port 2

32

Base +
0x0A04–0x0AFF

— Reserved —

Base + 0x0C00 XBAR_MGPCR4 Master General-purpose control
register for master port 4

32

Base0x0B04–0x0
003_FFFF

— Reserved —
MPC5534 Reference Manual Addendum, Rev. 3

Freescale Semiconductor 5

Addendum for Revision 2.0
Section 7.2.1,
“Register Descriptions”

Add the new section to include the XBAR_MGPCRn register description.

Master General Purpose Control Registers (XBAR_MGPCRn)
The Master General Purpose Control Register (XBAR_MGPCR) controls the arbitration policy
during undefined length burst accesses. The AULB (Arbitrate on Undefined Length Bursts) field
determines whether or not arbitration occurs for the slave port the master owns when the master
is performing undefined length burst accesses.
The MGPCR can only be accessed in supervisor mode with 32-bit access.

Section 10.4.1, “Interrupt
Request Sources”/ Page

10-22

Correct the content of the note.

 • From:
The INTC has no spurious vector support. If an asserted peripheral or software settable
interrupt request:
- Has a PRIn value (INTC_PSR0–INTC_PSR203) higher than the PRI value in INTC_CPR;
and
- Negates before the processor for that interrupt request acknowledges IRQ
The IRQ to the processor can assert or remain asserted for that peripheral or software
configurable interrupt request. In this case, the interrupt vector for the peripheral or software
configurable IRQ remains, and the PRI value in the INTC_CPR is updated to the PRIn value
in INTC_PSRn

 • To:
The INTC does not have spurious vector support. The peripheral or software settable interrupt
request asserts when the PRIn value in the interrupt priority select register (INTC_PSRn) is
greater than the PRIn value in the interrupt current priority register (INTC_CPR).
If an asserted peripheral or software settable interrupt request negates before the processor
acknowledges its request, the interrupt request can reassert and remain asserted. If this
occurs, the processor uses the INTC_PSRn value to locate the IRQ vector, and updates the
PRIn value in the INTC_CPR with the PRIn value in INTC_PSRn.

Table 1. MPC5534RM Rev 2.0 addendum (continued)

Location Description

Address
:

Base + 0x0800 (XBAR_MGPCR0)
Base + 0x0900 (XBAR_MGPCR1)
Base + 0x0A00 (XBAR_MGPCR2)
Base + 0x0C00 (XBAR_MGPCR4)

Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0
AULB

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Master General-Purpose Control Registers (XBAR_MGPCRn)
MPC5534 Reference Manual Addendum, Rev. 3

Freescale Semiconductor6

Addendum for Revision 2.0
Section 10.3.1.3, “INTC
Interrupt Acknowledge

Register
(INTC_IACKR)”/Page 10-10

Remove the first paragraph from the “Note”:
“The INTC_IACKR must not be read speculatively while in software vector
mode. Therefore, for future compatibility, the TLB entry covering the
INTC_IACKR must be configured to be guarded.”

Table 10-3. INTC Memory
Map/Page 10-8

Add the following note at the end of this table:
Note:
To ensure compatibility with all PowerPC processors, the TLB entry covering the INTC memory
map must be configured as guarded, both in software and hardware vector modes.
 • In software vector mode, the INTC_IACKR must not be read speculatively.
 • In hardware vector mode, guarded writes to the INTC_CPR or INTC_EOIR complete before

the interrupt acknowledge signal from the processor asserts.

Table 1. MPC5534RM Rev 2.0 addendum (continued)

Location Description
MPC5534 Reference Manual Addendum, Rev. 3

Freescale Semiconductor 7

Addendum for Revision 2.0
Table 16-9/ Page 16-15 Bit 7—DMA: Replace the table that shows the eMIOS channels that don’t support DMA with the
following table.

Table 1. MPC5534RM Rev 2.0 addendum (continued)

Location Description

eMIOS Channel DMA = 0 DMA = 1

0 Interrupt DMA request

1 Interrupt DMA request

2 Interrupt DMA request

3 Interrupt DMA request

4 Interrupt DMA request

5 Interrupt Reserved

6 Interrupt Reserved

7 Interrupt Reserved

8 Interrupt DMA request

9 Interrupt DMA request

10 Interrupt Reserved

11 Interrupt Reserved

12 Interrupt Reserved

13 Interrupt Reserved

14 Interrupt Reserved

15 Interrupt Reserved

16 Interrupt Reserved

17 Interrupt Reserved

18 Interrupt Reserved

19 Interrupt Reserved

20 Interrupt Reserved

21 Interrupt Reserved

22 Interrupt Reserved

23 Interrupt Reserved
MPC5534 Reference Manual Addendum, Rev. 3

Freescale Semiconductor8

Addendum for Revision 2.0
Table 10-9. INTC: Interrupt
Request Sources/ Page 10-22

Update the note at the end of this table as follows:
Note:
The INTC has no spurious vector support. Therefore, if an asserted peripheral or software
settable interrupt request (whose PRI value in INTC_PSRn is higher than the PRI value in
INTC_CPR) negates before the interrupt request to the processor for that peripheral or software
settable interrupt request is acknowledged, the interrupt request to the processor still can assert
or remain asserted for that peripheral or software settable interrupt request. If the interrupt
request to the processor does assert or does remain asserted:
 • The interrupt vector will correspond to that peripheral or software settable interrupt request.
 • The PRI value in the INTC_CPR will be updated with the corresponding PRI value in

INTC_PSRn.
Furthermore, clearing the peripheral interrupt request's enable bit in the peripheral or,
alternatively, setting its mask bit has the same consequences as clearing its flag bit.Setting its
enable bit or clearing its mask bit while its flag bit is asserted has the same effect on the INTC
as an interrupt event setting the flag bit.

Section 10.4.2.1.4, “Priority
Comparator Submodule”/

Page 10-23

Add the following paragraph to this section: One consequence of the priority comparator design
is that once a higher priority interrupt is captured, it must be acknowledged by the CPU before a
subsequent interrupt request of even higher priority can be captured. For example, if the CPU is
executing a priority level 1 interrupt, and a priority level 2 interrupt request is captured by the
INTC, followed shortly by a priority level 3 interrupt request to the INTC, the level 2 interrupt must
be acknowledged by the CPU before a new level 3 interrupt will be generated.

Table 1. MPC5534RM Rev 2.0 addendum (continued)

Location Description
MPC5534 Reference Manual Addendum, Rev. 3

Freescale Semiconductor 9

Addendum for Revision 2.0
Section 10.5.5.2, “Ensuring
Coherency”/ Page 10-31

Move the content of this section under a new heading Section 10.5.5.2.1, “Interrupt with Blocked
Priority”.
Add the following paragraph to this section:
Section 10.5.5.2.2: Raised Priority Preserved
Before the instruction after the GetResource system service executes, all pending transactions
have completed. These pending transactions can include an ISR for a peripheral or software
settable interrupt request whose priority was equal to or lower than the raised priority. Also,
during the epilog of the interrupt exception handler for this preempting ISR, the raised priority
has been restored from the LIFO to PRI in INTC_CPR. The shared coherent data block now can
be accessed coherently. Following figure shows the timing diagram for this scenario, and the
table explains the events. The example is for software vector mode, but except for the method of
retrieving the vector and acknowledging the interrupt request to the processor, hardware vector
mode is identical.

Raised Priority Preserved Timing Diagram

Table 1. MPC5534RM Rev 2.0 addendum (continued)

Location Description

Last In / First Out
Entry in LIFO

Write
INTC_CPR

Clock

Interrupt Request
to Processor

Hardware Vector
Enable

Interrupt
Acknowledge

Interrupt Vector

Read
INTC_IACKR

Write
INTC_EOIR

INTVEC in
INTC_IACKR

PRI in
INTC_CPR

Peripheral Interrupt
Request 100

0

108

1

208

2 3

Peripheral Interrupt
Request 200

0 3 0

3

A

B

C

D

E

F

G

H

I

MPC5534 Reference Manual Addendum, Rev. 3

Freescale Semiconductor10

Addendum for Revision 2.0
 Section 18.4.5.4.1
“Calibration Overview”

Remove the braces from the equation “CAL_RES = GCC x (RAW_RES + OCC + 2)”.

Section 21.4.6.1
“Freeze mode”

Remove the text “CANx_RXIMRn registers can be programmed only if the MBFEN bit is
asserted”.

Section 21.1.3
“Features”

 • Remove the “Includes 256 bytes of RAM used for filtering individual RX mask registers”
statement.

 • Change “Programmable for global (compatible with previous versions) or individual receive ID
masking” to “Programmable Global (compatible with previous versions) receive ID masking”.

Section 21.3.1
“Memory Map”

Change last three rows (Base+0x0880 - Base+0x097F) in "Module Memory Map" table to
reserved

Table 1. MPC5534RM Rev 2.0 addendum (continued)

Location Description

Raised Priority Preserved Events

Event Description

A Peripheral interrupt request 200 asserts during execution of ISR108 running at
priority 1.

B Interrupt request to processor asserts. INTVEC in INTC_IACKR updates with vector
for that peripheral interrupt request.

C ISR108 writes to INTC_CPR to raise priority to 3 before accessing shared coherent
data block.

D PRI in INTC_CPR now at 3, reflecting the write. This write, just before accessing
data block, is the last instruction the processor executes before being interrupted.

E Interrupt exception handler prolog acknowledges interrupt by reading INTC_IACKR.

F PRI of 3 pushed onto LIFO. PRI in INTC_CPR updates to 2, the priority of ISR208.

G ISR208 clears its flag bit, deasserting its peripheral interrupt request.

H Interrupt exception handler epilog writes to INTC_EOIR.

I LIFO pops 3, restoring the raised priority onto PRI in INTC_CPR. Next value to pop
from LIFO is the priority from before peripheral interrupt request 100 interrupted.
ISR108 now can access data block coherently after interrupt exception handler
executes rfi instruction.
MPC5534 Reference Manual Addendum, Rev. 3

Freescale Semiconductor 11

Revision history
2 Revision history
Table 2 provides a revision history for this document.

Section 21.3.3.1
“Module Configuration

Register (CANx_MCR)”

In “CANx_MCR Field Descriptions” table, changed the MBFEN bit description.
Change the whole text to remove all references to Individual masking. Left only Reception Queue
function. The updated text is as follows:

This bit provides the capability of enabling/disabling reception queue.

By negating MBFEN, global masking is enabled and FlexCAN uses the Rx ID masking scheme
of RXGMASK, RX14MASK and RX15MASK. MB14 and MB15 have individual masks and the
others share the global mask. This configuration does not provide a reception queue; that is, a
received message always fills the first matching buffer, setting the CODE field to overrun if the
buffer contained an unread message. See Section 21.3.3.4, “RX Mask Registers” for more
information. Keep MBFEN negated for compatibility with previous FlexCAN versions, which
negates MBFEN at reset to retain compatibility with existing software.

By asserting MBFEN, the reception queue features are enabled, while the global
masking is used for message filtering as if MBFEN was negated. See Section 21.4.3.2,
“Reception Queue” for more information.

0 = Reception queue features are disabled (thus the device is compatible with previous FlexCAN
versions).
1 = Reception queue features are enabled.

Section 21.3.3.5
“RX Individual Mask Registers

(CANx_RXIMR0 through
CANx_RXIMR63)”

Remove this complete section.

Section 21.4.3.2
“Reception Queue”

Change “By programming more than one MB with the same ID, received messages are queued
into the MBs. Matching to a range of IDs is possible by using ID acceptance masks that mask
individual MBs” to “By programming more than one MB with the same ID, received messages
are queued into the MBs. Matching to a range of IDs is possible by using ID acceptance masks”.

Section 21.5.1
“FlexCAN2 Initialization

Sequence”

Change “The initialization of FlexCAN registers for either global or individual acceptance
masking depends on the configuration of MBFEN:
- If MBFEN is negated, initialize CANx_RXGMASK, CANx_RX14MASK, and
CANx_RX15MASK registers for acceptance mask.
- If MBFEN is asserted, initialize CANx_RXIMR[0-63] for individual acceptance masking”. to
“Initialize FlexCAN registers for reception queue along with global acceptance masking.
For either MBFEN state, initialize CANx_RXGMASK, CANx_RX14MASK, and
CANx_RX15MASK registers for acceptance mask.
- If MBFEN is negated, the reception queue feature is disabled.
- If MBFEN is asserted, the reception queue feature is enabled”.

Section 11.3.1.1
Synthesizer Control Register

(FMPLL_SYNCR)

Delete the last note in PREDIV field description that states:
“To use the 8–20 MHz OSC, the PLL predivider must be configured for divide-by-two operation
by tying PLLCFG[2] low (set PREDIV to 0b000).”

Table 1. MPC5534RM Rev 2.0 addendum (continued)

Location Description
MPC5534 Reference Manual Addendum, Rev. 3

Freescale Semiconductor12

Revision history
Table 2. Revision history Table

Revision Substantive changes Date of release

1.0 • Initial release. Correct error in chapter 9, “Enhanced Direct Memory Access
(eDMA).”

11/2009

2.0 • Correct errors in chapter 5, “Peripheral Bridge.”
 • Correct peripheral bridge name errors in appendix A, “MPC5534 Register

Map.”
 • Correct eTPU number in the Chapter 1, “Overview” section.
 • Correct address offset in SIU_IREER, chapter 6, “SIU.”
 • Correct the table heading in Table 6-12, “SIU_DIRER Field Descriptions”.
 • Correct the arrow position in Figure 16-12, ”Unified Channel Block Diagram”.
 • Clarify the description in Section 9.4.1, “eDMA Microarchitecture”.
 • Clarify the description in Section 9.3.1.13, “eDMA Interrupt Request

Registers (EDMA_IRQRH, EDMA_IRQRL).
 • Clarify Section 10.5.5.1, “Elevating Priority”, Section 10.5.6, “Selecting

Priorities According to Request Rates and Deadlines”, Section 10.5.7.1,
“Scheduling a Lower Priority Portion of an ISR”, Section 10.5.8, “Lowering
Priority Within an ISR”.

 • Clarify bit description in Table 6-29, “SIU_DISR Field Descriptions”.
 • Clarify note in the INTC Interrupt Acknowledge Register.
 • Add a note in the INTC Memory Map table.
 • Clarify note at the end of the INTC: Interrupt Request Sources table.
 • Add a paragraph to the Section 10.4.2.1.4, “Priority Comparator Submodule”.
 • Update Section 10.5.5.2, “Ensuring Coherency”.
 • Update Section 21.4.6.1 “Freeze mode”.
 • In section in 21.1.3, remove the following statement: “Includes 256 bytes of

RAM used for filtering individual RX mask registers”.
 • In section 21.1.3, changed from “Programmable for global (compatible with

previous versions) or individual receive ID masking” to “Programmable Global
(compatible with previous versions) receive ID masking”.

 • In in Table 21-2, made the last three rows reserved (Base+0x0880 --
Base+0x097F Reserved).

 • In Table 21-7, changed the MBFEN bit description - changed the whole text
to remove all references to Individual masking. Leave only Reception Queue
function.

 • Removed the section 21.3.3.5, section 21.4.3.2, and section 21.5.1

12/2011

3.0 • Deleted the note in PREDIV field description of Synthesizer Control Register
(FMPLL_SYNCR) that states

“To use the 8–20 MHz OSC, the PLL predivider must be configured for
divide-by-two operation by tying PLLCFG[2] low (set PREDIV to 0b000).”

04/2012
MPC5534 Reference Manual Addendum, Rev. 3

Freescale Semiconductor 13

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and
software implementers to use Freescale Semiconductor products. There are
no express or implied copyright licenses granted hereunder to design or
fabricate any integrated circuits or integrated circuits based on the
information in this document.

Freescale Semiconductor reserves the right to make changes without further
notice to any products herein. Freescale Semiconductor makes no warranty,
representation or guarantee regarding the suitability of its products for any
particular purpose, nor does Freescale Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or
incidental damages. “Typical” parameters that may be provided in Freescale
Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer
application by customer’s technical experts. Freescale Semiconductor does
not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized
for use as components in systems intended for surgical implant into the body,
or other applications intended to support or sustain life, or for any other
application in which the failure of the Freescale Semiconductor product could
create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended
or unauthorized application, Buyer shall indemnify and hold Freescale
Semiconductor and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized
use, even if such claim alleges that Freescale Semiconductor was negligent
regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale
Semiconductor, Inc. All other product or service names are the property
of their respective owners.© Freescale Semiconductor, Inc. 2009–2012. All
rights reserved.

MPC5534RMAD
Rev. 3
04/2012

MPC5534 Microcontroller
Reference Manual

Devices Supported:
MPC5534

MPC5534RM
Rev. 2

 5 Oct 2008

Information in this document is provided solely to enable system and
software implementers to use Freescale Semiconductor products. There are
no express or implied copyright licenses granted hereunder to design or
fabricate any integrated circuits or integrated circuits based on the
information in this document.

Freescale Semiconductor reserves the right to make changes without further
notice to any products herein. Freescale Semiconductor makes no warranty,
representation or guarantee regarding the suitability of its products for any
particular purpose, nor does Freescale Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or
incidental damages. “Typical” parameters that may be provided in Freescale
Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer
application by customer’s technical experts. Freescale Semiconductor does
not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized
for use as components in systems intended for surgical implant into the body,
or other applications intended to support or sustain life, or for any other
application in which the failure of the Freescale Semiconductor product could
create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended
or unauthorized application, Buyer shall indemnify and hold Freescale
Semiconductor and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized
use, even if such claim alleges that Freescale Semiconductor was negligent
regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale
Semiconductor, Inc. All other product or service names are the property of their
respective owners. The described product contains a PowerPC processor
core. The PowerPC name is a trademark of IBM Corp. and used under license.

© Freescale Semiconductor, Inc. 2008. All rights reserved.

MPC5534RM
Rev. 2
5 Oct 2008

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 26668334
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor iii

Table of Contents

Chapter 1
Overview

1.1 Block Diagram .. 1-3
1.1.1 MPC5500 Family Comparison ... 1-4

1.2 MPC5534 Features List ... 1-5
1.2.1 Operating Parameters ... 1-5
1.2.2 e200z3 Core Processor ... 1-6
1.2.3 Crossbar Switch (XBAR) ... 1-7
1.2.4 Enhanced Direct Memory Access (eDMA) Controller .. 1-7
1.2.5 Interrupt Controller (INTC) .. 1-8
1.2.6 Frequency Modulated Phase-Locked Loop (FMPLL) ... 1-8
1.2.7 External Bus Interface (EBI) .. 1-9
1.2.8 Calibration Bus Interface (CBI) ... 1-10
1.2.9 System Integration Unit (SIU) .. 1-10
1.2.10 Error Correction Status Module (ECSM) ... 1-11
1.2.11 On-chip Flash ... 1-11
1.2.12 On-chip Static RAM (SRAM) .. 1-12
1.2.13 Boot Assist Module (BAM) ... 1-12
1.2.14 Enhanced Modular I/O System (eMIOS) ... 1-13
1.2.15 Enhanced Time Processor Unit (eTPU) ... 1-13
1.2.16 Enhanced Queued A/D Converter (eQADC) ... 1-14
1.2.17 Deserial Serial Peripheral Interface (DSPI) Module .. 1-15
1.2.18 Enhanced Serial Communication Interface (eSCI) Module 1-15
1.2.19 FlexCAN ... 1-16
1.2.20 Nexus Development Interface (NDI) ... 1-17
1.2.21 IEEE 1149.1 JTAG controller (JTAGC) ... 1-17
1.2.22 On-chip Voltage Regulator Controller .. 1-17

1.3 MPC5534 Memory Map ... 1-18
1.3.1 External Master Mode Operation Memory Map .. 1-20

1.4 Detailed Features ... 1-21
1.4.1 e200z3 Core Overview ... 1-21
1.4.2 Crossbar Switch (XBAR) ... 1-22
1.4.3 Enhanced Direct Memory Access (eDMA) Controller .. 1-23
1.4.4 Interrupt Controller (INTC) .. 1-23
1.4.5 Frequency Modulated Phase-Locked Loop (FMPLL) ... 1-23
1.4.6 External Bus Interface (EBI) .. 1-24
1.4.7 Calibration Bus Interface (CBI) ... 1-24
1.4.8 System Integration Unit (SIU) .. 1-24
1.4.9 On-chip Flash ... 1-24

Table of Contents

MPC5534 Microcontroller Reference Manual, Rev. 2

iv Freescale Semiconductor

1.4.10 Static Random Access Memory (SRAM) .. 1-25
1.4.11 Boot Assist Module (BAM) ... 1-25
1.4.12 Enhanced Module Input/Output System (eMIOS) ... 1-25
1.4.13 Enhanced Time Processing Unit (eTPU) .. 1-25
1.4.14 Enhanced Queued Analog/Digital Converter (eQADC) .. 1-27
1.4.15 Deserial/Serial Peripheral Interface (DSPI) ... 1-27
1.4.16 Enhanced System Communications Interface (eSCI) .. 1-28
1.4.17 Flexible Controller Area Network (FlexCAN) ... 1-28
1.4.18 Nexus .. 1-28
1.4.19 JTAG ... 1-30

1.5 Chip Configuration .. 1-30
1.6 Related Documentation ... 1-31

Chapter 2
Signals

2.1 Block Diagram .. 2-1
2.2 External Signal Descriptions ... 2-3

2.2.1 Multiplexed Signals .. 2-3
2.2.2 Device Signals Summary ... 2-4

2.3 Detailed Signal Description .. 2-19
2.3.1 Reset and Configuration Signals .. 2-19

2.3.1.1 External Reset Input RESET ... 2-19
2.3.1.2 External Reset Output RSTOUT ... 2-19
2.3.1.3 FMPLL Mode Selection / External Interrupt Request / GPIO

PLLCFG[0]_IRQ[4]_GPIO[208] .. 2-19
2.3.1.4 FMPLL Mode Selection / External Interrupt Request / DSPI D / GPIO

PLLCFG[1]_IRQ[5]_SOUTD_GPIO[209] ... 2-19
2.3.1.5 Reset Configuration Input / GPIO RSTCFG_GPIO[210] 2-19
2.3.1.6 Reset Configuration / External Interrupt Request / GPIO

BOOTCFG[0:1]_IRQ[2:3]_GPIO[211:212] ... 2-20
2.3.1.7 Weak Pull Configuration / GPIO WKPCFG_GPIO[213] 2-20

2.3.2 External Bus Interface (EBI) .. 2-20
2.3.2.1 External Chip Selects / External Address / GPIO

CS[0]_ADDR[8]_GPIO[0] .. 2-20
2.3.2.2 External Chip Selects / External Address / GPIO

CS[1:3]_ADDR[9:11]_GPIO[1:3]... 2-20
2.3.2.3 External Address / GPIO ADDR[12:31]_GPIO[8:27] 2-20
2.3.2.4 External Data / GPIO DATA[0:15]_GPIO[28:43]....................................... 2-21
2.3.2.5 External Read/Write / GPIO RD_WR_GPIO[62] 2-21
2.3.2.6 External Burst Data In Progress / GPIO BDIP_GPIO[63] 2-21
2.3.2.7 External Write/Byte Enable / GPIO WE/BE[0:1]_GPIO[64:65] 2-21
2.3.2.8 External Output Enable / GPIO OE_GPIO[68] ... 2-21
2.3.2.9 External Transfer Start / GPIO TS_GPIO[69] ... 2-21
2.3.2.10 External Transfer Acknowledge TA_GPIO[70] .. 2-21

Table of Contents

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor v

2.3.3 Calibration Bus Interface (CBI) ... 2-22
2.3.3.1 Calibration Chip Select CAL_CS[0] ... 2-22
2.3.3.2 Calibration Chip Selects / Calibration Address

CAL_CS[2:3]_CAL_ADDR[10:11].. 2-22
2.3.3.3 Calibration Address CAL_ADDR[12:30] ... 2-22
2.3.3.4 Calibration Data CAL_DATA[0:15].. 2-22
2.3.3.5 Calibration Read/Write CAL_RD_WR ... 2-22
2.3.3.6 Calibration Write / Byte Enable CAL_WE/BE[0:1].................................... 2-23
2.3.3.7 Calibration Output Enable CAL_OE... 2-23
2.3.3.8 Calibration Transfer Start CAL_TS... 2-23

2.3.4 Nexus Controller .. 2-23
2.3.4.1 Nexus Event In EVTI .. 2-23
2.3.4.2 Nexus Event Out EVTO .. 2-23
2.3.4.3 Nexus Message Clock Out MCKO.. 2-23
2.3.4.4 Nexus Message Data Out MDO[3:0]... 2-24
2.3.4.5 Nexus Message Data Out / GPIO MDO[4:11]_GPIO[82:75] 2-24
2.3.4.6 Nexus Message Start/End Out MSEO[1:0] ... 2-24
2.3.4.7 Nexus Ready Output RDY .. 2-24

2.3.5 JTAG ... 2-24
2.3.5.1 JTAG Test Clock Input TCK ... 2-24
2.3.5.2 JTAG Test Data Input TDI... 2-24
2.3.5.3 JTAG Test Data Output TDO... 2-24
2.3.5.4 JTAG Test Mode Select Input TMS... 2-25
2.3.5.5 JTAG Compliance Input JCOMP .. 2-25
2.3.5.6 Test Mode Enable Input TEST .. 2-25

2.3.6 Flexible Controller Area Network (FlexCAN) ... 2-25
2.3.6.1 FlexCAN A Transmit / GPIO CNTXA_GPIO[83]...................................... 2-25
2.3.6.2 FlexCAN A Receive / GPIO CNRXA_GPIO[84]....................................... 2-25
2.3.6.3 FlexCAN B Transmit / DSPI C Chip Select / GPIO

CNTXB_PCSC[3]_GPIO[85] ... 2-25
2.3.6.4 FlexCAN B Receive / DSPI C Chip Select / GPIO

CNRXB_PCSC[4]_GPIO[86] ... 2-25
2.3.6.5 FlexCAN C Transmit / DSPI D Chip Select / GPIO

CNTXC_PCSD[3]_GPIO[87] ... 2-25
2.3.6.6 FlexCAN C Receive / DSPI D Chip Select / GPIO

CNRXC_PCSD[4]_GPIO[88] ... 2-26
2.3.7 Enhanced Serial Communications Interface (eSCI) ... 2-26

2.3.7.1 eSCI A Transmit / GPIO TXDA_GPIO[89].. 2-26
2.3.7.2 eSCI A Receive / GPIO RXDA_GPIO[90] ... 2-26
2.3.7.3 eSCI B Transmit / DSPI D Chip Select / GPIO

TXDB_PCSD[1]_GPIO[91] .. 2-26
2.3.7.4 eSCI B Receive / DSPI D Chip Select / GPIO

RXDB_PCSD[5]_GPIO[92].. 2-26

Table of Contents

MPC5534 Microcontroller Reference Manual, Rev. 2

vi Freescale Semiconductor

2.3.8 Deserial/Serial Peripheral Interface (DSPI) ... 2-26
2.3.8.1 DSPI A Clock / DSPI C / GPIO SCKA_PCSC[1]_GPIO[93] 2-26
2.3.8.2 DSPI A Input / DSPI C / GPIO SINA_PCSC[2]_GPIO[94]....................... 2-26
2.3.8.3 DSPI A Output / DSPI C / GPIO SOUTA_PCSC[5]_GPIO[95] 2-27
2.3.8.4 DSPI A / DSPI D / GPIO PCSA[0]_PCSD[2]_GPIO[96] 2-27
2.3.8.5 DSPI A / DSPI B / GPIO PCSA[1]_PCSB[2]_GPIO[97] 2-27
2.3.8.6 DSPI A / DSPI D Clock / GPIO PCSA[2]_SCKD_GPIO[98] 2-27
2.3.8.7 DSPI A / DSPI D Data Input / GPIO PCSA[3]_SIND_GPIO[99].............. 2-27
2.3.8.8 DSPI A / DSPI D Data Output / GPIO PCSA[4]_SOUTD_GPIO[100] 2-27
2.3.8.9 DSPI A / DSPI B / GPIO PCSA[5]_PCSB[3]_GPIO[101] 2-27
2.3.8.10 DSPI B Clock / DSPI C Chip Select / GPIO

SCKB_PCSC[1]_GPIO[102]... 2-28
2.3.8.11 DSPI B Data Input / DSPI C Chip Select / GPIO

SINB_PCSC[2]_GPIO[103] .. 2-28
2.3.8.12 DSPI B Data Output / DSPI C Chip Select / GPIO

SOUTB_PCSC[5]_GPIO[104] .. 2-28
2.3.8.13 DSPI B Chip Select / DSPI D Chip Select / GPIO

PCSB[0]_PCSD[2]_GPIO[105] .. 2-28
2.3.8.14 DSPI B Chip Select / DSPI D Chip Select / GPIO

PCSB[1]_PCSD[0]_GPIO[106] .. 2-28
2.3.8.15 DSPI B Chip Select / DSPI C Data Output / GPIO

PCSB[2]_SOUTC_GPIO[107] .. 2-28
2.3.8.16 DSPI B Chip Select / DSPI C Data Input / GPIO

PCSB[3]_SINC_GPIO[108] .. 2-28
2.3.8.17 DSPI B Chip Select / DSPI C Clock / GPIO

PCSB[4]_SCKC_GPIO[109]... 2-29
2.3.8.18 DSPI B Chip Select / DSPI C Chip Select / GPIO

PCSB[5]_PCSC[0]_GPIO[110]... 2-29
2.3.9 Enhanced Queued Analog/Digital Converter (eQADC) .. 2-29

2.3.9.1 Analog Input / Differential Analog Input AN[0]_DAN0+.......................... 2-29
2.3.9.2 Analog Input / Differential Analog Input AN[1]_DAN0– 2-29
2.3.9.3 Analog Input / Differential Analog Input AN[2]_DAN1+.......................... 2-29
2.3.9.4 Analog Input / Differential Analog Input AN[3]_DAN1– 2-29
2.3.9.5 Analog Input / Differential Analog Input AN[4]_DAN2+.......................... 2-29
2.3.9.6 Analog Input / Differential Analog Input AN[5]_DAN2– 2-30
2.3.9.7 Analog Input / Differential Analog InputAN[6]_DAN3+........................... 2-30
2.3.9.8 Analog Input / Differential Analog Input AN[7]_DAN3– 2-30
2.3.9.9 Analog Input / Multiplexed Analog Input AN[8]_ANW 2-30
2.3.9.10 Analog Input / Multiplexed Analog Input AN[9]_ANX 2-30
2.3.9.11 Analog Input / Multiplexed Analog Input AN[10]_ANY 2-30
2.3.9.12 Analog Input / Multiplexed Analog Input AN[11]_ANZ............................ 2-31
2.3.9.13 Analog Input / Mux Address 0 / eQADC Serial Data Strobe

AN[12]_MA[0]_SDS... 2-31
2.3.9.14 Analog Input / Mux Address 1 / eQADC Serial Data Out

AN[13]_MA[1]_SDO.. 2-31

Table of Contents

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor vii

2.3.9.15 Analog Input / Mux Address 2 / eQADC Serial Data In
AN[14]_MA[2]_SDI ... 2-31

2.3.9.16 Analog Input / eQADC Free Running Clock AN[15]_FCK 2-31
2.3.9.17 Analog Input AN[16:39].. 2-31
2.3.9.18 Voltage Reference High VRH ...2-31
2.3.9.19 Voltage Reference LowVRL..2-32
2.3.9.20 Reference Bypass Capacitor REFBYPC ... 2-32

2.3.10 Enhanced Time Processing Unit (eTPU) .. 2-32
2.3.10.1 eTPU A TCR Clock / External Interrupt Request / GPIO

TCRCLKA_IRQ[7]_GPIO[113] ... 2-32
2.3.10.2 eTPU A Channel / eTPU A Channel (Output Only) / GPIO

ETPUA[0:11]_ETPUA[12:23]_GPIO[114:125] ... 2-32
2.3.10.3 eTPU A Channel / DSPI / GPIO

ETPUA[12:19]_PCSXn_GPIO[126:133].. 2-32
2.3.10.4 eTPU A Channel / External Interrupt Request / GPIO

ETPUA[20:27]_IRQ[8:15]_GPIO[134:141] ... 2-32
2.3.10.5 eTPU A Channels / DSPI C / GPIO

ETPUA[28:31]_PCSC[1:4]_GPIO[142:145] .. 2-32
2.3.11 Enhanced Modular Input/Output System (eMIOS) .. 2-33

2.3.11.1 eMIOS Channels / eTPU A Channels (Output Only) / GPIO
EMIOS[0:9]_ETPUA[0:9]_GPIO[179:188] ... 2-33

2.3.11.2 eMIOS Channels / GPIO EMIOS[10:11]_GPIO[189:190] 2-33
2.3.11.3 eMIOS Channel (Output Only) / DSPI C Data Output / GPIO

EMIOS[12]_SOUTC_GPIO[191] ... 2-33
2.3.11.4 eMIOS Channel (Output Only) / DSPI D Data Output / GPIO

EMIOS[13]_SOUTD_GPIO192.. 2-33
2.3.11.5 eMIOS Channel (Output Only) / External Interrupt Request / GPIO

EMIOS[14:15]_IRQ[0:1]_GPIO[193:194] ... 2-33
2.3.11.6 eMIOS Channel (Output Only) / GPIO

EMIOS[16:23]_GPIO[195:202] .. 2-33
2.3.12 GPIO ... 2-33

2.3.12.1 GPIO EMIOS[14:15]_GPIO[203:204].. 2-33
2.3.12.2 GPIO GPIO[206:207] .. 2-34

2.3.13 Clock Synthesizer ... 2-34
2.3.13.1 Crystal Oscillator Output XTAL.. 2-34
2.3.13.2 Crystal Oscillator Input / External Clock Input

EXTAL_EXTCLK... 2-34
2.3.13.3 System Clock Output CLKOUT.. 2-34
2.3.13.4 Engineering Clock Output ENGCLK .. 2-34

2.3.14 Power/Ground ... 2-34
2.3.14.1 Voltage Regulator Control Supply Input VRC33 .. 2-34
2.3.14.2 Voltage Regulator Control Ground Input VRCVSS....................................... 2-34
2.3.14.3 Voltage Regulator Control Output VRCCTL ... 2-35
2.3.14.4 eQADC Analog Supply VDDAn... 2-35
2.3.14.5 eQADC Analog Ground Reference VSSAn.. 2-35

Table of Contents

MPC5534 Microcontroller Reference Manual, Rev. 2

viii Freescale Semiconductor

2.3.14.6 Clock Synthesizer Power Input VDDSYN... 2-35
2.3.14.7 Clock Synthesizer Ground Input VSSSYN.. 2-35
2.3.14.8 Flash Read Supply Input VFLASH.. 2-35
2.3.14.9 Flash Program/Erase Supply Input VPP... 2-35
2.3.14.10 SRAM Standby Power Input VSTBY ... 2-35
2.3.14.11 Internal Logic Supply Input VDD .. 2-35
2.3.14.12 External I/O Supply Input VDDEn.. 2-36
2.3.14.13 External I/O Supply Input VDDEHn ... 2-36
2.3.14.14 Fixed 3.3 V Internal Supply Input VDD33.. 2-36
2.3.14.15 Ground VSS.. 2-36

2.3.15 I/O Power/Ground Segmentation ... 2-36
2.4 eTPU Pin Connections and Serialization .. 2-37

2.4.1 ETPUA[0:15] ... 2-37
2.4.2 ETPUA[16:31] ... 2-39

2.5 eMIOS Pin Connections and Serialization .. 2-41

Chapter 3
Core Complex (e200z3)

3.1 Overview ... 3-1
3.2 Features ... 3-2

3.2.1 e200z3 Core Features Not Supported in the Device .. 3-2
3.3 Microarchitecture Summary .. 3-3

3.3.1 Instruction Unit Features .. 3-4
3.3.2 Integer Unit Features .. 3-4
3.3.3 Load/Store Unit Features .. 3-5
3.3.4 e200 System Bus Features .. 3-5
3.3.5 MMU Features .. 3-5
3.3.6 Nexus 3 Features .. 3-5

3.4 Block Diagram .. 3-7
3.5 Memory Management Unit (MMU) ... 3-7

3.5.1 Overview .. 3-7
3.5.2 Translation Lookaside Buffer (TLB) .. 3-8
3.5.3 Translation Flow ... 3-9
3.5.4 Permissions ... 3-10

3.6 Bus Interface Unit (BIU) ... 3-11
3.7 Core Registers and Programmer’s Models .. 3-12

3.7.1 PowerPC Book E Registers .. 3-14
3.7.1.1 User-level Registers ... 3-14
3.7.1.2 Supervisor-level Registers ... 3-15

3.7.2 e200-specific Registers ... 3-17
3.7.2.1 User-level Registers ... 3-17
3.7.2.2 Supervisor-level Registers ... 3-17

3.8 Signal Processing Extension APU (SPE APU) ... 3-18
3.8.1 Overview .. 3-18
3.8.2 SPE Programming Model ... 3-18

Table of Contents

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor ix

3.9 Instruction Summary ... 3-19
3.9.1 SPE APU Simple and Complex Integer Instructions ... 3-19
3.9.2 SPE APU Scalar and Vector Floating Point Instructions ... 3-24
3.9.3 SPE APU Load and Store Instructions ... 3-26

3.10 Book E Instruction Extensions—VLE .. 3-27

Chapter 4
Reset

4.1 Introduction ... 4-1
4.2 External Signal Description .. 4-2

4.2.1 Reset Input (RESET) .. 4-2
4.2.2 Reset Output (RSTOUT) .. 4-2
4.2.3 Reset Configuration (RSTCFG) ... 4-3
4.2.4 Weak Pull Configuration (WKPCFG) .. 4-3
4.2.5 Boot Configuration (BOOTCFG[0:1]) ... 4-3

4.3 Memory Map/Register Definition ... 4-3
4.3.1 Register Descriptions .. 4-4

4.3.1.1 Reset Status Register (SIU_RSR).. 4-4
4.3.1.2 System Reset Control Register (SIU_SRCR).. 4-6

4.4 Functional Description .. 4-7
4.4.1 Reset Vector Locations ... 4-7
4.4.2 Reset Sources .. 4-7

4.4.2.1 FMPLL Lock ... 4-7
4.4.2.2 Flash High Voltage... 4-7
4.4.2.3 Reset Source Descriptions ... 4-7

Power-on Reset ...4-7
External Reset ...4-8
Loss-of-Lock Reset ...4-9
Loss-of-Clock Reset ...4-9
Watchdog Timer/Debug Reset ..4-10
Checkstop Reset ..4-11
JTAG Reset ...4-11
Software System Reset ... 4-11
Software External Reset ..4-12

4.4.3 Reset Configuration and Configuration Pins ..4-12
4.4.3.1 RSTCFG Pin .. 4-12

4.4.3.2 WKPCFG Pin (Reset Weak Pullup/Pulldown Configuration)..................... 4-13
4.4.3.3 BOOTCFG[0:1] Pins (MCU Configuration) ... 4-13

BOOTCFG[0:1] Configuration in the 208 Package 4-13
4.4.3.4 PLLCFG[0:1] Pins ... 4-14
4.4.3.5 Reset Configuration Half Word (RCHW).. 4-14

Reset Configuration Half Word (RCHW) Definition 4-14
Invalid Reset Configuration Half Word (RCHW) 4-15
Reset Configuration Half Word (RCHW) Source 4-16

Table of Contents

MPC5534 Microcontroller Reference Manual, Rev. 2

x Freescale Semiconductor

4.4.4 Reset Configuration Timing ... 4-17
4.4.5 Reset Flow .. 4-19

Chapter 5
Peripheral Bridge

5.1 Introduction ... 5-1
5.1.1 Block Diagram .. 5-1
5.1.2 Overview .. 5-1

5.1.2.1 Access Protections ... 5-1
5.1.3 Features ... 5-2
5.1.4 Modes of Operation .. 5-2

5.2 External Signal Description .. 5-2
5.3 Memory Map and Register Definition .. 5-2

5.3.1 Register Descriptions .. 5-2
5.3.1.1 Master Privilege Control Register (PBRIDGE_x_MPCR) 5-3

5.4 Functional Description .. 5-5
5.4.1 Access Support ... 5-5
5.4.2 Peripheral Write Buffering ... 5-5

5.4.2.1 Read Cycles ... 5-5
5.4.2.2 Write Cycles... 5-6
5.4.2.3 Buffered Write Cycles ... 5-6

5.4.3 General Operation .. 5-6

Chapter 6
System Integration Unit (SIU)

6.1 Introduction ... 6-1
6.2 Block Diagram .. 6-2

6.2.1 Overview .. 6-3
6.2.2 Modes of Operation .. 6-3

6.3 External Signal Description .. 6-4
6.3.1 Detailed Signal Descriptions .. 6-5

6.3.1.1 Reset Input (RESET) ... 6-5
6.3.1.2 Reset Output (RSTOUT) ... 6-5
6.3.1.3 General-Purpose I/O Pins (GPIO[0:213]).. 6-5
6.3.1.4 Boot Configuration Pins (BOOTCFG[0:1]) .. 6-6
6.3.1.5 I/O Pin Weak Pull Up Reset Configuration Pin (WKPCFG) 6-6
6.3.1.6 External Interrupt Request Input Pins (IRQ[0:5, 7:15]) 6-7

External Interrupts .. 6-8
DMA Transfers ... 6-8
Overruns ... 6-8
Edge Detects ... 6-9

6.4 Memory Map and Register Definition .. 6-9
6.4.1 Register Descriptions .. 6-11

6.4.1.1 MCU ID Register (SIU_MIDR) .. 6-11
6.4.1.2 Reset Status Register (SIU_RSR).. 6-12

Table of Contents

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor xi

6.4.1.3 System Reset Control Register (SIU_SRCR).. 6-14
6.4.1.4 External Interrupt Status Register (SIU_EISR) ... 6-15
6.4.1.5 DMA/Interrupt Request Enable Register (SIU_DIRER)............................. 6-16
6.4.1.6 DMA/Interrupt Request Select Register (SIU_DIRSR) 6-17
6.4.1.7 Overrun Status Register (SIU_OSR) ... 6-18
6.4.1.8 Overrun Request Enable Register (SIU_ORER) ... 6-19
6.4.1.9 IRQ Rising-Edge Event Enable Register (SIU_IREER) 6-20
6.4.1.10 IRQ Falling-Edge Event Enable Register (SIU_IFEER)............................. 6-21
6.4.1.11 IRQ Digital Filter Register (SIU_IDFR) ... 6-21
6.4.1.12 Pad Configuration Registers (SIU_PCR) .. 6-22

Pad Configuration Registers 0–3 (SIU_PCR0–SIU_PCR3) 6-25
Pad Configuration Registers 8–27 (SIU_PCR8–SIU_PCR27) 6-26
Pad Configuration Registers 28–43 (SIU_PCR28–SIU_PCR43) 6-26
Pad Configuration Register 62 (SIU_PCR62) .. 6-27
Pad Configuration Register 63 (SIU_PCR63) .. 6-27
Pad Configuration Registers 64–65 (SIU_PCR64–SIU_PCR65) 6-28
Pad Configuration Register 68 (SIU_PCR68) .. 6-29
Pad Configuration Register 69 (SIU_PCR69) .. 6-29
Pad Configuration Register 70 (SIU_PCR70) .. 6-30
Pad Configuration Register 82–75 (SIU_PCR82–SIU_PCR75) 6-30
Pad Configuration Register 83 (SIU_PCR83) .. 6-31
Pad Configuration Register 84 (SIU_PCR84) .. 6-31
Pad Configuration Register 85 (SIU_PCR85) .. 6-32
Pad Configuration Register 86 (SIU_PCR86) .. 6-32
Pad Configuration Register 87 (SIU_PCR87) .. 6-33
Pad Configuration Register 88 (SIU_PCR88) .. 6-33
Pad Configuration Register 89 (SIU_PCR89) .. 6-34
Pad Configuration Register 90 (SIU_PCR90) .. 6-34
Pad Configuration Register 91 (SIU_PCR91) .. 6-35
Pad Configuration Register 92 (SIU_PCR92) .. 6-35
Pad Configuration Register 93 (SIU_PCR93) .. 6-36
Pad Configuration Register 94 (SIU_PCR94) .. 6-36
Pad Configuration Register 95 (SIU_PCR95) .. 6-37
Pad Configuration Registers 96 (SIU_PCR96) .. 6-37
Pad Configuration Registers 97 (SIU_PCR97) .. 6-38
Pad Configuration Register 98 (SIU_PCR98) .. 6-38
Pad Configuration Register 99 (SIU_PCR99) .. 6-39
Pad Configuration Register 100 (SIU_PCR100) .. 6-39
Pad Configuration Registers 101 (SIU_PCR101) 6-40
Pad Configuration Register 102 (SIU_PCR102) .. 6-40
Pad Configuration Register 103 (SIU_PCR103) .. 6-41
Pad Configuration Register 104 (SIU_PCR104) .. 6-41
Pad Configuration Register 105 (SIU_PCR105) .. 6-42
Pad Configuration Register 106 (SIU_PCR106) .. 6-42
Pad Configuration Register 107 (SIU_PCR107) .. 6-43

Table of Contents

MPC5534 Microcontroller Reference Manual, Rev. 2

xii Freescale Semiconductor

Pad Configuration Register 108 (SIU_PCR108) .. 6-43
Pad Configuration Register 109 (SIU_PCR109) .. 6-44
Pad Configuration Register 110 (SIU_PCR110) .. 6-44
Pad Configuration Register 113 (SIU_PCR113) .. 6-45
Pad Configuration Register 114–125 (SIU_PCR114–SIU_PCR125) 6-45
Pad Configuration Register 126 (SIU_PCR126) .. 6-46
Pad Configuration Register 127 (SIU_PCR127) .. 6-46
Pad Configuration Register 128 (SIU_PCR128) .. 6-47
Pad Configuration Register 129 (SIU_PCR129) .. 6-47
Pad Configuration Register 130 (SIU_PCR130) .. 6-48
Pad Configuration Register 131 (SIU_PCR131) .. 6-48
Pad Configuration Register 132 (SIU_PCR132) .. 6-49
Pad Configuration Register 133 (SIU_PCR133) .. 6-49
Pad Configuration Register 134–141 (SIU_PCR134–SIU_PCR141) 6-50
Pad Configuration Register 142 (SIU_PCR142) .. 6-50
Pad Configuration Register 143 (SIU_PCR143) .. 6-51
Pad Configuration Register 144 (SIU_PCR144) .. 6-51
Pad Configuration Register 145 (SIU_PCR145) .. 6-52
Pad Configuration Register 179–188 (SIU_PCR179–SIU_PCR188) 6-52
Pad Configuration Register 189–190 (SIU_PCR189–SIU_PCR190) 6-53
Pad Configuration Register 191 (SIU_PCR191) .. 6-53
Pad Configuration Register 192 (SIU_PCR192) .. 6-54
Pad Configuration Register 193–194 (SIU_PCR193–SIU_PCR194) 6-54
Pad Configuration Register 195–202 (SIU_PCR195–SIU_PCR202) 6-55
Pad Configuration Register 203–204 (SIU_PCR203–SIU_PCR204) 6-55
Pad Configuration Registers 206–207 (SIU_PCR206–SIU_PCR207) 6-56
Pad Configuration Register 208 (SIU_PCR208) .. 6-56
Pad Configuration Register 209 (SIU_PCR209) .. 6-57
Pad Configuration Register 210 (SIU_PCR210) .. 6-57
Pad Configuration Register 211–212 (SIU_PCR211–SIU_PCR212) 6-58
Pad Configuration Register 213 (SIU_PCR213) .. 6-58
Pad Configuration Register 214 (SIU_PCR214) .. 6-59
Pad Configuration Register 215 (SIU_PCR215) .. 6-59
Pad Configuration Register 216 (SIU_PCR216) .. 6-60
Pad Configuration Register 217 (SIU_PCR217) .. 6-60
Pad Configuration Register 218 (SIU_PCR218) .. 6-61
Pad Configuration Register 219 (SIU_PCR219) .. 6-61
Pad Configuration Register 223–220 (SIU_PCR223–SIU_PCR220) 6-62
Pad Configuration Register 225–224 (SIU_PCR225–SIU_PCR224) 6-62
Pad Configuration Register 226 (SIU_PCR226) .. 6-62
Pad Configuration Register 227 (SIU_PCR227) .. 6-63
Pad Configuration Register 228 (SIU_PCR228) .. 6-63
Pad Configuration Register 229 (SIU_PCR229) .. 6-63
Pad Configuration Register 230 (SIU_PCR230) .. 6-64
Pad Configuration Register 336 (SIU_PCR336) .. 6-64

Table of Contents

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor xiii

Pad Configuration Registers 338–339 (SIU_PCR338–SIU_PCR339) 6-64
Pad Configuration Register 340 (SIU_PCR340) .. 6-65
Pad Configuration Register 341 (SIU_PCR341) .. 6-65
Pad Configuration Register 342 (SIU_PCR342) .. 6-65

6.4.1.13 GPIO Pin Data Output Registers 0–213 (SIU_GPDOn) 6-66
6.4.1.14 GPIO Pin Data Input Registers 0–213 (SIU_GPDIn) 6-66
6.4.1.15 eQADC Trigger Input Select Register (SIU_ETISR).................................. 6-67
6.4.1.16 External IRQ Input Select Register (SIU_EIISR) 6-69
6.4.1.17 DSPI Input Select Register (SIU_DISR) ... 6-71
6.4.1.18 Chip Configuration Register (SIU_CCR).. 6-73
6.4.1.19 External Clock Control Register (SIU_ECCR) ... 6-75
6.4.1.20 Compare A High Register (SIU_CARH) .. 6-76
6.4.1.21 Compare A Low Register (SIU_CARL) ... 6-77
6.4.1.22 Compare B High Register (SIU_CBRH)... 6-77
6.4.1.23 Compare B Low Register (SIU_CBRL).. 6-78

6.5 Functional Description .. 6-78
6.5.1 System Configuration ... 6-78

6.5.1.1 Boot Configuration .. 6-78
6.5.1.2 Pad Configuration .. 6-79

6.5.2 Reset Control .. 6-79
6.5.2.1 RESET Pin Glitch Detect .. 6-79

6.5.3 External Interrupt .. 6-79
6.5.4 GPIO Operation .. 6-80
6.5.5 Internal Multiplexing .. 6-81

6.5.5.1 eQADC External Trigger Input Multiplexing.. 6-81
6.5.5.2 SIU External Interrupt Input Multiplexing .. 6-82
6.5.5.3 Multiplexed Inputs for DSPI Multiple Transfer Operation 6-82

Chapter 7
Crossbar Switch (XBAR)

7.1 Introduction ... 7-1
7.1.1 Block Diagram .. 7-1
7.1.2 Overview .. 7-1
7.1.3 Features ... 7-2
7.1.4 Modes of Operation .. 7-2

7.2 Memory Map and Register Definition .. 7-3
7.2.1 Register Descriptions .. 7-4

7.2.1.1 Master Priority Registers (XBAR_MPRn) .. 7-4
7.2.1.2 Slave General-Purpose Control Registers (XBAR_SGPCRn) 7-6

7.3 Functional Description .. 7-8
7.3.1 Overview .. 7-8
7.3.2 General Operation .. 7-8
7.3.3 Master Ports .. 7-9
7.3.4 Slave Ports .. 7-9
7.3.5 Priority Assignment .. 7-10

Table of Contents

MPC5534 Microcontroller Reference Manual, Rev. 2

xiv Freescale Semiconductor

7.3.6 Arbitration .. 7-10
7.3.6.1 Fixed Priority Operation .. 7-10
7.3.6.2 Round-Robin Priority Operation ... 7-10

Parking ..11

Chapter 8
Error Correction Status Module (ECSM)

8.1 Overview ... 8-1
8.1.1 Types of ECC Errors .. 8-1
8.1.2 ECC Operations .. 8-2

8.2 Memory Map and Register Definition .. 8-3
8.2.1 Register Descriptions .. 8-4

8.2.1.1 Software Watchdog Timer Registers: Control, Service, and Interrupt
(ECSM_SWTCR, ECSM_SWTSR, and ECSM_SWTIR)............................ 8-4

8.2.1.2 ECC Registers.. 8-4
8.2.1.3 ECC Configuration Register (ECSM_ECR).. 8-5
8.2.1.4 ECC Status Register (ECSM_ESR)... 8-6
8.2.1.5 ECC Error Generation Register (ECSM_EEGR) .. 8-7
8.2.1.6 Flash ECC Address Register (ECSM_FEAR)... 8-8
8.2.1.7 Flash ECC Master Number Register (ECSM_FEMR) 8-9
8.2.1.8 Flash ECC Attributes Register (ECSM_FEAT)... 8-10
8.2.1.9 Flash ECC Data High Register (ECSM_FEDRH) 8-11
8.2.1.10 Flash ECC Data Low Registers (ECSM_FEDRL) 8-11
8.2.1.11 SRAM ECC Address Register (ECSM_REAR).. 8-12
8.2.1.12 SRAM ECC Master Number Register (ECSM_REMR)............................. 8-13
8.2.1.13 SRAM ECC Attributes Register (ECSM_REAT) 8-14
8.2.1.14 SRAM ECC Data High Register (ECSM_REDRH) 8-15
8.2.1.15 SRAM ECC Data Low Registers (ECSM_REDRL)................................... 8-15

8.3 Initialization and Application Information .. 8-16

Chapter 9
Enhanced Direct Memory Access (eDMA)

9.1 Introduction ... 9-1
9.1.1 Features ... 9-2
9.1.2 Modes of Operation .. 9-3

9.1.2.1 Normal Mode... 9-3
9.1.2.2 Debug Mode .. 9-3

9.2 Memory Map and Register Definition .. 9-3
9.2.1 Memory Map .. 9-3
9.2.2 Register Descriptions .. 9-6

9.2.2.1 eDMA Control Register (EDMA_CR) .. 9-6
9.2.2.2 eDMA Error Status Register (EDMA_ESR) ... 9-8
9.2.2.3 eDMA Enable Request Register (EDMA_ERQRL) 9-10
9.2.2.4 eDMA Enable Error Interrupt Register (EDMA_EEIRL)........................... 9-11
9.2.2.5 eDMA Set Enable Request Register (EDMA_SERQR).............................. 9-12

Table of Contents

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor xv

9.2.2.6 eDMA Clear Enable Request Register (EDMA_CERQR).......................... 9-13
9.2.2.7 eDMA Set Enable Error Interrupt Register (EDMA_SEEIR)..................... 9-13
9.2.2.8 eDMA Clear Enable Error Interrupt Register (EDMA_CEEIR)................. 9-14
9.2.2.9 eDMA Clear Interrupt Request Register (EDMA_CIRQR)........................ 9-15
9.2.2.10 eDMA Clear Error Register (EDMA_CER).. 9-15
9.2.2.11 eDMA Set START Bit Register (EDMA_SSBR).. 9-16
9.2.2.12 eDMA Clear DONE Status Bit Register (EDMA_CDSBR) 9-17
9.2.2.13 eDMA Interrupt Request Register (EDMA_IRQRL).................................. 9-17
9.2.2.14 eDMA Error Register (EDMA_ERL).. 9-18
9.2.2.15 DMA Hardware Request Status (EDMA_HRSL) 9-19
9.2.2.16 eDMA Channel n Priority Registers (EDMA_CPRn)................................. 9-20
9.2.2.17 Transfer Control Descriptor (TCD) ... 9-21

9.3 Functional Description .. 9-28
9.3.1 eDMA Microarchitecture ... 9-28
9.3.2 eDMA Basic Data Flow ... 9-30
9.3.3 eDMA Performance .. 9-32

9.4 Initialization and Application Information .. 9-36
9.4.1 eDMA Initialization .. 9-36
9.4.2 DMA Programming Errors ... 9-38
9.4.3 DMA Request Assignments ... 9-38
9.4.4 DMA Arbitration Mode Considerations ... 9-40

9.4.4.1 Fixed-Group Arbitration and Fixed-Channel Arbitration............................ 9-40
9.4.4.2 Round-Robin Group Arbitration, Fixed-Channel Arbitration 9-40
9.4.4.3 Round-Robin Group Arbitration, Round-Robin Channel Arbitration......... 9-40
9.4.4.4 Fixed-Group Arbitration, Round-Robin Channel Arbitration 9-41

9.4.5 DMA Transfer .. 9-41
9.4.5.1 Single Request ... 9-41
9.4.5.2 Multiple Requests .. 9-42
9.4.5.3 Modulo Feature.. 9-44

9.4.6 TCD Status ... 9-44
9.4.6.1 Minor Loop Complete ... 9-44
9.4.6.2 Active Channel TCD Reads... 9-45
9.4.6.3 Preemption Status .. 9-45

9.4.7 Channel Linking ... 9-45
9.4.8 Dynamic Programming .. 9-47

9.4.8.1 Dynamic Channel Linking and Dynamic Scatter/Gather 9-47

Chapter 10
Interrupt Controller (INTC)

10.1 Introduction ... 10-1
10.1.1 Block Diagram .. 10-1
10.1.2 Overview .. 10-2
10.1.3 Features ... 10-4
10.1.4 Modes of Operation .. 10-4

10.1.4.1 Software Vector Mode ... 10-5

Table of Contents

MPC5534 Microcontroller Reference Manual, Rev. 2

xvi Freescale Semiconductor

10.1.4.2 Hardware Vector Mode.. 10-6
10.2 External Signal Description .. 10-6
10.3 Memory Map/Register Definition ... 10-8

10.3.1 Register Descriptions .. 10-8
10.3.1.1 INTC Module Configuration Register (INTC_MCR) 10-9
10.3.1.2 INTC Current Priority Register (INTC_CPR)... 10-9
10.3.1.3 INTC Interrupt Acknowledge Register (INTC_IACKR) 10-10
10.3.1.4 INTC End-of-Interrupt Register (INTC_EOIR) .. 10-11
10.3.1.5 INTC Software Set/Clear Interrupt Registers (INTC_SSCIR[0–7]) 10-12
10.3.1.6 INTC Priority Select Registers (INTC_PSR[0–211])................................ 10-12

10.4 Functional Description .. 10-13
10.4.1 Interrupt Request Sources ... 10-13

10.4.1.1 Peripheral Interrupt Requests... 10-22
10.4.1.2 Software Settable Interrupt Requests... 10-22
10.4.1.3 Unique Vector for Each Interrupt Request Source..................................... 10-23

10.4.2 Priority Management .. 10-23
10.4.2.1 Current Priority and Preemption.. 10-23

Priority Arbitrator Submodule .. 10-23
Request Selector Submodule .. 10-23
Vector Encoder Submodule .. 10-24
Priority Comparator Submodule ... 10-24

10.4.2.2 LIFO... 10-24
10.4.3 Details on Handshaking with Processor ... 10-25

10.4.3.1 Software Vector Mode Handshaking ... 10-25
Acknowledging Interrupt Request to Processor 10-25
End-of-Interrupt Exception Handler .. 10-25

10.4.3.2 Hardware Vector Mode Handshaking.. 10-26
10.5 Initialization/Application Information .. 10-27

10.5.1 Initialization Flow .. 10-27
10.5.2 Interrupt Exception Handler ... 10-28

10.5.2.1 Software Vector Mode ... 10-28
10.5.2.2 Hardware Vector Mode.. 10-29

10.5.3 ISR, RTOS, and Task Hierarchy ... 10-29
10.5.4 Order of Execution ... 10-30
10.5.5 Priority Ceiling Protocol ... 10-31

10.5.5.1 Elevating Priority ... 10-31
10.5.5.2 Ensuring Coherency... 10-31

10.5.6 Selecting Priorities According to Request Rates and Deadlines 10-32
10.5.7 Software Settable Interrupt Requests ... 10-32

10.5.7.1 Scheduling a Lower Priority Portion of an ISR... 10-33
10.5.7.2 Scheduling an ISR on Another Processor.. 10-33

10.5.8 Lowering Priority Within an ISR ... 10-33
10.5.9 Negating an Interrupt Request Outside of its ISR .. 10-34

10.5.9.1 Negating an Interrupt Request as a Side Effect of an ISR......................... 10-34
10.5.9.2 Negating Multiple Interrupt Requests in One ISR..................................... 10-34

Table of Contents

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor xvii

10.5.9.3 Proper Setting of Interrupt Request Priority .. 10-34
10.5.10 Examining LIFO Contents ... 10-35

Chapter 11
Frequency Modulated Phase Locked Loop and System Clocks (FMPLL)

11.1 Introduction ... 11-1
11.1.1 Block Diagrams .. 11-1

11.1.1.1 FMPLL and Clock Architecture .. 11-2
11.1.1.2 FMPLL Bypass Mode.. 11-3
11.1.1.3 FMPLL External Reference Mode .. 11-4
11.1.1.4 FMPLL Crystal Reference Mode Without FM.. 11-5
11.1.1.5 FMPLL Crystal Reference Mode With FM... 11-6
11.1.1.6 FMPLL Dual-Controller Mode (1:1) ... 11-7

11.1.2 Overview .. 11-8
11.1.3 Features ... 11-8
11.1.4 FMPLL Modes of Operation .. 11-9

11.1.4.1 Crystal Reference... 11-9
11.1.4.2 External Reference Mode .. 11-10
11.1.4.3 Bypass Mode...11-11
11.1.4.4 Dual-Controller Mode (1:1)..11-11

11.2 External Signal Description ...11-11
11.3 Memory Map/Register Definition ... 11-12

11.3.1 Register Descriptions .. 11-12
11.3.1.1 Synthesizer Control Register (FMPLL_SYNCR) 11-12
11.3.1.2 Synthesizer Status Register (FMPLL_SYNSR) .. 11-16

11.4 Functional Description .. 11-18
11.4.1 Clock Architecture .. 11-18

11.4.1.1 Software Controlled Power Management/Clock Gating 11-19
11.4.1.2 Clock Dividers ... 11-19

External Bus Clock (CLKOUT) ... 11-19
Nexus Message Clock (MCKO)... 11-20
Engineering Clock (ENGCLK) .. 11-20
FlexCAN_x Clock Domains ... 11-20

11.4.2 Clock Operation .. 11-20
11.4.2.1 Input Clock Frequency... 11-20
11.4.2.2 Reduced Frequency Divider (RFD)... 11-21
11.4.2.3 Programmable Frequency Modulation .. 11-21
11.4.2.4 FMPLL Lock Detection... 11-21
11.4.2.5 FMPLL Loss-of-Lock Conditions ... 11-21

FMPLL Loss-of-Lock Reset ... 11-22
FMPLL Loss-of-Lock Interrupt Request .. 11-22

11.4.2.6 Loss-of-Clock Detection.. 11-22
Alternate and Backup Clock Selection... 11-22
Loss-of-Clock Reset ... 11-23
Loss-of-Clock Interrupt Request .. 11-23

Table of Contents

MPC5534 Microcontroller Reference Manual, Rev. 2

xviii Freescale Semiconductor

11.4.3 Clock Configuration ... 11-23
11.4.3.1 Programming System Clock Frequency Without Frequency Modulation. 11-24
11.4.3.2 Programming System Clock Frequency with Frequency Modulation....... 11-25
11.4.3.3 FM Calibration Routine ... 11-28

Chapter 12
External Bus Interface (EBI)

12.1 Introduction ... 12-1
12.1.1 Block Diagram .. 12-1
12.1.2 Features ... 12-3
12.1.3 Modes of Operation .. 12-4

12.1.3.1 Single Master Mode... 12-4
12.1.3.2 External Master Mode ... 12-4
12.1.3.3 Module Disable Mode ... 12-4
12.1.3.4 Configurable Bus Speed Modes .. 12-4
12.1.3.5 16-Bit Data Bus Mode ... 12-5
12.1.3.6 Debug Mode .. 12-5

12.2 External Signal Description .. 12-5
12.2.1 Detailed Signal Descriptions .. 12-6

12.2.1.1 Address Lines 8–31 (ADDR[8:31]).. 12-6
12.2.1.2 Burst Data in Progress (BDIP)... 12-6
12.2.1.3 Clockout (CLKOUT)... 12-7
12.2.1.4 Chip Selects 0–3 (CS[0:3]) .. 12-7
12.2.1.5 Calibration Chip Selects (CAL_CS[0, 2:3]) — 496 Assembly Only 12-7
12.2.1.6 Calibration Signals... 12-7
12.2.1.7 Data Lines 0–15 (DATA[0:15]) ... 12-7
12.2.1.8 Output Enable (OE) ... 12-8
12.2.1.9 Read/Write (RD_WR).. 12-8
12.2.1.10 Transfer Acknowledge (TA) .. 12-8
12.2.1.11 Transfer Start (TS) ... 12-8
12.2.1.12 Write/Byte Enables (WE/BE) .. 12-9

12.2.2 Signal Function and Direction by Mode .. 12-9
12.3 Memory Map and Register Definition .. 12-10

12.3.1 Register Descriptions .. 12-12
12.3.1.1 Writing EBI Registers While a Transaction is in Progress 12-12
12.3.1.2 Separate Input Clock for Registers .. 12-12
12.3.1.3 EBI Module Configuration Register (EBI_MCR)..................................... 12-12
12.3.1.4 EBI Transfer Error Status Register (EBI_TESR) 12-14
12.3.1.5 EBI Bus Monitor Control Register (EBI_BMCR) 12-14
12.3.1.6 EBI Base Registers 0–3 (EBI_BRn) and EBI

Calibration Base Registers 0–3 (EBI_CAL_BRn) 12-15
12.3.1.7 EBI Option Registers 0–3 (EBI_ORn) and EBI

Calibration Option Registers 0–3 (EBI_CAL_ORn)................................. 12-17

Table of Contents

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor xix

12.4 Functional Description .. 12-18
12.4.1 External Bus Interface Features .. 12-18

12.4.1.1 32-Bit Address Bus.. 12-18
12.4.1.2 16-Bit Data Bus ... 12-18
12.4.1.3 Support for External Master Accesses to Internal Addresses.................... 12-18
12.4.1.4 Memory Controller with Support for Various Memory Types 12-19
12.4.1.5 Burst Support (Wrapped Only) .. 12-20
12.4.1.6 Bus Monitor ... 12-21
12.4.1.7 Port Size Configuration per Chip Select (16 Bits)..................................... 12-21
12.4.1.8 Port Size Configuration per Calibration Chip Select (16 Bits).................. 12-21
12.4.1.9 Configurable Wait States ... 12-21

Four Chip Select (CS[0:3]) Signals.. 12-21
Support for Dynamic Calibration with Up to Three Chip Selects 12-21
Two Write/Byte Enable (WE/BE) Signals ... 12-22
Optional Automatic CLKOUT Gating... 12-22
Compatible with MPC500 External Bus (with Some Limitations) 12-22

12.4.2 External Bus Operations ... 12-23
12.4.2.1 External Clocking .. 12-23
12.4.2.2 Reset... 12-23
12.4.2.3 Basic Transfer Protocol.. 12-23
12.4.2.4 Single-Beat Transfer .. 12-24

Single-Beat Read Flow ... 12-24
Single-beat Write Flow ... 12-26
Back-to-Back Accesses ... 12-26

12.4.2.5 Burst Transfer .. 12-29
TBDIP Effect on Burst Transfer ... 12-32

12.4.2.6 Small Accesses (Small Port Size and Short Burst Length) 12-34
Small Access Example #1: 32-bit Write to 16-bit Port 12-35
Small Access Example #2: 32-byte Write with External TA 12-35

12.4.2.7 Size, Alignment, and Packaging on Transfers ... 12-36
12.4.2.8 Arbitration.. 12-38
12.4.2.9 Termination Signals Protocol... 12-39
12.4.2.10 Bus Operation in External Master Mode ... 12-39

Address Decoding for External Master Accesses 12-41
Bus Transfers Initiated by an External Master ... 12-42

12.4.2.11 Non-Chip-Select Burst in 16-bit Data Bus Mode...................................... 12-45
12.4.2.12 Calibration Bus Operation ... 12-46

12.5 Initialization and Application Information .. 12-47
12.5.1 Booting from External Memory ... 12-48
12.5.2 Running with SDR (Single Data Rate) Burst Memories .. 12-48
12.5.3 Using Asynchronous Memory .. 12-48

12.5.3.1 Example Wait State Calculation .. 12-49
12.5.3.2 Timing and Connections for Asynchronous Memories 12-49

12.5.4 Connecting an MCU to Multiple Memories ... 12-51
12.5.5 Dual-MCU Operations ... 12-51

Table of Contents

MPC5534 Microcontroller Reference Manual, Rev. 2

xx Freescale Semiconductor

12.5.5.1 Connecting 16-bit MCU to 32-bit MCU (Master and Slave) 12-51
12.5.5.2 Arbiting a Master and Slave configuration.. 12-51
12.5.5.3 Setting the transfer size.. 12-52
12.5.5.4 Acknowledging a transfer .. 12-52
12.5.5.5 Detecting a transfer error ... 12-52
12.5.5.6 Detecting Burst Data in Progress... 12-52

12.5.6 Summary of Differences from MPC500 .. 12-52

Chapter 13
Flash Memory

13.1 Introduction ... 13-1
13.1.1 Block Diagram .. 13-1
13.1.2 Overview .. 13-1
13.1.3 Features ... 13-3
13.1.4 Modes of Operation .. 13-3

13.1.4.1 User Mode.. 13-3
13.1.4.2 Stop Mode.. 13-3

13.2 External Signal Description .. 13-4
13.2.1 Voltage for Flash Only VFLASH .. 13-4
13.2.2 Program and Erase Voltage for Flash Only VPP ... 13-4

13.3 Memory Map/Register Description ... 13-4
13.3.1 Flash Memory Map .. 13-6
13.3.2 Register Descriptions .. 13-7

13.3.2.1 Module Configuration Register FLASH_MCR... 13-7
MCR Simultaneous Register Writes.. 13-11

13.3.2.2 Low/Mid Address Space Block Locking Register FLASH_LMLR.......... 13-12
13.3.2.3 High Address Space Block Locking Register (FLASH_HLR) 13-13
13.3.2.4 Secondary Low/Mid Address Space Block Locking Register

FLASH_SLMLR ... 13-14
13.3.2.5 Low/Mid Address Space Block Select Register FLASH_LMSR 13-15
13.3.2.6 High Address Space Block Select Register FLASH_HSR........................ 13-15
13.3.2.7 Address Register FLASH_AR... 13-16
13.3.2.8 Flash Bus Interface Unit Control Register FLASH_BIUCR..................... 13-16
13.3.2.9 Flash Bus Interface Unit Access Protection Register

FLASH_BIUAPR .. 13-20
13.3.2.10 Flash Bus Interface Unit Control Register 2

FLASH_BIUCR2... 13-21
13.4 Functional Description .. 13-22

13.4.1 Flash Bus Interface Unit (FBIU) .. 13-22
13.4.1.1 FBIU Basic Interface Protocol... 13-23
13.4.1.2 FBIU Access Protections ... 13-23
13.4.1.3 Flash Read Cycles—Buffer Miss... 13-23
13.4.1.4 Flash Read Cycles—Buffer Hit ... 13-23
13.4.1.5 Flash Access Pipelining ... 13-23
13.4.1.6 Flash Error Response Operation .. 13-23

Table of Contents

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor xxi

13.4.1.7 FBIU Line Read Buffers and Prefetch Operation...................................... 13-24
13.4.1.8 Prefetch Triggering .. 13-24
13.4.1.9 FBIU Buffer Invalidation... 13-25
13.4.1.10 Flash Wait-state Emulation .. 13-25

13.4.2 Flash Memory Array: User Mode ... 13-25
13.4.2.1 Flash Read and Write... 13-25
13.4.2.2 Read While Write (RWW)... 13-26
13.4.2.3 Flash Programming.. 13-26

Software Locking .. 13-29
Flash Program Suspend/Resume ... 13-29

13.4.2.4 Flash Erase ... 13-29
Flash Erase Suspend/Resume ... 13-30

13.4.2.5 Flash Shadow Block .. 13-32
13.4.2.6 Censorship ... 13-32

Censorship Control Word ... 13-33
Flash Disable .. 13-33
FLASH_BIUAPR Modification ... 13-34
External Boot Default ... 13-34

13.4.3 Flash Memory Array: Stop Mode ... 13-35
13.4.4 Flash Memory Array: Reset ... 13-35

Chapter 14
Internal Static RAM (SRAM)

14.1 Introduction ... 14-1
14.2 SRAM Operating Modes ... 14-1
14.3 External Signal Description .. 14-1
14.4 Register Memory Map .. 14-2
14.5 Functional Description .. 14-2
14.6 SRAM ECC Mechanism ... 14-2

14.6.1 Access Timing .. 14-3
14.6.2 Reset Effects on SRAM Accesses .. 14-3

14.7 Initialization and Application Information .. 14-3
14.7.1 Example Code .. 14-4

Chapter 15
Boot Assist Module (BAM)

15.1 Introduction ... 15-1
15.1.1 Overview .. 15-1
15.1.2 Features ... 15-2
15.1.3 Modes of Operation .. 15-2

15.1.3.1 Normal Mode... 15-2
15.1.3.2 Debug Mode .. 15-2
15.1.3.3 Internal Boot Mode.. 15-2
15.1.3.4 External Boot Modes ... 15-2
15.1.3.5 Serial Boot Mode ... 15-3

Table of Contents

MPC5534 Microcontroller Reference Manual, Rev. 2

xxii Freescale Semiconductor

15.2 Memory Map ... 15-3
15.3 Functional Description .. 15-3

15.3.1 BAM Program Resources ... 15-3
15.3.2 BAM Program Operation ... 15-4

15.3.2.1 Boot Mode Features... 15-6
15.3.2.2 Internal Boot Mode Flow... 15-7

Finding the Reset Configuration Halfword .. 15-7
15.3.2.3 External Boot Modes Flow .. 15-8

External Boot MMU Configuration .. 15-8
Single Bus Master .. 15-8
Configure the EBI for External Boot—Single Master with no Arbitration 15-9
Read the Reset Configuration Halfword ... 15-9

15.3.2.4 Serial Boot Mode Operation .. 15-9
Serial Boot Mode MMU and EBI Configuration 15-10
Serial Boot Mode FlexCAN and eSCI Configuration 15-10
Download Process for FlexCAN Serial Boot Mode 15-13
eSCI Serial Boot Mode Download Process .. 15-15

15.3.3 Interrupts ... 15-17

Chapter 16
Enhanced Modular Input/Output Subsystem (eMIOS)

16.1 Introduction ... 16-1
16.1.1 Block Diagram .. 16-1
16.1.2 Overview .. 16-3
16.1.3 Features ... 16-3
16.1.4 Modes of Operation .. 16-3

16.1.4.1 eMIOS Modes.. 16-3
16.1.4.2 Unified Channel Modes ... 16-4

16.2 External Signal Description .. 16-5
16.2.1 Overview .. 16-5

16.2.1.1 External Signals ... 16-5
16.2.1.2 Output Disable Input—eMIOS Output Disable Input Signals 16-5

16.3 Memory Map and Register Definitions ... 16-6
16.3.1 Register Description ... 16-8

16.3.1.1 eMIOS Module Configuration Register EMIOS_MCR 16-8
16.3.1.2 eMIOS Global Flag Register EMIOS_GFR .. 16-9
16.3.1.3 eMIOS Output Update Disable Register EMIOS_OUDR......................... 16-10
16.3.1.4 eMIOS Channel A Data Register EMIOS_CADRn 16-11
16.3.1.5 eMIOS Channel B Data Register EMIOS_CBDRn 16-11
16.3.1.6 eMIOS Channel Counter Register EMIOS_CCNTRn 16-12
16.3.1.7 eMIOS Channel Control Register EMIOS_CCRn 16-13
16.3.1.8 eMIOS Channel Status Register EMIOS_CSRn 16-21

16.4 Functional Description .. 16-22
16.4.1 Bus Interface Unit (BIU) .. 16-22

16.4.1.1 Effect of Freeze on the BIU... 16-22

Table of Contents

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor xxiii

16.4.2 STAC Client Submodule .. 16-22
16.4.2.1 Effect of Freeze on the STAC Client Submodule 16-23

16.4.3 Global Clock Prescaler Submodule (GCP) .. 16-23
16.4.3.1 Effect of Freeze on the GCP .. 16-24

16.4.4 Unified Channel (UC) .. 16-24
16.4.4.1 Programmable Input Filter (PIF) ... 16-25
16.4.4.2 Clock Prescaler (CP).. 16-26
16.4.4.3 Effect of Freeze on the Unified Channel ... 16-26
16.4.4.4 Modes of Operation of the Unified Channels .. 16-27

General Purpose Input/Output Mode (GPIO) ... 16-27
Single Action Input Capture Mode (SAIC) .. 16-28
Single Action Output Compare Mode (SAOC) .. 16-28
Input Pulse Width Measurement Mode (IPWM) 16-29
Input Period Measurement Mode (IPM) .. 16-30
Double Action Output Compare Mode (DAOC) 16-31
Pulse/Edge Accumulation Mode (PEA) ... 16-33
Pulse/Edge Counting Mode (PEC) ... 16-35
Quadrature Decode Mode (QDEC) .. 16-37
Windowed Programmable Time Accumulation Mode (WPTA) 16-38
Modulus Counter Mode (MC) .. 16-39
Output Pulse Width and Frequency Modulation Mode (OPWFM) 16-42
Center Aligned Output Pulse Width Modulation with Dead-time Mode

(OPWMC) ... 16-45
Output Pulse Width Modulation Mode (OPWM) 16-48
Modulus Counter, Buffered Mode (MCB) ... 16-51
Output Pulse Width and Frequency Modulation, Buffered Mode

(OPWFMB) .. 16-54
Center Aligned Output Pulse Width Modulation, Buffered Mode

(OPWMCB) .. 16-58
Output Pulse Width Modulation, Buffered Mode (OPWMB) 16-64

16.5 Initialization and Application Information .. 16-68
16.5.1 Considerations on Changing a UC Mode ... 16-68
16.5.2 Generating Correlated Output Signals .. 16-68
16.5.3 Time Base Generation .. 16-68

Chapter 17
Enhanced Time Processing Unit (eTPU)

17.1 Introduction ... 17-1
17.1.1 eTPU Implementation .. 17-1
17.1.2 Block Diagram .. 17-2
17.1.3 eTPU Operation Overview ... 17-3

17.1.3.1 eTPU Engine.. 17-4
17.1.3.2 Time Bases... 17-4
17.1.3.3 eTPU Timer Channels.. 17-5

Host Interface .. 17-5

Table of Contents

MPC5534 Microcontroller Reference Manual, Rev. 2

xxiv Freescale Semiconductor

Shared Data Memory (SDM) .. 17-6
Task Scheduler .. 17-7
Microengine .. 17-8

17.1.3.4 Debug Interface.. 17-8
17.1.4 Features ... 17-8

17.2 Modes of Operation ... 17-10
17.2.1 User Configuration Mode ... 17-10
17.2.2 User Mode .. 17-10
17.2.3 Debug Mode ... 17-11
17.2.4 Module Disable Mode .. 17-11
17.2.5 eTPU Mode Selection ... 17-11

17.3 External Signal Description .. 17-11
17.4 eTPU Detailed Signal Description .. 17-11

17.4.1 Output and Input Channel Signals .. 17-11
17.4.1.1 Time Base Clock Signal (TCRCLK[A]).. 17-13
17.4.1.2 Channel Output Disable Signals .. 17-13

17.5 Memory Map and Register Definition .. 17-14
17.5.1 Memory Map .. 17-14
17.5.2 Register Description ... 17-15

17.5.2.1 System Configuration Registers .. 17-17
eTPU Module Configuration Register (ETPU_MCR) 17-17
eTPU Coherent Dual-Parameter Controller Register (ETPU_CDCR) 17-19
eTPU MISC Compare Register (ETPU_MISCCMPR) 17-20
eTPU SCM Off-Range Data Register (ETPU_SCMOFFDATAR) 17-21
eTPU Engine Configuration Register (ETPU_ECR) 17-22

17.6 Time Base Registers .. 17-24
17.6.0.1 Time Base Registers .. 17-24

eTPU Time Base Configuration Register (ETPU_TBCR) 17-25
eTPU Time Base 1 (TCR1) Visibility Register (ETPU_TB1R) 17-27
eTPU Time Base 2 (TCR2) Visibility Register (ETPU_TB2R) 17-27
STAC Bus Configuration Register (ETPU_REDCR) 17-28

17.6.0.2 Global Channel Registers .. 17-30
eTPU Channel Interrupt Status Register (ETPU_CISR) 17-30
eTPU Channel Data Transfer Request Status Register

(ETPU_CDTRSR) .. 17-31
eTPU Channel Interrupt Overflow Status Register (ETPU_CIOSR) 17-32
eTPU Channel Data Transfer Request Overflow Status Register

(ETPU_CDTROSR) .. 17-33
eTPU Channel Interrupt Enable Register (ETPU_CIER) 17-34
eTPU Channel Data Transfer Request Enable Register

(ETPU_CDTRER) .. 17-35
eTPU Channel Pending Service Status Register (ETPU_CPSSR) 17-36
eTPU Channel Service Status Register (ETPU_CSSR) 17-36

17.6.0.3 Channel Configuration and Control Registers ... 17-37
Channel Registers Layout ... 17-38

Table of Contents

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor xxv

eTPU Channel n Configuration Register (ETPU_CnCR) 17-38
eTPU Channel n Status Control Register (ETPU_CnSCR) 17-40

17.7 Functional Description .. 17-42
17.8 Initialization and Application Information .. 17-42

Chapter 18
Enhanced Queued Analog-to-Digital Converter (eQADC)

18.1 Introduction ... 18-1
18.1.1 Block Diagram .. 18-2
18.1.2 Overview .. 18-2
18.1.3 Features ... 18-4
18.1.4 Modes of Operation .. 18-4

18.1.4.1 Normal Mode... 18-5
18.1.4.2 Debug Mode .. 18-5
18.1.4.3 Stop Mode.. 18-6

18.2 External Signal Description .. 18-7
18.3 Memory Map and Register Definition .. 18-10

18.3.1 eQADC Memory Map .. 18-10
18.3.2 eQADC Register Descriptions ... 18-12

18.3.2.1 eQADC Module Configuration Register (EQADC_MCR)....................... 18-12
18.3.2.2 eQADC Null Message Send Format Register (EQADC_NMSFR) 18-13
18.3.2.3 eQADC External Trigger Digital Filter Register (EQADC_ETDFR)....... 18-15
18.3.2.4 eQADC CFIFO Push Registers 0–5 (EQADC_CFPRn) 18-15
18.3.2.5 eQADC Result FIFO Pop Registers 0–5 (EQADC_RFPRn) 18-17
18.3.2.6 eQADC CFIFO Control Registers 0–5 (EQADC_CFCRn) 18-18
18.3.2.7 eQADC Interrupt and eDMA Control Registers 0–5 (EQADC_IDCRn) . 18-19
18.3.2.8 eQADC FIFO and Interrupt Status Registers 0–5 (EQADC_FISRn) 18-22
18.3.2.9 eQADC CFIFO Transfer Counter Registers 0–5 (EQADC_CFTCRn)..... 18-26
18.3.2.10 eQADC CFIFO Status Snapshot Registers 0–2... 18-26

eQADC CFIFO Status Snapshot Registers 0 EQADC_CFSSR0 18-27
eQADC CFIFO Status Snapshot Registers 1 EQADC_CFSSR1 18-28
eQADC CFIFO Status Snapshot Registers 2 EQADC_CFSSR2 18-29

18.3.2.11 eQADC CFIFO Status Register EQADC_CFSR 18-30
18.3.2.12 eQADC SSI Control Register EQADC_SSICR .. 18-31
18.3.2.13 eQADC SSI Receive Data Register EQADC_SSIRDR 18-33
18.3.2.14 eQADC CFIFO Registers (EQADC_CF[0–5]Rn) 18-33
18.3.2.15 eQADC RFIFO Registers (EQADC_RF[0–5]Rn) 18-35

18.3.3 On-Chip ADC Registers ... 18-36
18.3.3.1 ADCn Control Registers (ADC0_CR and ADC1_CR)............................. 18-37
18.3.3.2 ADC Time Stamp Control Register (ADC_TSCR)................................... 18-39
18.3.3.3 ADC Time Base Counter Registers (ADC_TBCR)................................... 18-41
18.3.3.4 ADCn Gain Calibration Constant Registers

(ADC0_GCCR and ADC1_GCCR) .. 18-42
18.3.3.5 ADCn Offset Calibration Constant Registers

(ADC0_OCCR and ADC1_OCCR) .. 18-43

Table of Contents

MPC5534 Microcontroller Reference Manual, Rev. 2

xxvi Freescale Semiconductor

18.4 Functional Description .. 18-43
18.4.1 Data Flow in the eQADC ... 18-44

18.4.1.1 Assumptions/Requirements Regarding the External Device..................... 18-46
18.4.1.2 Message Format in eQADC... 18-47

Message Formats for On-Chip ADC Operation 18-48
Message Formats for External Device Operation 18-56

18.4.2Command and Result Queues .. 18-60
18.4.3 eQADC Command FIFOs .. 18-60

18.4.3.1 CFIFO Basic Functionality .. 18-60
18.4.3.2 CFIFO Prioritization and Command Transfer ... 18-64
18.4.3.3 External Trigger from eTPU or eMIOS Channels 18-67
18.4.3.4 CFIFO Scan Trigger Modes... 18-68

Disabled Mode .. 18-68
Single-Scan Mode ... 18-69
Continuous-Scan Mode ... 18-71
CFIFO Scan Trigger Mode Start/Stop Summary 18-72

18.4.3.5 CFIFO and Trigger Status.. 18-73
CFIFO Operation Status .. 18-73
Command Queue Completion Status .. 18-75
Pause Status ... 18-75
Trigger Overrun Status .. 18-76
Command Sequence Non-Coherency Detection 18-77

18.4.4 Result FIFOs ... 18-83
18.4.4.1 RFIFO Basic Functionality .. 18-83
18.4.4.2 Distributing Result Data into RFIFOs ... 18-86

18.4.5 On-Chip ADC Configuration and Control ... 18-87
18.4.5.1 Enabling and Disabling the on-chip ADCs.. 18-87
18.4.5.2 ADC Clock and Conversion Speed ... 18-88
18.4.5.3 Time Stamp Feature ... 18-90
18.4.5.4 ADC Calibration Feature ... 18-90

Calibration Overview .. 18-90
MAC Unit and Operand Data Format ... 18-91

18.4.5.5 ADC Control Logic Overview and Command Execution 18-93
18.4.6 Internal and External Multiplexing .. 18-95

18.4.6.1 Channel Assignment .. 18-95
18.4.6.2 External Multiplexing .. 18-97

18.4.7 eQADC eDMA or Interrupt Request .. 18-99
18.4.8 eQADC Synchronous Serial Interface (SSI) Submodule 18-102

18.4.8.1 eQADC SSI Data Transmission Protocol .. 18-103
Abort Feature .. 18-104

18.4.8.2 Baud Clock Generation.. 18-104
18.4.9 Analog Submodule ... 18-107

18.4.9.1 Reference Bypass... 18-107
18.4.9.2 Analog-to-Digital Converter (ADC).. 18-107

ADC Architecture ... 18-107

Table of Contents

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor xxvii

RSD Overview .. 18-108
RSD Adder ... 18-109

18.5 Initialization and Application Information .. 18-109
18.5.1 Multiple Queues Control Setup Example ... 18-109

18.5.1.1 Initialization of On-Chip ADCs and an External Device 18-110
18.5.1.2 Configuring eQADC for Applications..18-111

18.5.2 eQADC to eDMA Controller Interface .. 18-113
18.5.2.1 Command Queue and CFIFO Transfers .. 18-113
18.5.2.2 Receive Queue/RFIFO Transfers... 18-113

18.5.3 Sending Immediate Command Setup Example .. 18-114
18.5.4 Modifying Queues .. 18-115
18.5.5 Command Queue and Result Queue Usage .. 18-116
18.5.6 ADC Result Calibration ... 18-117

18.5.6.1 MAC Configuration Procedure.. 18-118
18.5.6.2 Example Calculation of Calibration Constants.. 18-118
18.5.6.3 Quantization Error Reduction During Calibration................................... 18-119

18.5.7 eQADC versus QADC ... 18-119

Chapter 19
Deserial Serial Peripheral Interface (DSPI)

19.1 Introduction ... 19-1
19.1.1 Block Diagram .. 19-2
19.1.2 Overview .. 19-2
19.1.3 Features ... 19-3
19.1.4 Modes of Operation .. 19-5

19.1.4.1 Master Mode .. 19-5
19.1.4.2 Slave Mode .. 19-5
19.1.4.3 Module Disable Mode ... 19-5
19.1.4.4 Debug Mode .. 19-5

19.2 External Signal Description .. 19-6
19.2.1 Signal Overview ... 19-6
19.2.2 Signal Descriptions ... 19-6

19.2.2.1 Peripheral Chip Select / Slave Select PCSx[0]_SS...................................... 19-6
19.2.2.2 Peripheral Chip Selects 1–3 PCSx[1:3] ... 19-6
19.2.2.3 Peripheral Chip Select 4 / Master Trigger PCSx[4]_MTRIG...................... 19-7
19.2.2.4 Peripheral Chip Select 5 / Peripheral Chip Select Strobe PCSx[5]_PCSS .. 19-7
19.2.2.5 Serial Input (SINx)... 19-7
19.2.2.6 Serial Output (SOUTx) .. 19-7
19.2.2.7 Serial Clock (SCKx) .. 19-7
19.2.2.8 Internal Hardware Trigger .. 19-7

19.3 Memory Map and Register Definition .. 19-8
19.3.1 Memory Map .. 19-8
19.3.2 Register Descriptions .. 19-9

19.3.2.1 DSPI Module Configuration Register (DSPIx_MCR) 19-9
19.3.2.2 DSPI Transfer Count Register (DSPIx_TCR) ... 19-12

Table of Contents

MPC5534 Microcontroller Reference Manual, Rev. 2

xxviii Freescale Semiconductor

19.3.2.3 DSPI Clock and Transfer Attributes Registers 0–7 (DSPIx_CTARn) 19-12
19.3.2.4 DSPI Status Register (DSPIx_SR)... 19-19
19.3.2.5 DSPI DMA and Interrupt Request Select and Enable Register

(DSPIx_RSER) .. 19-21
19.3.2.6 DSPI PUSH TX FIFO Register (DSPIx_PUSHR) 19-23
19.3.2.7 DSPI POP RX FIFO Register (DSPIx_POPR).. 19-25
19.3.2.8 DSPI Transmit FIFO Registers 0–3 (DSPIx_TXFRn) 19-26
19.3.2.9 DSPI Receive FIFO Registers 0–3 (DSPIx_RXFRn)................................ 19-27
19.3.2.10 DSPI DSI Configuration Register (DSPIx_DSICR) 19-28
19.3.2.11 DSPI DSI Serialization Data Register (DSPIx_SDR) 19-30
19.3.2.12 DSPI DSI Alternate Serialization Data Register (DSPIx_ASDR) 19-31
19.3.2.13 DSPI DSI Transmit Comparison Register (DSPIx_COMPR)................... 19-32
19.3.2.14 DSPI DSI Deserialization Data Register (DSPIx_DDR) 19-33

19.4 Functional Description .. 19-33
19.4.1 Modes of Operation .. 19-34

19.4.1.1 Master Mode .. 19-35
19.4.1.2 Slave Mode .. 19-35
19.4.1.3 Module Disable Mode ... 19-35
19.4.1.4 Debug Mode .. 19-36

19.4.2 Start and Stop of DSPI Transfers .. 19-36
19.4.3 Serial Peripheral Interface (SPI) Configuration ... 19-37

19.4.3.1 SPI Master Mode ... 19-37
19.4.3.2 SPI Slave Mode ... 19-37
19.4.3.3 FIFO Disable Operation... 19-38
19.4.3.4 Using the TX FIFO Buffering Mechanism.. 19-38

Filling the TX FIFO .. 19-38
Draining the TX FIFO .. 19-39

19.4.3.5 Using the RX FIFO Buffering Mechanism.. 19-39
Filling the RX FIFO .. 19-39
Draining the RX FIFO .. 19-40

19.4.4 Deserial Serial Interface (DSI) Configuration .. 19-40
19.4.4.1 DSI Master Mode... 19-40
19.4.4.2 DSI Slave Mode... 19-41
19.4.4.3 DSI Serialization.. 19-41
19.4.4.4 DSI Deserialization.. 19-42
19.4.4.5 DSI Transfer Initiation Control.. 19-42

Continuous Control ... 19-42
Change In Data Control .. 19-43
Triggered Control ... 19-43
Triggered or Change In Data Control ... 19-43

19.4.4.6 DSPI Connections to eTPUA, eMIOS and SIU .. 19-43
DSPI B Connectivity .. 19-43
DSPI B Connectivity .. 19-44
DSPI C Connectivity .. 19-45
DSPI D Connectivity .. 19-47

Table of Contents

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor xxix

19.4.4.7 Multiple Transfer Operation (MTO).. 19-48
Internal Muxing and SIU Support for Serial and Parallel Chaining 19-49
Parallel Chaining .. 19-49
Serial Chaining ... 19-51

19.4.5 Combined Serial Interface (CSI) Configuration ... 19-52
19.4.5.1 CSI Serialization .. 19-52
19.4.5.2 CSI Deserialization .. 19-53

19.4.6 DSPI Baud Rate and Clock Delay Generation ... 19-54
19.4.6.1 Baud Rate Generator.. 19-54
19.4.6.2 PCS to SCK Delay (tCSC)... 19-54
19.4.6.3 After SCK Delay (tASC) ... 19-55
19.4.6.4 Delay after Transfer (tDT) ... 19-55
19.4.6.5 Peripheral Chip Select Strobe Enable (PCSS) ... 19-55

19.4.7 Transfer Formats ... 19-56
19.4.7.1 Classic SPI Transfer Format (CPHA = 0).. 19-57
19.4.7.2 Classic SPI Transfer Format (CPHA = 1).. 19-58
19.4.7.3 Modified Transfer Format Enabled (MTFE = 1) with

Classic SPI Transfer Format Cleared (CPHA = 0) for SPI and DSI 19-60
19.4.7.4 Modified Transfer Format Enabled (MTFE = 1) with

Classic SPI Transfer Format Set (CPHA = 1) for SPI and DSI................. 19-61
19.4.7.5 Continuous Selection Format... 19-62
19.4.7.6 Clock Polarity Switching between DSPI Transfers 19-64

19.4.8 Continuous Serial Communications Clock .. 19-64
19.4.9 Interrupts and DMA Requests .. 19-65

19.4.9.1 End-of-Queue Interrupt Request (EOQF).. 19-66
19.4.9.2 Transmit FIFO Fill Interrupt or DMA Request (TFFF)............................. 19-66
19.4.9.3 Transfer Complete Interrupt Request (TCF).. 19-66
19.4.9.4 Transmit FIFO Underflow Interrupt Request (TFUF)............................... 19-66
19.4.9.5 Receive FIFO Drain Interrupt or DMA Request (RFDF).......................... 19-67
19.4.9.6 Receive FIFO Overflow Interrupt Request (RFOF) 19-67
19.4.9.7 FIFO Overrun Request (TFUF) or (RFOF) ... 19-67

19.4.10 Power Saving Features ... 19-67
19.4.10.1 Module Disable Mode ... 19-67
19.4.10.2 Slave Interface Signal Gating ... 19-68

19.5 Initialization and Application Information .. 19-68
19.5.1 How to Change Queues .. 19-68
19.5.2 Baud Rate Settings ... 19-69
19.5.3 Delay Settings ... 19-70
19.5.4 MPC5xx QSPI Compatibility with the DSPI ... 19-70
19.5.5 Calculation of FIFO Pointer Addresses .. 19-71

19.5.5.1 Address Calculation for the First-in Entry and Last-in
Entry in the TX FIFO... 19-72

19.5.5.2 Address Calculation for the
First-in Entry and Last-in Entry in the RX FIFO....................................... 19-72

Table of Contents

MPC5534 Microcontroller Reference Manual, Rev. 2

xxx Freescale Semiconductor

Chapter 20
Enhanced Serial Communication Interface (eSCI)

20.1 Introduction ... 20-1
20.1.1 Block Diagram .. 20-1
20.1.2 Overview .. 20-2
20.1.3 Features ... 20-2
20.1.4 Modes of Operation .. 20-2

20.2 External Signal Description .. 20-3
20.2.1 Detailed Signal Description .. 20-3

20.2.1.1 eSCI Transmit (TXDA, TXDB)... 20-3
20.2.1.2 eSCI Receive Pin (RXDA, RXDB) ... 20-3

20.3 Memory Map and Register Definition .. 20-3
20.3.1 Module Memory Map ... 20-3
20.3.2 Register Descriptions .. 20-4

20.3.2.1 eSCI Control Register 1 (ESCIx_CR1) ... 20-4
20.3.2.2 eSCI Control Register 2 (ESCIx_CR2) ... 20-7
20.3.2.3 eSCI Data Register (ESCIx_DR)... 20-8
20.3.2.4 eSCI Status Register (ESCIx_SR) ... 20-9
20.3.2.5 LIN Control Register (ESCIx_LCR) ... 20-12
20.3.2.6 LIN Transmit Register (ESCIx_LTR).. 20-14
20.3.2.7 LIN Receive Register (ESCIx_LRR) .. 20-17
20.3.2.8 LIN CRC Polynomial Register (ESCIx_LPR) .. 20-18

20.4 Functional Description .. 20-18
20.4.1 Overview .. 20-18
20.4.2 Data Format .. 20-19
20.4.3 Baud Rate Generation ... 20-20
20.4.4 Transmitter .. 20-21

20.4.4.1 Transmitter Character Length .. 20-21
20.4.4.2 Character Transmission.. 20-22
20.4.4.3 Break Characters.. 20-23
20.4.4.4 Idle Characters ... 20-24
20.4.4.5 Fast Bit Error Detection in LIN Mode... 20-24

20.4.5 Receiver .. 20-25
20.4.5.1 Receiver Character Length .. 20-26
20.4.5.2 Character Reception... 20-26
20.4.5.3 Data Sampling.. 20-26
20.4.5.4 Framing Errors ... 20-28
20.4.5.5 Baud Rate Tolerance .. 20-28

Slow Data Tolerance ... 20-29
 Fast Data Tolerance .. 20-30

20.4.5.6 Receiver Wake-up.. 20-30
Idle Input Line Wake-up (WAKE = 0) .. 20-31
Address Mark Wake-up (WAKE = 1) ... 20-31

20.4.6 Single-Wire Operation .. 20-32
20.4.7 Loop Operation ... 20-32

Table of Contents

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor xxxi

20.4.8 Modes of Operation .. 20-33
20.4.8.1 Run Mode .. 20-33
20.4.8.2 Disabling the eSCI ... 20-33

20.4.9 Interrupt Operation ... 20-33
20.4.9.1 Interrupt Sources.. 20-33

20.4.10 Using the LIN Hardware .. 20-35
20.4.10.1 Features of the LIN Hardware ... 20-36
20.4.10.2 Generating a TX Frame ... 20-36
20.4.10.3 Generating an RX Frame ... 20-37
20.4.10.4 LIN Error Handling ... 20-38
20.4.10.5 LIN Setup... 20-39

Chapter 21
FlexCAN2 Controller Area Network

21.1 Introduction ... 21-1
21.1.1 Block Diagram .. 21-2
21.1.2 Overview .. 21-2
21.1.3 Features ... 21-3
21.1.4 Modes of Operation .. 21-4

21.1.4.1 Normal Mode... 21-4
21.1.4.2 Freeze Mode .. 21-4
21.1.4.3 Listen-Only Mode.. 21-4
21.1.4.4 Loop-Back Mode ... 21-4
21.1.4.5 Module Disabled Mode ... 21-4

21.2 External Signal Description .. 21-5
21.2.1 Overview .. 21-5
21.2.2 Detailed Signal Description .. 21-5

21.2.2.1 CNRXx .. 21-5
21.2.2.2 CNTXx... 21-5

21.3 Memory Map/Register Definition ... 21-5
21.3.1 Memory Map .. 21-6
21.3.2 Message Buffer Structure ... 21-7
21.3.3 Register Descriptions .. 21-10

21.3.3.1 Module Configuration Register (CANx_MCR) .. 21-10
21.3.3.2 Control Register (CANx_CR) ... 21-12
21.3.3.3 Free Running Timer (CANx_TIMER) .. 21-15
21.3.3.4 RX Mask Registers .. 21-16

RX Global Mask (CANx_RXGMASK) ... 21-17
RX 14 Mask (CANx_RX14MASK)... 21-17
RX 15 Mask (CANx_RX15MASK)... 21-17

21.3.3.5 RX Individual Mask Registers (CANx_RXIMR0 through
CANx_RXIMR63)... 21-18

21.3.3.6 Error Counter Register (CANx_ECR)... 21-19
21.3.3.7 Error and Status Register (CANx_ESR).. 21-20
21.3.3.8 Interrupt Masks High Register (CANx_IMRH) .. 21-22

Table of Contents

MPC5534 Microcontroller Reference Manual, Rev. 2

xxxii Freescale Semiconductor

21.3.3.9 Interrupt Masks Low Register (CANx_IMRL) ... 21-23
21.3.3.10 Interrupt Flags High Register (CANx_IFRH) ... 21-23
21.3.3.11 Interrupt Flags Low Register (CANx_IFRL) .. 21-24

21.4 Functional Description .. 21-25
21.4.1 Overview .. 21-25
21.4.2 Transmit Process ... 21-25

21.4.2.1 Arbitration Process .. 21-25
21.4.3 Receive Process .. 21-26

21.4.3.1 Matching Process ... 21-26
21.4.3.2 Reception Queue.. 21-27
21.4.3.3 Self Received Frames .. 21-27

21.4.4 Message Buffer Handling ... 21-27
21.4.4.1 Notes on TX Message Buffer Deactivation ... 21-28
21.4.4.2 Notes on RX Message Buffer Deactivation... 21-28
21.4.4.3 Data Coherency Mechanisms .. 21-28

21.4.5 CAN Protocol Related Features .. 21-29
21.4.5.1 Remote Frames .. 21-29
21.4.5.2 Overload Frames.. 21-29
21.4.5.3 Time Stamp .. 21-30
21.4.5.4 Protocol Timing ... 21-30
21.4.5.5 Arbitration and Matching Timing.. 21-32

21.4.6 Modes of Operation Details .. 21-32
21.4.6.1 Freeze Mode .. 21-32
21.4.6.2 Module Disabled Mode ... 21-33

21.4.7 Interrupts ... 21-33
21.4.8 Bus Interface ... 21-34

21.5 Initialization and Application Information .. 21-34
21.5.1 FlexCAN2 Initialization Sequence ... 21-34
21.5.2 FlexCAN2 Addressing and RAM Size ... 21-35

Chapter 22
Voltage Regulator Controller (VRC) and POR Module

22.1 Introduction ... 22-1
22.1.1 Block Diagram .. 22-1

22.2 External Signal Description .. 22-2
22.3 Memory Map and Register Definition .. 22-2
22.4 Functional Description .. 22-2

22.4.1 Voltage Regulator Controller .. 22-2
22.4.2 POR Circuits ... 22-3

22.4.2.1 1.5 V POR Circuit.. 22-4
22.4.2.2 3.3 V POR Circuit.. 22-4
22.4.2.3 RESET Power POR Circuit ... 22-4

22.5 Initialization and Application Information .. 22-5
22.5.1 Voltage Regulator Example .. 22-5
22.5.2 Compatible Power Transistors .. 22-5

Table of Contents

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor xxxiii

22.5.3 Power Sequencing Requirements ... 22-5
22.5.3.1 Power-Up Sequence If VRC33 Grounded... 22-6
22.5.3.2 Power-Down Sequence If VRC33 Grounded.. 22-6
22.5.3.3 Input Value of Pins During POR Dependent on VDD33............................... 22-6
22.5.3.4 Pin Values after POR Negates ... 22-7

Chapter 23
IEEE 1149.1 Test Access Port Controller (JTAGC)

23.1 Introduction ... 23-1
23.1.1 Block Diagram .. 23-1
23.1.2 Overview .. 23-2
23.1.3 Features ... 23-2
23.1.4 Modes of Operation .. 23-2

23.1.4.1 Reset... 23-2
23.1.4.2 IEEE 1149.1-2001 Defined Test Modes .. 23-3
23.1.4.3 Bypass Mode.. 23-3
23.1.4.4 TAP Sharing Mode .. 23-3

23.2 External Signal Description .. 23-4
23.3 Memory Map/Register Definition ... 23-4

23.3.1 Instruction Register .. 23-4
23.3.2 Bypass Register .. 23-5
23.3.3 Device Identification Register .. 23-5
23.3.4 Boundary Scan Register ... 23-5

23.4 Functional Description .. 23-6
23.4.1 JTAGC Reset Configuration ... 23-6
23.4.2 IEEE 1149.1-2001 (JTAG) Test Access Port .. 23-6
23.4.3 TAP Controller State Machine ... 23-6

23.4.3.1 Enabling the TAP Controller ... 23-8
23.4.3.2 Selecting an IEEE 1149.1-2001 Register... 23-8

23.4.4 JTAGC Instructions .. 23-8
23.4.4.1 BYPASS Instruction .. 23-9
23.4.4.2 ACCESS_AUX_TAP_x Instructions... 23-9
23.4.4.3 CLAMP Instruction ... 23-9
23.4.4.4 EXTEST—External Test Instruction ... 23-9
23.4.4.5 HIGHZ Instruction... 23-9
23.4.4.6 IDCODE Instruction .. 23-10
23.4.4.7 SAMPLE Instruction ... 23-10
23.4.4.8 SAMPLE/PRELOAD Instruction.. 23-10

23.4.5 Boundary Scan .. 23-10
23.5 Initialization and Application Information .. 23-11

Table of Contents

MPC5534 Microcontroller Reference Manual, Rev. 2

xxxiv Freescale Semiconductor

Chapter 24
Nexus Development Interface

24.1 Introduction ... 24-1
24.1.1 Block Diagram .. 24-2
24.1.2 Features ... 24-3
24.1.3 Modes of Operation .. 24-4

24.1.3.1 Nexus Reset Mode ... 24-4
24.1.3.2 Full-Port Mode... 24-5
24.1.3.3 Reduced-Port Mode ... 24-5
24.1.3.4 Disabled-Port Mode... 24-5
24.1.3.5 Censored Mode .. 24-5

24.2 External Signal Description .. 24-5
24.2.1 Detailed Signal Descriptions .. 24-6

24.2.1.1 Event Out (EVTO)... 24-6
24.2.1.2 Event In (EVTI) ... 24-6
24.2.1.3 Message Data Out (MDO[3:0] or [11:0]) .. 24-6
24.2.1.4 Message Start/End Out (MSEO[1:0]) .. 24-6
24.2.1.5 Ready (RDY) ... 24-6
24.2.1.6 JTAG Compliancy (JCOMP)... 24-7
24.2.1.7 Test Data Output (TDO) .. 24-7
24.2.1.8 Test Clock Input (TCK) ... 24-7
24.2.1.9 Test Data Input (TDI)... 24-7
24.2.1.10 Test Mode Select (TMS).. 24-7

24.3 Memory Map ... 24-7
24.4 NDI Functional Description .. 24-10

24.4.1 Enabling Nexus Clients for TAP Access .. 24-10
24.4.2 Configuring the NDI for Nexus Messaging ... 24-11
24.4.3 Programmable MCKO Frequency .. 24-11
24.4.4 Nexus Messaging .. 24-12
24.4.5 System Clock Locked Indication .. 24-12

24.5 Nexus Port Controller (NPC) .. 24-12
24.5.1 Overview .. 24-13
24.5.2 Features ... 24-13

24.6 Memory Map and Register Definition .. 24-13
24.6.1 Memory Map .. 24-13
24.6.2 Register Descriptions .. 24-14

24.6.2.1 Bypass Register.. 24-14
24.6.2.2 Instruction Register.. 24-14
24.6.2.3 Nexus Device ID Register (DID)... 24-15
24.6.2.4 Port Configuration Register (PCR).. 24-15

24.7 NPC Functional Description ... 24-17
24.7.1 NPC Reset Configuration ... 24-17
24.7.2 Auxiliary Output Port ... 24-17

24.7.2.1 Output Message Protocol... 24-17
24.7.2.2 Output Messages.. 24-18

Table of Contents

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor xxxv

Rules of Messages .. 24-19
24.7.2.3 IEEE‚ 1149.1-2001 (JTAG) TAP... 24-19

Enabling the NPC TAP Controller ... 24-20
Retrieving Device IDCODE ... 24-22
Loading NEXUS-ENABLE Instruction ... 24-22
Selecting a Nexus Client Register .. 24-23

24.7.2.4 Nexus Auxiliary Port Sharing.. 24-24
24.7.2.5 Nexus JTAG Port Sharing.. 24-24
24.7.2.6 MCKO ... 24-24
24.7.2.7 EVTO Sharing ... 24-24
24.7.2.8 Nexus Reset Control .. 24-25

24.8 NPC Initialization and Application Information ... 24-25
24.8.1 Accessing NPC Tool-Mapped Registers .. 24-25

24.9 Nexus Single eTPU Development Interface (NSEDI) .. 24-25
24.10 e200z3 Class 3 Nexus Module (NZ3C3) .. 24-26

24.10.1 Introduction .. 24-26
24.10.2 Block Diagram .. 24-27
24.10.3 Overview .. 24-28
24.10.4 Features ... 24-29
24.10.5 Enabling Nexus3 Operation ... 24-29
24.10.6 TCODEs Supported by NZ3C3 .. 24-30

24.11 NZ3C3 Memory Map and Register Definition ... 24-34
24.11.1 Port Configuration Register (PCR) .. 24-35
24.11.2 Development Control Registers 1 and 2 (DC1, DC2) .. 24-36
24.11.3 Development Status Register (DS) ... 24-38
24.11.4 Read/Write Access Control and Status (RWCS) .. 24-38
24.11.5 Read/Write Access Address (RWA) ... 24-40
24.11.6 Read/Write Access Data (RWD) .. 24-40
24.11.7 Watchpoint Trigger Register (WT) ... 24-40
24.11.8 Data Trace Control Register (DTC) ... 24-42
24.11.9 Data Trace Start Address Registers 1 and 2 (DTSAn) ... 24-43
24.11.10 Data Trace End Address Registers 1 and 2 (DTEAn) .. 24-43
24.11.11 NZ3C3 Register Access via JTAG / OnCE ... 24-44

24.12 Ownership Trace ... 24-45
24.12.1 Ownership Trace Messaging (OTM) .. 24-45
24.12.2 OTM Error Messages ... 24-45
24.12.3 OTM Flow ... 24-46

24.13 Program Trace ... 24-46
24.13.1 Branch Trace Messaging (BTM) .. 24-46

24.13.1.1 e200z3 Indirect Branch Message Instructions
(Power Architecture Book E) .. 24-47

24.13.1.2 e200z3 Direct Branch Message Instructions
(Power Architecture Book E) .. 24-47

24.13.1.3 BTM Using Branch History Messages ... 24-47
24.13.1.4 BTM Using Traditional Program Trace Messages 24-48

Table of Contents

MPC5534 Microcontroller Reference Manual, Rev. 2

xxxvi Freescale Semiconductor

24.13.2 BTM Message Formats .. 24-48
24.13.2.1 Indirect Branch Messages (History) .. 24-48
24.13.2.2 Indirect Branch Messages (Traditional)... 24-49
24.13.2.3 Direct Branch Messages (Traditional) .. 24-49
24.13.2.4 Resource Full Messages.. 24-49
24.13.2.5 Debug Status Messages... 24-50
24.13.2.6 Program Correlation Messages ... 24-50
24.13.2.7 BTM Overflow Error Messages .. 24-50

24.13.3 Program Trace Synchronization Messages .. 24-51
24.14 BTM Operation ... 24-53

24.14.1 Enabling Program Trace .. 24-53
24.14.2 Relative Addressing ... 24-53
24.14.3 Branch and Predicate Instruction History (HIST) ... 24-54
24.14.4 Sequential Instruction Count (I-CNT) ... 24-54
24.14.5 Program Trace Queueing ... 24-54

24.14.5.1 Program Trace Timing Diagrams... 24-55
24.14.6 Data Trace .. 24-56

24.14.6.1 Data Trace Messaging (DTM) ... 24-56
24.14.6.2 DTM Message Formats .. 24-56

Data Write Messages ... 24-56
Data Read Messages .. 24-57
DTM Overflow Error Messages .. 24-57
Data Trace Synchronization Messages .. 24-58

24.14.6.3 DTM Operation.. 24-59
DTM Queueing .. 24-59
Relative Addressing ... 24-59
Data Trace Windowing .. 24-60
Data Access/Instruction Access Data Tracing ... 24-60
e200z3 Bus Cycle Special Cases ... 24-60

24.14.6.4 Data Trace Timing Diagrams (Eight MDO Configuration)...................... 24-61
24.14.7 Watchpoint Support ... 24-61

24.14.7.1 Overview.. 24-61
24.14.7.2 Watchpoint Messaging... 24-62
24.14.7.3 Watchpoint Error Message... 24-62
24.14.7.4 Watchpoint Timing Diagram (Two MDO and One

MSEO Configuration).. 24-63
24.14.8 NZ3C3 Read/Write Access to Memory-Mapped Resources 24-63

24.14.8.1 Single Write Access ... 24-64
24.14.8.2 Block Write Access (Non-Burst Mode)... 24-64
24.14.8.3 Block Write Access (Burst Mode) ... 24-65
24.14.8.4 Single Read Access.. 24-65
24.14.8.5 Block Read Access (Non-Burst Mode) ... 24-66
24.14.8.6 Block Read Access (Burst Mode).. 24-66
24.14.8.7 Error Handling ... 24-67

System Bus Read/Write Error .. 24-67

Table of Contents

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor xxxvii

Access Termination .. 24-67
24.14.8.8 Read/Write Access Error Message ... 24-67

24.14.9 Examples .. 24-68
24.14.10 IEEE‚ 1149.1 (JTAG) RD/WR Sequences .. 24-69

24.14.10.1JTAG Sequence for Accessing Internal Nexus Registers......................... 24-69
24.14.10.2 JTAG Sequence for Read Access of Memory-Mapped Resources 24-70
24.14.10.3JTAG Sequence for Write Access of Memory-Mapped Resources 24-70

Appendix A
MPC5534 Register Map

A.1 MPC5534 Register Map.. A-1
A.2 e200z3 Core SPR Numbers... A-47

Appendix B
Calibration

B.1 Overview ..B-1
B.2 Calibration Bus Interface ...B-3
B.3 Device-Specific Information ..B-4

B.3.1 MPC5534 Calibration Bus Implementation ..B-4
B.4 Signals and Pads...B-4

B.4.1 CAL_CS[0, 2:3] — Calibration Chip Selects 0, 2 and 3...B-4
B.4.2 Pad Ring ..B-5
B.4.3 CLKOUT...B-5

B.5 Power Supplies ...B-6
B.6 Integration Logic Functionality..B-6
B.7 Application Information...B-6

B.7.1 Enabling Calibration Reflection Suppression ...B-6
B.7.2 Communication With Development Tool Using I/O ..B-6
B.7.3 Matching Access Delay to Internal Flash With Calibration Memory...........................B-6

Appendix C
MPC5534RM Revision History

C.1 Changes between Rev. 1 and Rev. 2 ..C-1

Table of Contents

MPC5534 Microcontroller Reference Manual, Rev. 2

xxxviii Freescale Semiconductor

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 1-1

Chapter 1
Overview

The MPC5534 microcontroller (MCU) is a member of the MPC5500 family of next generation powertrain
microcontrollers built on Power Architecture™ technology. The MPC5500 family contains a host
processor core that complies with the Power Architecture embedded category, which is 100 percent user
mode compatible with the original Power PC™ user instruction set architecture (UISA). This family of
parts contains many new features coupled with high-performance CMOS technology to provide significant
performance improvement over the MPC565.

The e200z3 CPU of the MPC5500 family is part of the family of CPU cores that implement versions built
on the Power Architecture embedded category. This core also has additional instructions, including digital
signal processing (DSP) instructions, beyond the classic PowerPC instruction set.

The e200z3 of the MPC5534 is compatible with the PowerPC Book E architecture. It is 100% user mode
compatible (with floating point library) with the classic PowerPC instruction set. The Book E architecture
has enhancements that improve the PowerPC architecture’s fit in embedded applications. This core also
has additional instructions, including digital signal processing (DSP) instructions, beyond the classic
PowerPC instruction set.

The host processor core of the MPC5534 also includes an instruction set enhancement allowing variable
length encoding (VLE). This allows optional encoding of mixed 16- and 32-bit instructions. With this
enhancement, it is possible to achieve significant code size footprint reduction.

The MPC5534 has a single-level of memory hierarchy consisting of 64-KB on-chip SRAM and 1 MB of
internal flash memory. Both the SRAM and the flash memory can hold instructions and data.

The External Bus Interface (EBI) supports most standard memories used with the MPC5xx family. This
device does not support arbitration between itself and other masters on the external bus. It must be the only
master on the EBI or be a slave-only device.

The complex I/O timer functions of MPC5534 are performed by a dual Enhanced Time Processor Unit
engine (eTPU). The eTPU engine controls 32 hardware channels and has been enhanced over the MPC500
family’s TPU by providing 24-bit timers, double-action hardware channels, a variable number of
parameters per channel, angle clock hardware, and additional control and arithmetic instructions. The
eTPU is programmed using a high-level programming language.

The less complex timer functions of MPC5534 are performed by the enhanced Modular Timer System
(eMIOS). The eMIOS 24 hardware channels are capable of single action, double action, pulse width
modulation (PWM) and modulus counter operation. Motor control capabilities include edge-aligned and
center-aligned PWM.

Overview

MPC5534 Microcontroller Reference Manual, Rev. 2

1-2 Freescale Semiconductor

Off-chip communication is performed by a suite of serial protocols including flexible controller area
networks (FlexCANs), enhanced SPIs (Deserialize/Serialize Peripheral Interface) and SCIs. The DSPIs
support pin reduction through hardware serialization and deserialization of timer channels and GPIO
signals.

The MPC5534 MCU has an on-chip 40-channel Enhanced Queued Dual Analog-to-Digital Converter
(eQADC), with 5 V conversion range.

The System Integration Unit (SIU) performs several chip-wide configuration functions. Pad configuration
and General-Purpose Input and Output (GPIO) are controlled from the SIU. External interrupts and reset
control are configured in the SIU. The Internal Multiplexer sub-block (IMUX) provides multiplexing of
eQADC trigger sources, daisy chaining the DSPIs, and external interrupt signal multiplexing.

On-chip modules include:

• Single issue, 32-bit PowerPC Book E compatible CPU core complex; includes VLE
enhancements for code size footprint reduction

• 32-channel enhanced direct memory access controller (eDMA)

• Interrupt controller (INTC) capable of handling 210 selectable-priority interrupt sources

• Frequency Modulated Phase-locked loop (FMPLL)

• External bus interface (EBI) with error correction status module (ECSM)

• System integration unit (SIU)

• 1 MB on-chip flash with flash control unit (FCU)

• 64 KBs on-chip static RAM (SRAM)

• Boot assist module (BAM)

• 32-channel enhanced time processor unit (eTPU)

• 24-channels enhanced modular Input Output System (eMIOS)

• Two enhanced 5 V Queued Analog-to-Digital Converters (eQADC)

• Three deserial serial peripheral interface (DSPI) modules

• Two enhanced serial communication interface (eSCI) modules (with LIN support)

• Two controller area network (FlexCAN) modules

• Nexus development interface (NDI) per IEEE-ISTO 5001-2003 standard

• Device/board test support per Joint Test Action Group (JTAG) of IEEE (IEEE 1149.1)

• On-chip voltage regulator controller for regulating 3.3 V down to 1.5 V for core logic

Overview

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 1-3

1.1 Block Diagram
Figure 1-1 shows a top-level block diagram of the MPC5534.

Figure 1-1. MPC5534 Block Diagram

Interrupt Controller

eS
C

I

F
le

xC
A

N

eQADC

FMPLL

Crossbar Switch (XBAR)

Peripheral Bridge B (PBRIDGE_B)Peripheral Bridge A (PBRIDGE_A)

MasterMaster

SlaveSlaveSlaveSlave

Multiply Unit
Branch

Instruction
Unit

e200z3 Core

Nexus

LEGEND

JTAG

Exception
Handler

eTPU
32

channel

2.5 KB
Data RAM

12 KB
Code RAM

eMIOS
24

channel D
S

P
I

D
S

P
I

D
S

P
I

eS
C

I

F
le

xC
A

N

Flash 1MB

eDMA 32 channels

AMUX

A
D

C

ADCi

A
D

C

Slave

Nexus
Interface

System/Bus
Integration Boot Assist Module

MPC5500 Device Module Acronyms

CAN – Controller area network (FlexCAN)
DSPI – Deserial/serial peripheral interface
eDMA – Enhanced direct memory access
eMIOS – Enhanced modular I/O system
eQADC – Enhanced queued analog/digital converter
eSCI – Enhanced serial communications interface
eTPU – Enhanced time processing units
FMPLL – Frequency modulated phase-locked loop
SRAM – Static RAM

e200z3 Core Component Acronyms

DEC – Decrementer
FIT – Fixed interval timer
TB – Time base
WDT – Watchdog timer

Prediction Unit

Signal
Processing

Engine

64-bit General
Purpose
Registers

Special
Purpose
Registers

Integer
Execution

Unit

SRAM
64 KB

Memory Management Unit

Core Timers
Unit

(FIT, TB, DEC)

Master

Load/Store Unit

Variable
Length Encoded

Instruction

1.5 V
Regulator
Control

E
xt

er
na

l B
us

 In
te

rf
ac

e
C

al
ib

ra
tio

n
B

us
 In

te
rf

ac
e

Master

External Master Interface

Slave

Overview

MPC5534 Microcontroller Reference Manual, Rev. 2

1-4 Freescale Semiconductor

1.1.1 MPC5500 Family Comparison
The following table compares the features of the MPC553X and MPC555X products:

Table 1-1. MPC5500 Family Members

MPC5500 Device MPC5533 MPC5534 MPC5553 MPC5554

Power PC core e200z3 e200z3 e200z6 e200z6

Variable Length Instruction support Y Y — —

Unified cache (KB) — — 8 1 32 2

Memory management unit (MMU) 16 entry 16 entry 32 entry 32 entry

Crossbar (Master x Slave) 3 x 5 4 x 5 4 x 5 3 x 5

Core Nexus Class 3+
(NZ3C3)

Class 3+
(NZ3C3)

Class 3+
(NZ6C3)

Class 3+
(NZ6C3)

Static RAM (SRAM) (KB) 48 KB 64 KB 64 KB 64 KB

Flash memory Main Array (MB) 768 KB 3 1 1.54 24

Shadow Block (KB) 1 1 1 1

External bus interface (EBI) Data Bus 16 bit 16 bit 32 bit 6 32 bit

Address Bus 24 bit 24 bit 24 bit 24 bit

Calibration bus interface (CBI) — Y Partial —

Enhanced direct memory access (eDMA) 32 channel 32 channel 32 channel 64 channel

DMA Nexus — — Class 3 Class 3

Enhanced serial communications interface (eSCI) 1 2 2 2

eSCI A Y Y Y Y

eSCI B — Y Y Y

Flexible controller area network (FlexCAN) 2 2 2 3

CAN A 64 buffers 64 buffers 64 buffers 64 buffers

CAN B — — — 64 buffers

CAN C 64 buffers 64 buffers 64 buffers 64 buffers

CAN D — — — —

CAN E — — — —

Deserial/serial peripheral interface (DSPI) 2 3 3 4

DSPI A — — — Y

DSPI B — Y Y Y

DSPI C Y Y Y Y

DSPI D Y Y Y Y

Enhanced management input/output system (eMIOS) — 24 channel 24 channel 24 channel

Enhanced time processing unit (eTPU) 32 channel 32 channel 32 channel 64 channel

eTPU A Y Y Y Y

eTPU B — — — Y

Code memory (KB) 12 12 12 16

Parameter RAM (KB) 2.5 2.5 2.5 3

Interrupt controller 178 210 210 300

Overview

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 1-5

1.2 MPC5534 Features List
This section provides a high-level description of the features found on the MPC5534.

1.2.1 Operating Parameters
• Fully static operation, 0–80 MHz

• -40° to 150° C junction temperature (125° C ambient temperature)

• Low power design

— Less than 0.8 Watts power dissipation

— Designed for dynamic power management of core and peripherals

— Software controlled clock gating of peripherals

— Separate power supply for stand-by operation for a portion of SRAM

• Fabricated in 0.13 μm process

• 1.5 V internal logic

• Input and output pins with 3.0–5.5 V range

— 35% or 65% VDDE CMOS switch levels (with hysteresis)

— Selectable hysteresis

— Selectable slew rate control

• External bus and Nexus pins support 1.6–3.6 V operation

— Selectable drive strength control

Enhanced Analog to Digital Converter (eQADC) 40 channels 5 40 channels 5 40 channels 40 channels

 ADC 0 Y Y Y Y

 ADC 1 — Y Y Y

Fast Ethernet Controller (FEC) — — Y 6 —

Frequency Modulated (FM) Phase Lock Loop (PLL) Y Y Y Y

Maximum system frequency 7 (MHz) 82 8 82 8 132 9 132 9

Crystal frequency range (MHz) 8–20 8–20 8–20 8–20

Voltage Regulator Controller (VRC) Y Y Y Y
1 2-way associative
2 8-way associative
3 16-byte flash page size for programming
4 32-byte flash page size for programming
5 eQADC has 34 channels on the 208 package
6 The FEC signals are shared with the data bus pins DATA[16:31]
7 Initial automotive temperature range qualification
8 82 MHz parts allow for 80 MHz system clock + 2% FM
9 132 MHz parts allow for 128 MHz system clock + 2% FM

Table 1-1. MPC5500 Family Members (continued)

MPC5500 Device MPC5533 MPC5534 MPC5553 MPC5554

Overview

MPC5534 Microcontroller Reference Manual, Rev. 2

1-6 Freescale Semiconductor

— Unused pins configurable as GPIO

• Designed with EMI reduction techniques

— Frequency Modulated Phase-Locked Loop (FMPLL)

— On-chip bypass capacitance

— Selectable slew rate and drive strength

1.2.2 e200z3 Core Processor
• Single issue, 32-bit PowerPC Architecture compatible CPU

— In-order execution and retirement

— Precise exception handling

— User-mode binary compatible with MPC5xx except floating point instructions

• Variable Length Encoding Enhancements

— e200z3 core supports both PowerPC Architecture Book E and VLE instruction sets

— Allows optional encoding of mixed 16- and 32-bit instructions

— Results in smaller code size footprint

— Regions of the memory map are designated as PowerPC Architecture Book E or VLE based
on configuration of the Memory Management Unit

• Branch processing unit

— Dedicated branch address calculation adder

— Branch acceleration using Branch Lookahead Instruction Buffer

• Load and store unit

— Fully pipelined

— Big and Little endian support

— Misaligned access support

— Zero load-to-use pipeline bubbles

— Supports throughput of one load or store operation per cycle

— Memory interface support for saving and restoring two registers per cycle

• Thirty-two 64-bit general purpose registers (GPRs)

• Memory management unit (MMU) with 16-entry fully-associative translation look-aside buffer
(TLB)

• Separate instruction bus and load/store bus

• Vectored interrupt support

• Interrupt latency < 116 ns at 80 MHz (measured from interrupt request to execution of first
instruction of interrupt exception handler)

• Reservation instructions for implementing read-modify-write constructs (CPU master only)

Overview

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 1-7

• Numerics and DSP

— Saturated, unsaturated, and fractional arithmetic

— Support for DSP addressing modes

— Pipelined dual 32x32 MAC with one clock throughput

• Signal processing extension APU

— Operating on all 32 GPRs that are all extended to 64 bits wide

— Single Instruction Multiple Data (SIMD) provides a full compliment of vector and scalar
integer and floating point arithmetic operations (integer vector MAC and MUL operations)

— Provides rich array of extended 64-bit loads and stores to and from the extended GPRs

— Fully code compatible with e200z6 core

• Floating point

— IEEE 754 compatible with software wrapper

— Scalar single precision in hardware, double precision with software library

— Conversion instructions between single precision floating point and fixed point

— Fully code compatible with e200z6 core

• Long cycle time instructions, except for guarded loads, do not increase interrupt latency

• Extensive system development support through Nexus debug port

1.2.3 Crossbar Switch (XBAR)
• Four master ports, and five slave ports

— Masters: CPU Instruction bus, CPU Load/store bus, eDMA, EBI

— Slave: Flash, SRAM, Peripheral Bridge A, Peripheral Bridge B; EBI

• 32-bit internal address bus, 64-bit internal data bus

1.2.4 Enhanced Direct Memory Access (eDMA) Controller
• 32 channels support independent 8-, 16- or 32-bit single value or block transfers

• Supports variable sized queues and circular queues

• Source and destination address registers are independently configured to post-increment or
remain constant

• Each transfer is initiated by a peripheral, CPU, or eDMA channel request

• Each eDMA channel can optionally send an interrupt request to the CPU on completion of a
single value or block transfer

• All data movement via dual-address transfers: read from source, write to destination

• Programmable source and destination addresses, transfer size, plus support for enhanced
addressing modes

• Transfer control descriptor organized to support two-deep, nested transfer operations

Overview

MPC5534 Microcontroller Reference Manual, Rev. 2

1-8 Freescale Semiconductor

• An inner data transfer loop defined by a ‘minor’ byte transfer count

• An outer data transfer loop defined by a ‘major’ iteration count

• Channel activation via one of three methods:

— Explicit software initiation

— Initiation via a channel-to-channel linking mechanism for continuous transfers

— Peripheral-paced hardware requests (one per channel)

• Support for fixed-priority and round-robin channel arbitration

• Channel completion reported via optional interrupt requests

• One interrupt per channel, optionally asserted at completion of major iteration count

• Error termination interrupts are optionally enabled

• Support for scatter/gather DMA processing

• Channel transfers can be suspended by a higher priority channel

1.2.5 Interrupt Controller (INTC)
• Unique 9-bit vector per interrupt source for 210 total interrupt sources:

— 190 peripheral interrupt sources

— Eight software settable interrupt sources

— 12 reserved interrupt sources

• 16 priority levels with fixed hardware arbitration within priority levels for each interrupt source

• Priority elevation for shared resources

1.2.6 Frequency Modulated Phase-Locked Loop (FMPLL)
• Input clock frequency from 8–20 MHz

• Current controlled oscillator (ICO) range from 48 MHz to maximum device frequency

• Reduced frequency divider (RFD) for reduced frequency operation without forcing the FMPLL to
re-lock

• Four modes of operation

— Bypass mode

— PLL normal mode with crystal reference (default)

— PLL normal mode with external oscillator reference

— PLL dual controller mode for EXTAL to CLKOUT skew minimization

• Programmable frequency modulation

— Modulation enabled/disabled through software

— Triangle wave modulation

— Programmable modulation depth (1% or 2% deviation from center frequency)

— Programmable modulation frequency dependent on reference frequency

Overview

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 1-9

• Lock detect circuitry reports when the FMPLL has achieved frequency lock and continuously
monitors lock status to report loss of lock conditions

• Programmable interrupt request on system reset or loss of lock

• Loss-of-clock (LOC) detection for reference and feedback clocks

• Programmable interrupt request on system reset or loss of clock

• Self-clocked mode (SCM) operation

1.2.7 External Bus Interface (EBI)

NOTE
EBI features apply to devices using the 324 package. The EBI is not
available in the 208 package.

• 1.8–3.3 V I/O

• Up to 24-bit address bus

— Four most significant signals multiplexed with four chip selects

• 16-bit data bus

• Memory controller with support for various memory types:

— Standard SRAM

— Synchronous burst SDR (flash and SRAM)

— Asynchronous/legacy (flash and SRAM)

• Most standard memories used with the MPC5xx family

• Single-master only or slave only operation

• Bus monitor

— User selectable

— Programmable time-out period (with 8 external bus clock resolution)

• Configurable wait states (via chip selects)

• Four chip-select (CS[0:3]) signals (multiplexed with four most significant address signals)

• Two write/byte enable (WE/BE[0:1]) signals

• Configurable bus speed modes

— system frequency

— ½ of system frequency

— ¼ of system frequency

• Configurable wait states

• Optional automatic CLKOUT gating to save power and reduce EMI

• Compatible with MPC5xx external bus (with some limitations)

• Selectable drive strengths through pad control in SIU; 10pF, 20pF, 30pF, 50pF

Overview

MPC5534 Microcontroller Reference Manual, Rev. 2

1-10 Freescale Semiconductor

1.2.8 Calibration Bus Interface (CBI)

NOTE
The CBI is not available in the 208 package. CBI features apply to devices
using the 324 package with the 496 assembly.

• 21-bit address bus

— Two most significant signals multiplexed with two chip selects

— Least significant address bit is not supported (CAL_ADDR31)

• 16-bit data bus

• Memory controller with support for various memory types:

— non-burst SDR flash and SRAM

— Asynchronous/legacy flash and SRAM

— Most standard memories used with the MPC5xx family

• Bus monitor (shared with EBI)

— User selectable

— Programmable timeout period (with 8 external bus clock resolution)

• Configurable wait states (via chip selects)

• Three chip-select (CAL_CS[0], CAL_CS[2:3]) signals:
(CAL_CS[2:3] are multiplexed with the two most significant address signals
CAL_ADDR[10:11])

• Two write/byte enable (WE/BE[0:1]) signals

• Configurable bus speed modes (shared with EBI)

— system frequency

— ½ of system frequency

— ¼ of system frequency

• Optional automatic CLKOUT gating to save power and reduce EMI

• Compatible with MPC5xx external bus (with some limitations)

• Selectable drive strengths; 10pF, 20pF, 30pF, 50pF

1.2.9 System Integration Unit (SIU)
• System configuration

— MCU reset configuration via external pins

— Pad configuration control

• System reset monitoring and generation

— Power-on reset support

— Reset status register provides last reset source to software

— Glitch detection on reset input

Overview

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 1-11

— Software controlled reset assertion

• External interrupt

— Sixteen interrupt requests

— Rising- or falling-edge event detection

— Programmable digital filter for glitch rejection

• GPIO

— GPIO function on 155 I/O pins

— Dedicated input and output registers for setting each GPIO

• Internal Multiplexing

— Allows serial and parallel chaining of DSPIs

— Allows flexible selection of eQADC trigger inputs

— Allows selection of interrupt requests between external pins and DSPI

1.2.10 Error Correction Status Module (ECSM)
• Configurable error-correcting codes (ECC) reporting

1.2.11 On-chip Flash
• One MB burst flash memory

— Configured as 64K x 128 bits

— 12 blocks (2×16 KB + 2×48 KB + 2×64 KB + 6×128 KBs) to support features such as boot
block, operating system block and EEPROM emulation

— 1-KB shadow block compatible with all other parts in the family for storing censorship and
configuration information (censorship protection scheme to prevent flash content visibility)

— Accessed via a 64-bit wide bus interface

• Quadruple 128-bit wide prefetch/burst buffers to provide single cycle in-line accesses (prefetch
buffers can be configured to prefetch code or data or both)

• Hardware read-while-write feature that allows blocks to be erased/programmed while other
blocks are being read (used for EEPROM emulation and data calibration)

• Page mode (128-bits) programming for rapid end-of-line programming

• Hardware programming state machine

• Supports a 64-bit data bus. Byte, halfword, word and doubleword reads are supported. Only
aligned word and doubleword writes are supported.

• Hardware and software configurable read and write access protections on a per-master basis.

• Interface to the flash array controller is pipelined with a depth of 1, allowing overlapped accesses
to proceed in parallel for interleaved or pipelined flash array designs.

• Configurable access timing allowing use in a wide range of system frequencies.

Overview

MPC5534 Microcontroller Reference Manual, Rev. 2

1-12 Freescale Semiconductor

• Multiple-mapping support and mapping-based block access timing (0–31 additional cycles)
allowing use for emulation of other memory types.

• Software programmable block program/erase restriction control.

• Erase of selected block(s)

• Read page size of 128 bits (4 words)

• ECC with single-bit correction, double-bit detection.

• Embedded hardware program and erase algorithm

• Erase suspend, program suspend and erase-suspended program

• Shadow information stored in non-volatile shadow block

• Independent program/erase of the shadow block

1.2.12 On-chip Static RAM (SRAM)
• Supports read/write accesses mapped to the SRAM memory from any master

• 64-KB general purpose RAM of which 32 KBs are on standby power

• 32-KB block powered by separate supply for standby operation

• Byte, halfword, word and doubleword addressable

• ECC performs single bit correction, double bit detection on 32-bit data element

1.2.13 Boot Assist Module (BAM)
• Enables and manages the transition of MCU from reset to user code execution in the following

configurations:

— Execution from internal or external flash

— Download and execution of code via FlexCAN or eSCI

• Sets up MMU to cover all resources and mapping all physical address to logical addresses with
minimum address translation

• Sets up the MMU to allow user boot code to execute as either PowerPC Architecture Book E code
(default) or as VLE code

• Location and detection of user boot code

• Automatic switch to serial boot mode if internal or external flash is blank or invalid

• Supports user programmable 64-bit password protection for serial boot mode

• Supports serial bootloading via FlexCAN bus and eSCI

• Supports serial bootloading of either PowerPC Architecture Book E code (default) or VLE code

• Supports censorship protection for internal flash memory

• Provides an option to enable the core watchdog timer

Overview

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 1-13

1.2.14 Enhanced Modular I/O System (eMIOS)
• 24 unified channels with these features:

— 24-bit registers for captured/match values

— 24-bit internal counter

— Global prescaler

— Separate input and output pins

— Dedicated output pin for buffer direction control

— Selectable time base

— Can generate its own time base

• Four 24-bit wide counter buses

— Counter Bus A can be shared among all unified channels and can be driven by either UC23 or
by the STAC bus

— Counter Bus B is driven by UC0, Counter Bus C is driven by UC8, Counter Bus D is driven
by UC16 (then, UC0-UC7 can share Counter Bus B, UC8-UC15 can share Counter Bus C and
UC16-UC23 can share Counter Bus D)

• Synchronization among internal and external time bases

• Shadow FLAG register

• State of block can be frozen for debug purposes

• 24 orthogonal channels with double-action, PWM and modulus counter functionality

• Supports all DASM and PWM modes of MIOS14 (MPC5xx)

• DMA and interrupt request support

• Motor control capability

1.2.15 Enhanced Time Processor Unit (eTPU)
• eTPU engine is an event triggered VLIW processor timer subsystem

• High level assembler/compiler

• 32 channels

• 24-bit timer resolution

• Code memory—12 KB; Data memory—2.5 KB

• Variable number of parameters allocatable per channel

• Double match/capture channels

• Angle clock hardware support

• Shared time or angle counter bus (STAC) for all eTPU and eMIOS channels

• DMA and interrupt request support

• Nexus Class 3 Debug support (with some Class 4 support)

Overview

MPC5534 Microcontroller Reference Manual, Rev. 2

1-14 Freescale Semiconductor

1.2.16 Enhanced Queued A/D Converter (eQADC)
• Two independent ADCs

— 12 Bit AD Resolution

— Up to 10 bit accuracy at 400 ksample/s and 8 bit accuracy at 800 ksample/s

— Differential conversions

— Single-ended signal range from 0 to 5V

— Sample times of 2 (default), 8, 64 or 128 ADC clock cycles

— Provides time stamp information when requested

— Parallel interface to eQADC CFIFOs and RFIFOs

— Supports both right-justified unsigned and signed formats for conversion results

• 0–5 V common mode conversion range

• 40 single-ended inputs channels (40 in 324 BGA; 34 in 208 BGA), with support for up to 25
additional channels using external multiplexers

• Eight channels can be used as 4 pairs of differential analog input channels

• 10 bit accuracy at 400 ksample/s, 8-bit accuracy at 800 ksample/s

• Supports six FIFO queues with fixed priority.

• Queue modes with priority-based preemption, initiated by software command or internal
(eTPU and eMIOS) or external triggers

• DMA and interrupt request support

• Supports all functional modes from QADC (MPC5xx family)

• Four pairs of differential analog input channels

• Full duplex synchronous serial interface (SSI) to an external device

— Free-running clock for use by an external device

— Supports a 26-bit message length

• Priority based CFIFOs

— Supports six CFIFOs with fixed priority. The lower the CFIFO number, the higher its priority.
When commands of distinct CFIFOs are bound for the same CBuffer, the higher priority
CFIFO is always served first

— Supports software and hardware trigger modes to arm a particular CFIFO

— Generates interrupt when command coherency is not achieved

• External hardware triggers

— Supports rising-edge, falling-edge, high-level and low-level triggers

— Supports configurable digital filter

• Supports 4 external 8-to-1 muxes which can expand the input channels

Overview

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 1-15

1.2.17 Deserial Serial Peripheral Interface (DSPI) Module
• Three DSPI modules

• SPI

— Full duplex communication ports with interrupt and DMA request support

— Supports all functional modes from QSPI sub-block of QSMCM (MPC5xx family)

— Support for queues in RAM

— Six chip selects, expandable to 64 with external demultiplexers

— Programmable frame size, baud rate, clock delay and clock phase on a per frame basis

— Modified SPI mode for interfacing to peripherals with longer setup time requirements

• Deserial serial interface (DSI)

— Pin reduction by hardware serialization and deserialization of eTPU and eMIOS channels

— Chaining of DSI sub-blocks

— Triggered transfer control and change in data transfer control (for reduced EMI)

1.2.18 Enhanced Serial Communication Interface (eSCI) Module
• Two eSCI modules

• UART mode provides NRZ format and half or full duplex interface

• eSCI bit rate up to 1 Mbps

• Advanced error detection, and optional parity generation and detection

• Separately enabled transmitter and receiver

• eDMA support (on one of the eSCI modules only)

• 13-bit baud rate selection

• Programmable 8- or 9-bit data format

• LIN support

— Autonomous transmission of entire frames

— Configurable to support all revisions of the LIN standard

— Automatic parity bit generation

— Double stop bit after bit error

— 10- or 13-bit break support

• Separately enabled transmitter and receiver

• Programmable transmitter output parity

• Two receiver wake-up methods, idle line and address mark

• Interrupt-driven operation with flags

• Receiver framing error detection

• Hardware parity checking

Overview

MPC5534 Microcontroller Reference Manual, Rev. 2

1-16 Freescale Semiconductor

• 1/16 bit-time noise detection

• Two channel eDMA interface

1.2.19 FlexCAN
• Two FlexCAN modules

• 64 message buffers each (0–8 bytes data length)

• Based on and including all existing features of the Freescale TouCAN module

• Full Implementation of the CAN protocol specification, Version 2.0B

— Standard data and remote frames

— Extended data and remote frames

— Zero to eight bytes data length

— Programmable bit rate up to 1 Mb/sec

• Programmable acceptance filters

• Short latency time for high priority transmit messages

• Arbitration scheme according to message ID or message buffer number

• Listen only mode capabilities

• Programmable clock source: system clock or oscillator clock

• Content-related addressing

• Each message buffer is configurable as receive (Rx) or transmit (Tx) buffers that support standard
and extended messages

• Includes 1056 bytes of embedded memory for message buffer storage

• Programmable loop-back mode supporting self-test operation

• Three programmable Mask Registers

• Programmable transmit-first scheme: lowest ID or lowest buffer number

• Time Stamp based on 16-bit free-running timer

• Global network time, synchronized by a specific message

• Maskable interrupts

• Independent of the transmission medium (an external transceiver is assumed)

• Multi master concept

• High immunity to EMI

• Short latency time due to an arbitration scheme for high-priority messages

• Low power mode, with programmable wake-up on bus activity

Overview

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 1-17

1.2.20 Nexus Development Interface (NDI)
• Per IEEE-ISTO 5001-2003

• Real time development support for e200z3 core and eTPU engine through Nexus Class 3
(selected Class 4 support)

• Read and write access

— Run-time access of entire memory map

— Calibration (table constants calibrated using MMU and internal and external RAM; scalar
constants calibrated using cache line locking)

• Configured via the IEEE 1149.1 (JTAG) port

• High bandwidth mode for fast message transmission

• Reduced bandwidth mode for reduced pin usage

1.2.21 IEEE 1149.1 JTAG controller (JTAGC)
• IEEE 1149.1-2001 Test Access Port (TAP) interface 4 pins (TDI, TMS, TCK, and TDO)

• JCOMP input that provides the ability to share the TAP
(selectable modes of operation include JTAGC/debug or normal system operation)

• Selectable modes of operation include JTAGC/debug or normal system operation.

• Five-bit instruction register that supports the following IEEE 1149.1-2001 defined instructions:

— BYPASS, IDCODE, EXTEST, SAMPLE, SAMPLE/PRELOAD, HIGHZ, CLAMP

• Five-bit instruction register that supports the additional following public instructions:

— ACCESS_AUX_TAP_NPC, ACCESS_AUX_TAP_ONCE, ACCESS_AUX_TAP_eTPU

• Three test data registers: a bypass register, a boundary scan register, and a device identification
register

• A TAP controller state machine that controls the operation of the data registers, instruction
register and associated circuitry

1.2.22 On-chip Voltage Regulator Controller
• Uses external NPN bipolar transistor

• Regulates 3.3 V down to 1.5 V for the core logic

Overview

MPC5534 Microcontroller Reference Manual, Rev. 2

1-18 Freescale Semiconductor

1.3 MPC5534 Memory Map
This section describes the MPC5534 memory map. All addresses in the device, including those that are
reserved, are identified in the tables. The addresses represent the physical addresses assigned to each IP
block. Logical addresses are translated by the MMU into physical addresses.

Under software control of the Memory Management Unit (MMU), the logical addresses allocated to IP
blocks can be changed on a minimum of a 4-KB boundary. Table 1-2 shows the MPC5534 memory map.
Peripheral blocks can be redundantly mapped. You must use the MMU to prevent corruption.

Table 1-2. MPC5534 Memory Map

Address Range1
Bytes

Module
Allocated Used

0x0000_0000–0x000F_FFFF 1 MB 1 MB Flash Array

0x0010_0000–0x00FF_FBFF 15 MB — Reserved

0x00FF_FC00–0x00FF_FFFF 1 KB 1 KB Flash Shadow Block

0x0100_0000–0x1FFF_FFFF 496 MB 1 MB Emulation mapping of Flash Array

0x2000_0000–0x3FFF_FFFF 256 MB — External Memory 2

0x4000_0000–0x4000_7FFF 32 KB 32 KB SRAM Array, Standby Powered

0x4000_8000–0x4000_FFFF 32 KB 32 KB SRAM Array

0x4001_0000–0xBFFF_FFFF 2048 MB–64 KB — Reserved

Bridge A Peripherals

0xC000_0000–0xC3EF_FFFF 63 MB — Reserved

0xC3F0_0000–0xC3F0_3FFF 16 KB 4 Bridge A Registers

0xC3F0_4000–0xC3F7_FFFF 496 KB — Reserved

0xC3F8_0000–0xC3F8_3FFF 16 KB 20 Frequency Modulated Phase-Locked Loop (FMPLL)

0xC3F8_4000–0xC3F8_7FFF 16 KB 48 External Bus Interface (EBI) Configuration

0xC3F8_8000–0xC3F8_BFFF 16 KB 28 Flash Configuration

0xC3F8_C000–0xC3F8_FFFF 16 KB — Reserved

0xC3F9_0000–0xC3F9_3FFF 16 KB 2.5 KB System Integration Unit (SIU)

0xC3F9_4000–0xC3F9_FFFF 48 KB — Reserved

0xC3FA_0000–0xC3FA_3FFF 16 KB 1056 Enhanced Modular Input/Output System (eMIOS)

0xC3FA_4000–0xC3FB_FFFF 112 KB — Reserved

0xC3FC_0000–0xC3FC_3FFF 16 KB 3 KB Enhanced Time Processing Unit (eTPU) Registers

0xC3FC_4000–0xC3FC_7FFF 16 KB — Reserved

0xC3FC_8000–0xC3FC_BFFF 16 KB 2.5 KB Enhanced Time Processing Unit (eTPU) Parameter RAM

0xC3FC_C000–0xC3FC_FFFF 16 KB 2.5 KB
Enhanced Time Processing Unit (eTPU) Parameter RAM
mirror

Overview

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 1-19

0xC3FD_0000–0xC3FD_3FFF 16 KB 12 KB Enhanced Time Processing Unit (eTPU) Code RAM

0xC3FD_4000–0xC3FF_FFFF 176 KB — Reserved

0xC400_0000–0xDFFF_FFFF (512–64 MB) — Reserved

 Bridge B Peripherals

0xE000_0000–0xFBFF_FFFF (512–64 MB) — Reserved

0xFC00_0000–0xFFEF_FFFF 63 MB — Reserved

0xFFF0_0000–0xFFF0_3FFF 16 KB — Bridge B Registers

0xFFF0_4000–0xFFF0_7FFF 16 KB — Crossbar (XBAR)

0xFFF0_8000–0xFFF0_FFFF 32 KB — Reserved

0xFFF1_0000–0xFFF3_FFFF 192 KB — Reserved

0xFFF4_0000–0xFFF4_3FFF 16 KB — Memory Control Management

0xFFF4_4000–0xFFF4_7FFF 16 KB — Enhanced Direct Memory Access Controller 2 (eDMA)

0xFFF4_8000–0xFFF4_BFFF 16 KB — Interrupt Controller (INTC)

0xFFF4_C000–0xFFF4_FFFF 16 KB — Reserved

0xFFF5_0000–0xFFF7_FFFF 192 KB — Reserved

0xFFF8_0000–0xFFF8_3FFF 16 KB 164 Enhanced Queued Analog to Digital Converter (eQADC)

0xFFF8_4000–0xFFF9_3FFF 64 KB — Reserved

0xFFF9_4000–0xFFF9_7FFF 16 KB 200 Deserial Serial Peripheral Interface (DSPI B)

0xFFF9_8000–0xFFF9_BFFF 16 KB 200 Deserial Serial Peripheral Interface (DSPI C)

0xFFF9_C000–0xFFF9_FFFF 16 KB 200 Deserial Serial Peripheral Interface (DSPI D)

0xFFFA_0000–0xFFFA_FFFF 64 KB — Reserved

0xFFFB_0000–0xFFFB_3FFF 16 KB 44 Serial Communications Interface (eSCI A)

0xFFFB_4000–0xFFFB_7FFF 16 KB 44 Serial Communications Interface (eSCI B)

0xFFFB_8000–0xFFFB_FFFF 32 KB — Reserved

0xFFFC_0000–0xFFFC_3FFF 16 KB 1152 Flexible Controller Area Network (FlexCAN A)

0xFFFC_4000–0xFFFC_7FFF 16 KB 1152 Reserved

0xFFFC_8000–0xFFFC_BFFF 16 KB 1152 Flexible Controller Area Network (FlexCAN C)

0xFFFC_C000–0xFFFF_BFFF 192 KB — Reserved

0xFFFF_C000–0xFFFF_FFFF 16 KB 4 K Boot Assist Module (BAM)

1 If allocated size > used size, then the base address for the block is the lowest address of the listed address range, unless
noted otherwise.

Table 1-2. MPC5534 Memory Map (continued)

Address Range1
Bytes

Module
Allocated Used

Overview

MPC5534 Microcontroller Reference Manual, Rev. 2

1-20 Freescale Semiconductor

1.3.1 External Master Mode Operation Memory Map
When the MPC5534 MCU acts as a slave from an external master device, the External Bus Interface (EBI)
translates the 24-bit external address to a 32-bit internal address. Table 1-3 lists the translation parameters.

Table 1-4 shows the memory map for a MPC5534 MCU acting as a slave from the point of view of the
external master.

2 It is recommended that the address rage of 0x3000_0000 through 0x3FFF_FFFF be reserved for use by the calibration bus.

Table 1-3. External to Internal Memory Map Translation Table for Slave Mode

Ext addr[8:11]1

1 Only the lower 24 address signals (ADDR[8:31]) are available off-chip.

Internal addr[0:11]
Size

(bytes)
Internal Slave Internal Address Range

0b0xxx — 8 MB — Reserved for off-chip access

0b10xx 0b0000_0000_00xx 4 MB Internal Flash 0x0000_0000–0x003F_FFFF

0b1100 0b0100_0000_0000 1 MB SRAM 0x4000_0000–0x400F_FFFF

0b1101 0b0110_0000_0000 1 MB Reserved2

2 Reserved for a future block that requires its own crossbar slave port.

0x6000_0000–0x600F_FFFF

0b1110 0b1100_0011_1111 1 MB Bridge A Peripherals 0xC3F0_0000–0xC3FF_FFFF

0b1111 0b1111_1111_1111 1 MB Bridge B Peripherals 0xFFF0_0000–0xFFFF_FFFF

Table 1-4. MPC5534 Slave Memory Map as seen from an External Master

External Address Range1

1 Only the lower 24 address signals (ADDR[8:31]) are available off-chip.

Bytes Use

0x00_00002–0x7F_FFFF

2 This address range is not part of the MPC5534 slave memory map. It is shown to illustrate the
addressing scheme for off-chip accesses when the MPC5534 is operating in slave mode.

8 MB Used for off-chip memory accesses

0x80_0000–0x8F_FFFF 1 MB Slave flash3

3 The shadow block of the slave flash is not accessible by an external master

0x90_0000–0xBF_FFFF 3 MB Reserved

0xC0_0000–0xC0_FFFF 64 KB Slave SRAM

0xC1_0000–0xCF_FFFF 1 MB–64 KB Reserved

0xD0_0000–0xCF_FFFF 1 MB Reserved

0xE0_0000–0xEF_FFFF 1 MB Slave Bridge A Peripherals

0xF0_0000–0xFF_FFFF 1 MB Slave Bridge B Peripherals

Overview

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 1-21

1.4 Detailed Features
The following sections provided detailed information about each of the on-chip modules.

1.4.1 e200z3 Core Overview
The e200z3 processor uses a four-stage pipeline for instruction execution:

• Instruction Fetch (stage 1)

• Instruction Decode/Register file Read/Effective Address Calculation (stage 2)

• Execute/Memory Access (stage 3)

• Register Writeback (stage 4)

The operation of the stages overlap, allowing single-clock instruction execution for most instructions.

The integer execution unit consists of a 32-bit Arithmetic Unit (AU), a Logic Unit (LU), a 32-bit Barrel
shifter (Shifter), a Mask-Insertion Unit (MIU), a Condition Register manipulation Unit (CRU), a
Count-Leading-Zeros unit (CLZ), a 32x32 Hardware Multiplier array, result feed-forward hardware, and
support hardware for division.

Most arithmetic and logical operations are executed in a single cycle with the exception of the divide
instructions. A Count-Leading-Zeros unit operates in a single clock cycle. The Instruction Unit contains a
PC incrementer and a dedicated Branch Address adder to minimize delays during change of flow
operations. Sequential prefetching is performed to ensure a supply of instructions into the execution
pipeline. Branch target prefetching is performed to accelerate taken branches. Prefetched instructions are
placed into an instruction buffer capable of holding six instructions.

Branches can also be decoded at the instruction buffer and branch target addresses calculated prior to the
branch reaching the instruction decode stage, allowing the branch target to be prefetched early. When a
branch is detected at the instruction buffer, a prediction can be made on whether the branch is taken or not.
If the branch is predicted to be taken, a target fetch is initiated and its target instructions are placed in the
instruction buffer following the branch instruction. Many branches take zero cycles to execute by using
branch folding. Branches are folded out from the instruction execution pipe whenever possible. These
include unconditional branches and conditional branches with condition codes that can be resolved early.

Conditional branches that are not taken and not folded execute in a single clock. Branches with successful
target prefetching that are not folded have an effective execution time of one clock. All other taken
branches have an execution time of two clocks. Memory load and store operations are provided for byte,
halfword, and word (32-bit) data with automatic zero or sign extension of byte and halfword load data as
well as optional byte reversal of data. These instructions can be pipelined to allow effective single cycle
throughput. Load and store multiple word instructions allow low overhead context save and restore
operations. The load/store unit contains a dedicated effective address adder to allow effective address
generation to be optimized. Also, a load-to-use dependency does not incur any pipeline bubbles for most
cases.

The Condition register unit supports the condition register (CR) and condition register operations defined
by the PowerPC architecture. The condition register consists of eight 4-bit fields that reflect the results of
certain operations, such as move, integer and floating-point compare, arithmetic, and logical instructions,
and provide a mechanism for testing and branching. Vectored and autovectored interrupts are supported

Overview

MPC5534 Microcontroller Reference Manual, Rev. 2

1-22 Freescale Semiconductor

by the CPU. Vectored interrupt support is provided to allow multiple interrupt sources to have unique
interrupt handlers invoked with no software overhead.

The hardware floating-point unit uses the IEEE-754 single-precision floating-point format and supports
single-precision floating-point operations in a pipelined fashion. The general purpose register file is used
for source and destination operands, thus there is a unified storage model for single-precision
floating-point data types of 32-bits and the normal integer type. Single-cycle floating-point add, subtract,
multiply, compare, and conversion operations are provided. Divide instructions are multi-cycle and are not
pipelined.

The Signal Processing Extension (SPE) Auxiliary Processing Unit (APU) provides hardware SIMD
operations and supports a full compliment of dual integer arithmetic operation including Multiply
Accumulate (MAC) and dual integer multiply (MUL) in a pipelined fashion. The general purpose register
file is enhanced such that all 32 of the GPRs are extended to 64 bits wide and are used for source and
destination operands, thus there is a unified storage model for 32x32 MAC operations which generate
greater than 32 bit results.

The majority of both scalar and vector operations (including MAC and MUL) are executed in a single
clock cycle. Both Scalar and Vector divides take multiple clocks. The SPE APU also provides extended
load and store operations to support the transfer of data to and from the extended 64 bit GPRs. This SPE
APU is fully binary compatible with the e200z6 SPE APU used in MPC5554 and MPC5553.

The CPU includes support for variable length encoding (VLE) instruction enhancements. This allows the
optional execution of an alternate instruction set consisting of a mixture of 16-bit and 32-bit instructions.
This results in a significantly smaller code size footprint without affecting performance noticeably. The
e200z3 core supports both the PowerPC Architecture Book E and VLE instruction sets.

1.4.2 Crossbar Switch (XBAR)
The XBAR multi-port crossbar switch supports simultaneous connections between four master ports and
five slave ports.

• Four master ports:

— Core CPU - Instruction

— Core CPU - Data

— eDMA

— EBI

• Five slave ports

— Flash (64-bit data access)

— EBI (16-bit data access)

— SRAM (32-bit data access)

— Peripheral Bridge A (32-bit data access)

— Peripheral Bridge B (32-bit data access)

Overview

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 1-23

The crossbar allows for concurrent transactions to occur from any master port to any slave port. It is
possible for all master ports and slave ports to be in use at the same time as a result of independent master
requests. If a slave port is simultaneously requested by more than one master port, arbitration logic selects
the higher priority master and grant it ownership of the slave port. All other masters requesting that slave
port stall until the higher priority master completes its transactions. By default, requesting masters have
equal priority and are granted access to a slave port in round-robin fashion, based upon the ID of the last
master to be granted access.

1.4.3 Enhanced Direct Memory Access (eDMA) Controller
The enhanced direct memory access (eDMA) controller is a second-generation module capable of
performing complex data movements via 32 programmable channels, with minimal intervention from the
host processor. The hardware micro architecture includes a DMA engine which performs source and
destination address calculations, and the actual data movement operations, along with an SRAM-based
memory containing the transfer control descriptors (TCD) for the channels. This implementation is utilized
to minimize the overall block size.

1.4.4 Interrupt Controller (INTC)
The INTC (interrupt controller) provides priority-based preemptive scheduling of interrupt requests,
suitable for statically scheduled hard real-time systems. The INTC allows interrupt request servicing from
up to 210 interrupt sources.

For high priority interrupt requests, the time from the assertion of the interrupt request from the peripheral
to when the processor is executing the interrupt service routine (ISR) has been minimized. The INTC
provides a unique vector for each interrupt request source for quick determination of which ISR needs to
be executed. It also provides an ample number of priorities so that lower priority ISRs do not delay the
execution of higher priority ISRs. To allow the appropriate priorities for each source of interrupt request,
the priority of each interrupt request is software configurable.

When multiple tasks share a resource, coherent accesses to that resource need to be supported. The INTC
supports the priority ceiling protocol for coherent accesses. By providing a modifiable priority mask, the
priority can be raised temporarily so that all tasks which share the resource can not preempt each other.

Multiple processors can assert interrupt requests to each other through software settable interrupt requests.
These same software settable interrupt requests also can be used to break the work involved in servicing
an interrupt request into a high priority portion and a low priority portion. The high priority portion is
initiated by a peripheral interrupt request, but then the ISR asserts a software settable interrupt request to
finish the servicing in a lower priority ISR. Therefore these software settable interrupt requests can be used
instead of the peripheral ISR scheduling a task through the RTOS.

1.4.5 Frequency Modulated Phase-Locked Loop (FMPLL)
The frequency modulated PLL allows you to generate high speed system clocks from an 8–20 MHz crystal
oscillator or external clock generator. Further, the FMPLL supports programmable frequency modulation
of the system clock. The FMPLL multiplication factor, output clock divider ratio, modulation depth, and
modulation rate are all software configurable.

Overview

MPC5534 Microcontroller Reference Manual, Rev. 2

1-24 Freescale Semiconductor

1.4.6 External Bus Interface (EBI)

NOTE
The EBI is available on the 324 package only—the EBI is not available on
the 208 package due to pin limitations.

The EBI controls data transfer across the crossbar switch to/from memories or peripherals in the external
address space. The EBI includes a memory controller that generates interface signals to support a variety
of external memories. The EBI memory controller supports single data rate (SDR) burst mode flash,
SRAM, and asynchronous memories. In addition, the EBI supports up to four regions via chip selects
(multiplexed with four address bits), along with programmed region-specific attributes.

1.4.7 Calibration Bus Interface (CBI)

NOTE

The 208 package does not have a CBI. The CBI is available only in the 324
package using the 496 assembly.

The CBI controls data transfer across the crossbar switch to/from memories or peripherals connected to
the VertiCal connector. The CBI is only available when the silicon is packaged in the VertiCal calibration
system. Although the CBI shares the memory controller and most of the control logic with the EBI, these
buses come out on two completely independent sets of pads. The CBI memory controller supports single
data rate (SDR) non-burst mode flash, SRAM, and asynchronous memories. In addition, the CBI supports
up to three regions via dedicated calibration chip selects (two chip selects multiplexed with two address
bits), along with programmed region-specific attributes.

1.4.8 System Integration Unit (SIU)
The SIU controls MCU reset configuration, pad configuration, external interrupt, general purpose I/O
(GPIO), internal peripheral multiplexing, and the system reset operation. The reset configuration block
contains the external pin boot configuration logic. The pad configuration block controls the static electrical
characteristics of I/O pins. The GPIO block provides uniform and discrete input/output control of the I/O
pins of the MCU. The reset controller performs reset monitoring of internal and external reset sources, and
drives the RSTOUT pin. The SIU is accessed by the e200z3 core through the crossbar switch.

For more information on configuring the MPC5534 at reset see Section 1.5, “Chip Configuration.

1.4.9 On-chip Flash
The MPC5534 provides 1 MB of programmable, non-volatile, flash memory. The non-volatile memory
(NVM) can be used for instruction and/or data storage. The flash module interfaces the system bus to a
dedicated flash memory array controller. It supports a 64-bit data bus width at the system bus port, and a
128-bit read data interface to flash memory. The module contains a four-entry, 128-bit prefetch buffer and
a prefetch controller which prefetches sequential lines of data from the flash array into the buffer. Prefetch
buffer hits allow no-wait responses. Normal flash array accesses are registered and are forwarded to the
system bus on the following cycle, incurring three wait-states. Prefetch operations can be automatically

Overview

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 1-25

controlled, and can be restricted to servicing a single bus master. Prefetches can also be restricted to being
triggered for instruction or data accesses.

1.4.10 Static Random Access Memory (SRAM)
The MPC5534 SRAM module provides a general-purpose 64-KB memory block. The first 32 KB block
of the SRAM is powered by its own power supply pin, called VSTBY. This allows the contents of this
memory region to be preserved when the rest of the MCU is powered down.

ECC handling is done on a 32-bit boundary and is completely software compatible with MPC5500 family
devices with an e200z6 core and 64-bit wide ECC syndrome. Because the e200z3 core in MPC5534 is a
cacheless processor, the platform RAM is organized on a 32-bit boundary versus the 64-bit organization
used on other MPC5500 family MCUs based on the e200z6 core.

1.4.11 Boot Assist Module (BAM)
The BAM is a block of read-only memory that is hard-coded by Freescale and is identical for all MPC5500
family MCU’s with an e200zn core. The BAM program executes when the MCU is powered-on or reset
in normal mode. The BAM supports the following modes of booting:

• Booting from internal flash memory

• Single master booting from external memory (for parts in 324 BGA that have an external bus)

• Serial boot loading (a program is downloaded into RAM via eSCI or the FlexCAN and then
executed)

The BAM reads the reset configuration half word (RCHW) from flash memory and configures the device.
Flash memory can be either internal (208 and 324 packages) or external (324 package only).

For more information on configuring the MPC5534 at reset, see Section 1.5, “Chip Configuration.

1.4.12 Enhanced Module Input/Output System (eMIOS)
The eMIOS module provides the functionality to generate or measure time events. A unified channel (UC)
module uses a superset of the functionality of all the eMIOS channels, while providing a consistent user
interface. This allows you more flexibility to program each unified channel for different functions to be
used in various applications. To identify up to two timed events, configure the UC with two comparators,
a time base selector and registers. This can produce match events which can measure or generate a
waveform. Alternatively, input events can be used to capture the time base, allowing measurement of an
input signal.

1.4.13 Enhanced Time Processing Unit (eTPU)
The eTPU is an enhanced co-processor designed for timing control. Operating in parallel with the host
CPU, the eTPU processes instructions and real-time input events, performs output waveform generation,
and accesses shared data without host intervention. Consequently, for each timer event, the host CPU setup
and service times are minimized or eliminated. A powerful timer subsystem is formed by combining the

Overview

MPC5534 Microcontroller Reference Manual, Rev. 2

1-26 Freescale Semiconductor

eTPU with its own instruction and data RAM. High-level assembler/compiler and documentation allows
customers to develop their own functions on the eTPU.

The eTPU is an enhanced version of the TPU module implemented on the MC68332 and MPC500
products. Enhancements of the eTPU include a more powerful processor which handles high-level C code
efficiently and allows for more functionality and increased performance. Although there is no
compatibility at microcode level, the eTPU maintains several features of older TPU versions and is
conceptually almost identical. The eTPU library is a superset of the standard TPU library functions
modified to take advantage of enhancements in the eTPU. These, along with a C compiler, make it
relatively easy to port previous applications. By providing source code for the Freescale library, the eTPU
can support your own function development.

The eTPU includes these distinctive features:

• 32 channels, each channel is associated with one input and one output signal.

— Enhanced input digital filters on the input pins for improved noise immunity.

— Identical, orthogonal channels: each channel can perform any time function. Each time
function can be assigned to more than one channel as a given time, so each signal can have
any functionality.

— Each channel has an event mechanism which supports single and double action functionality
in various combinations. It includes two 24-bit capture registers, two 24-bit match registers,
24-bit greater-equal and equal-only comparators

— Input and output signal states visible from the host

• Two independent 24-bit time bases for channel synchronization:

— First time base clocked by system clock with programmable prescale division from 2 to 512
(in steps of 2), or by output of second time base prescaler

— Both time bases can be exported to the eMIOS timer module

— Second time base counter can work as a continuous angle counter, enabling angle based
applications to match angle instead of time.

— Both timebases visible from the host

• Event-triggered microengine:

— Fixed-length instruction execution in two-system-clock microcycle

— 12 KB of code memory (SCM)

— 2.5 KB of parameter (data) RAM (SPRAM)

— Parallel execution of data memory, ALU, channel control and flow control sub-instructions in
selected combinations

— 32-bit microengine registers and 24-bit wide ALU, with 1 microcycle addition and
subtraction, absolute value, bitwise logical operations on 24-bit, 16-bit, or byte operands,
single bit manipulation, shift operations, sign extension and conditional execution

— Additional 24 bit Multiply/MAC/Divide unit which supports all signed/unsigned
Multiply/MAC combinations, and unsigned 24-bit divide. The MAC/Divide unit works in
parallel with the regular microcode commands

Overview

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 1-27

• Resource sharing features support channel use of common channel registers, memory and
microengine time:

— Hardware scheduler works as a “task management” unit, dispatching event service routines by
pre-defined, host-configured priority.

— Automatic channel context switch when a "task switch" occurs, i.e., one function thread ends
and another begins to service a request from other channel: channel-specific registers, flags
and parameter base address are automatically loaded for the next serviced channel

— SPRAM shared between host CPU and eTPU, supporting communication either between
channels and host or inter-channel

— Dual-parameter coherency hardware support allows atomic access to two parameters by host

• Test and development support features:

— Nexus Class 3 debug, supporting single-step execution, arbitrary microinstruction execution,
hardware breakpoints and watchpoints on several conditions (see Section 1.4.18, “Nexus,” for
more details on the Nexus module)

— Software breakpoints

— SCM continuous signature-check built-in self test (MISC—multiple input signature
calculator), runs concurrently with eTPU normal operation

1.4.14 Enhanced Queued Analog/Digital Converter (eQADC)
The enhanced queued analog to digital converter (eQADC) block provides accurate and fast conversions
for a wide range of applications. The eQADC provides a parallel interface to two on-chip analog to digital
converters (ADCs), and a single master to single slave serial interface to an off-chip external device. The
two on-chip ADCs are designed to allow access to all the analog channels.

The eQADC transfers commands from multiple command FIFOs (CFIFOs) to the on-chip ADCs or to the
external device. The block can also receive data from the on-chip ADCs or from an off-chip external
device into multiple result FIFOs (RFIFOs) in parallel, independently of the CFIFOs. The eQADC
supports software and external hardware triggers from other blocks to initiate transfers of commands from
the CFIFOs to the on-chip ADCs or to the external device. It also monitors the fullness of CFIFOs and
RFIFOs, and accordingly generates DMA or interrupt requests to control data movement between the
FIFOs and the system memory, which is external to the eQADC.

1.4.15 Deserial/Serial Peripheral Interface (DSPI)
The deserial serial peripheral interface (DSPI) block provides a synchronous serial interface for
communication between the MPC5534 MCU and external devices. The DSPI supports pin count reduction
through serialization and deserialization of eTPU channels and memory-mapped registers. The channels
and register content are transmitted using a SPI-like protocol. There are two identical DSPI blocks on the
MPC5534 MCU.

The DSPIs have three configurations:

• Serial peripheral interface (SPI) configuration where the DSPI operates as a SPI with support for
queues

Overview

MPC5534 Microcontroller Reference Manual, Rev. 2

1-28 Freescale Semiconductor

• Deserial serial interface (DSI) configuration where the DSPI serializes eTPU and eMIOS output
channels and deserializes the received data by placing it on the eTPU and eMIOS input channels

• Combined serial interface (CSI) configuration where the DSPI operates in both SPI and DSI
configurations interleaving DSI frames with SPI frames, giving priority to SPI frames

For queued operations, the SPI queues reside in system memory external to the DSPI. Data transfers
between the memory and the DSPI FIFOs are accomplished through the use of the eDMA controller or
through host software.

1.4.16 Enhanced System Communications Interface (eSCI)
The enhanced serial communications interface (eSCI) allows asynchronous serial communications with
peripheral devices and other MCUs. It includes special support to interface to local interconnect network
(LIN) slave devices.

1.4.17 Flexible Controller Area Network (FlexCAN)
The MPC5534 MCU contains two controller area network (FlexCAN) blocks. Each FlexCAN module is
a communication controller implementing the CAN protocol according to Bosch Specification version
2.0B. The CAN protocol was designed to be used primarily as a vehicle serial data bus, meeting the
specific requirements of this field: real-time processing, reliable operation in the EMI environment of a
vehicle, cost-effectiveness and required bandwidth. Each FlexCAN module has 64 message buffers (MB).

1.4.18 Nexus
The NDI (Nexus Debug Interface) block provides real-time development support capabilities for the
MPC5534 MCU in compliance with the IEEE-ISTO 5001-2003 standard. This development support is
supplied for MCUs without requiring external address and data pins for internal visibility. The NDI block
is an integration of several individual Nexus blocks that are selected to provide the development support
interface for the MPC5534. The NDI block interfaces to the host processor, eTPU, and internal buses to
provide development support as per the IEEE-ISTO 5001-2003 standard. The development support
provided includes program trace, data trace, watchpoint trace, ownership trace, run-time access to the
MCUs internal memory map and access to the core and eTPU internal registers during halt. The Nexus
interface also supports a JTAG only mode using only the JTAG pins. The following features are
implemented:

• 15 or 23 full duplex pin interface for medium and high visibility throughput:

— One of two modes selected by register configuration: full port mode (FPM) and reduced port
mode (RPM): FPM comprises 12 MDO pins (324 package only); RPM comprises four MDO
pins (208 and 324 packages).

— Auxiliary output port

• One MCKO (message clock out) pin

• Four or 12 MDO (message data out) pins

• Two MSEO (message start/end out) pins

• One RDY (ready) pin

Overview

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 1-29

• One EVTO (event out) pin

— Auxiliary input port

• One EVTI (event in) pin

• Five pin JTAG port (JCOMP, TDI, TDO, TMS, and TCK)

— Supports JTAG mode

• Host processor (e200) development support features

— IEEE-ISTO 5001-2003 standard Class 3 compliant

— Data trace via data write messaging (DWM) and data read messaging (DRM). This allows the
development tool to trace reads and/or writes to selected internal memory resources.

— Ownership trace via ownership trace messaging (OTM). OTM facilitates ownership trace by
providing visibility of which process ID or operating system task is activated. An ownership
trace message is transmitted when a new process/task is activated, allowing development tools
to trace ownership flow.

— Program trace via branch trace messaging (BTM). Branch trace messaging displays program
flow discontinuities (direct branches, indirect branches, exceptions, etc.), allowing the
development tool to interpolate what transpires between the discontinuities. Thus, static code
can be traced.

— Watchpoint messaging (WPM) via the auxiliary port

— Watchpoint trigger enable of program and/or data trace messaging

— Data tracing of instruction fetches via private opcodes

— Subset of PowerPC Architecture Book E software debug facilities with OnCE block (Nexus
Class 1 features implemented by OnCE)

• eTPU development support features

— IEEE-ISTO 5001-2003 standard Class 3 compliant for the eTPU

— Data trace via data write messaging and data read messaging. This allows the development
tool to trace reads and writes to selected shared parameter RAM (SPRAM) address ranges.
Four data trace windows are available.

— Ownership trace via ownership trace messaging (OTM). OTM facilitates ownership trace by
providing visibility of which channel is being serviced. An ownership trace message is
transmitted to indicate when a new channel service request is scheduled, allowing the
development tools to trace task flow. A special OTM is sent when the engine enters in idle
state, meaning that all requests were serviced and no new requests are yet scheduled.

— Program trace via branch trace messaging. BTM displays program flow discontinuities (start,
repeat, jump, return, etc.), allowing the development tool to interpolate what transpires
between the discontinuities. Thus static code can be traced. The branch trace messaging
method uses the branch/predicate method to reduce the number of generated messages.

— Watchpoint messaging via the auxiliary port. WPM provides visibility of the occurrence of the
eTPUs’ watchpoints and breakpoints.

— Nexus based breakpoint/watchpoint configuration and single step support.

Overview

MPC5534 Microcontroller Reference Manual, Rev. 2

1-30 Freescale Semiconductor

• Run-time access to the on-chip memory map via the Nexus read/write access protocol. This
feature supports accesses for run-time internal visibility, calibration variable acquisition,
calibration constant tuning, and external rapid prototyping for powertrain automotive
development systems.

• All features are independently configurable and controllable via the IEEE 1149.1 I/O port.

• The NDI block reset is controlled with JCOMP, power-on reset, and the TAP state machine. All
these sources are independent of system reset.

• Power-on-reset status indication during reset via MDO[0] in disabled and reset modes

1.4.19 JTAG
The JTAGC (JTAG Controller) block provides the means to test chip functionality and connectivity while
remaining transparent to system logic when not in test mode. Testing is performed via a boundary scan
technique, as defined in the IEEE 1149.1-2001 standard. All data input to and output from the JTAGC
block is communicated in serial format. The JTAGC block is compliant with the IEEE 1149.1-2001
standard.

1.5 Chip Configuration
Various functions of the MPC5534 can be implemented at reset, and the following operations can be
configured:

• Boot mode

— Internal memory boot (default)

— External memory boot (single master—324 package only)

— Boot from serial port (FlexCAN or eSCI)

• PLL mode

— Normal mode with crystal reference (default)

— Normal mode with external reference

— Bypass mode

• Watchdog timer enable

Overview

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 1-31

1.6 Related Documentation
Table 1-5 lists other documents that provide information related to the MPC5534 and its development
support tools. Documentation is available from a local Freescale distributor, a Freescale semiconductor
sales office, the Freescale Literature Distribution Center, or through the Freescale world-wide web address
at http://www.freescale.com.

Table 1-5. MPC5534 and Related Documentation

Freescale
Document

Number
Title

MPC5534RM MPC5534 Reference Manual

AN2127/D EMC Guidelines for MPC500-Based Automotive Powertrain Systems

AN1259/D System Design and Layout Techniques for Noise Reduction in MCU-Based Systems

AN2613 MPC5554 Minimum Board Configuration

AN2614 Nexus Interface Options for the MPC5500 Family

AN2706 EMC Guidelines for MPC5500-based Systems

http://www.slingmedia.com/_files/products.html

Overview

MPC5534 Microcontroller Reference Manual, Rev. 2

1-32 Freescale Semiconductor

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 2-1

Chapter 2
Signals
This chapter describes the external device signals, including a table of signal properties, detailed
descriptions of the available signals, and the I/O pin power/ground segmentation.

2.1 Block Diagram
This chapter describes the signals of the MPC5534 that connect off chip. It includes a table of signal
properties, detailed descriptions of signals, and connections and serialization for the eTPU and eMIOS.

Figure 2-1 shows the signals that are available on the device in the 324 package. Signals designated in red
are not available due to pin limitations on the 208 package. Signals shown in blue are primary functions
that are not designed into this device.

Read the Package columns in Table 2-1 for the alpha/numeric code that identifies each ball for one set of
muxed signals. You can cross reference this column to the BGA package figures in the Data Sheet to
identify the ball location on the device. The VertiCal assembly assignments are also listed in the table.

NOTE
The VertiCal assembly has ball connections for all the available signals on
the device.

Signals

MPC5534 Microcontroller Reference Manual, Rev. 2

2-2 Freescale Semiconductor

Figure 2-1. MPC5534 Signal Diagram

GPIO[83]_CNTXA
GPIO[84]_CNRXA

GPIO[87]_PCSD[3]_CNTXC
GPIO[88]_PCSD[4]_CNRXC

FlexCAN

GPIO[89]_TXDA
GPIO[90]_RXDA

GPIO[91]_PCSD[1]_TXDB
GPIO[92]_PCSD[5]_RXDB

eSCI

MPC5534

AN[0]_DAN0+
AN[1]_DAN0-
AN[2]_DAN1+
AN[3]_DAN1-
AN[4]_DAN2+

XTAL
EXTCLK_EXTAL
CLKOUT
ENGCLK

RESET

EVTI

EVTO
MCKO

MDO[0]
MDO[3:1]

RSTOUT
GPIO[208]_IRQ[4]_PLLCFG[0]

GPIO[209]_SOUTD_IRQ[5]_PLLCFG[1]

GPIO[210]_RSTCFG
GPIO[211]_IRQ[2]_BOOTCFG[0]

GPIO[0]_ADDR[8]_CS[0]

GPIO[1:3]_ADDR[9:11]_CS[1:3]

GPIO[8:27]_ADDR[12:31]
GPIO[28:43]_DATA[0:15]

NEXUS

DSPI

GPIO[82:75]_MDO[11:4]

eQADC

eTPU

NCNC

GPIO[213]_WKPCFG

GPIO[62]_RD_WR

GPIO[63]_BDIP

GPIO[64:65]_WE/BE[0:1]

GPIO[68]_OE

GPIO[69]_TS

GPIO[70]_TA

MSEO[1:0]

RDY

AN[5]_DAN2-
AN[6]_DAN3+
AN[7]_DAN3-
AN[8]_ANW
AN[9]_ANX_BIAS
AN[10]_ANY
AN[11]_ANZ
AN[12]_MA[0]_SDS
AN[13]_MA[1]_SDO
AN[14]_MA[2]_SDI
AN[15]_FCK
AN[16:31]
AN[32:39]
VRH
VRL
REFBYPC

TCRCLKA_IRQ[7]_GPIO[113]
ETPUA[0:3]_ETPUA[12:15]_GPIO[114:117]
ETPUA[4:7]_ETPUA[16:19]_GPIO[118:121]
ETPUA[8:11]_ETPUA[20:23]_GPIO[122:125]
ETPUA[12]_PCSB[1]_GPIO[126]
ETPUA[13]_PCSB[3]_GPIO[127]
ETPUA[14]_PCSB[4]_GPIO[128]
ETPUA[15]_PCSB[5]_GPIO[129]
ETPUA[16]_PCSD[1]_GPIO[130]
ETPUA[17]_PCSD[2]_GPIO[131]
ETPUA[18]_PCSD[3]_GPIO[132]
ETPUA[19]_PCSD[4]_GPIO[133]
ETPUA[20:23]_IRQ[8:11]_GPIO[134:137]
ETPUA[24:26]_IRQ[12:14]_GPIO[138:140]
ETPUA[27]_IRQ[15]_GPIO[141]
ETPUA[28]_PCSC[1]_GPIO[142]
ETPUA[29]_PCSC[2]_GPIO[143]
ETPUA[30]_PCSC[3]_GPIO[144]
ETPUA[31]_PCSC[4]_GPIO[145]

TCK
TDI

TDO
TMS

JCOMP

TEST

JTAG/TEST

EMIOS[0:2]_ETPUA[0:2]_GPIO[179:181]
EMIOS[3:5]_ETPUA[3:5]_GPIO[182:184]
EMIOS[6:7]_ETPUA[6:7]_GPIO[185:186]
EMIOS[8:9]_ETPUA[8:9]_GPIO[187:188]

EMIOS[12]_SOUTC_GPIO[191]
EMIOS[13]_SOUTD_GPIO[192]
EMIOS[14:15]_IRQ[0:1]_GPIO[193_194]
EMIOS[16:18]_GPIO[195:197]
EMIOS[19:21]_GPIO[198:200]

EMIOS[10]_GPIO[189]
EMIOS[11]_GPIO[190]

EMIOS[22:23]_GPIO[201:202]

EMIOS[14:15]_GPIO[203:204]

GPIO[206:207]
GPIO

EMIOS

EXTERNAL
BUS

INTERFACE
(EBI)

RESET/
CONFIGURATION

CLOCK
SYNTHESIZER

VRC33
VRCVSS
VRCCTL
VDDA1

VSSSYN
VFLASH
VPP
VSTBY
VDD

VSSA1
VDDSYN

VDDE

POWER/

VDDEH
3.3V
VSS(GND)

GROUND

GPIO[97]_PCSB[2]
GPIO[98]_SCKD
GPIO[99]_SIND

GPIO[100]_SOUTD

GPIO[96]_PCSD[2]

GPIO[101]_PCSB[3]
GPIO[102]_PCSC[1]_SCKB

GPIO[104]_PCSC[5]_SOUTB
GPIO[105]_PCSD[2]_PCSB[0]
GPIO[106]_PCSD[0]_PCSB[1]
GPIO[107]_SOUTC_PCSB[2]

GPIO[103]_PCSC[2]_SINB

GPIO[108]_SINC_PCSB[3]
GPIO[109]_SCKC_PCSB[4]

GPIO[110]_PCSC[0]_PCSB[5]
VDDA0
VSSA0

GPIO[93]_PCSC[1]
GPIO[94]_PCSC[2]
GPIO[95]_PCSC[5]

CAL_ADDR[12:30]
CAL_ADDR[10:11]_CAL_CS[2:3]

CAL_CS[0]
CAL_DATA[0:15]

CAL_OE
CAL_RD_WR

CAL_TS

CAL_WE/BE[0:1]

CALIBRATION

GPIO[85]_PCSC[3]
GPIO[86]_PCSC[4]

GPIO[212]_IRQ[3]_BOOTCFG[1]

Signals

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 2-3

2.2 External Signal Descriptions
This section summarizes the external signal functions, the electrical characteristics, and pad configuration
settings for this device. The signal properties and electrical characteristics are set in the System Integration
Unit (SIU) Pad Configuration (PCR) registers.

2.2.1 Multiplexed Signals

Signal functions are multiplexed to each ball on the BGA in a function hierarchy: Primary, Main Primary,
Alternate, Second Alternate, and General Purpose Input/Output (I/O). For example, in the signal
PCSA[3]_SIND_GPIO[99], the primary signal function is PCSA[3], the first alternate signal function is
SIND, and the GPIO function is a generic General Purpose I/O signal. Multiplexing signal functions
allows for more flexibility when configuring the device, as well as providing compatibility with other
devices in the MPC5500 product family.

The primary signal function name is used in the Ball Grid Array (BGA) map to identify the location of the
ball, however, the primary signal function is not always valid for all devices. As shown in Figure 2-2, when
the primary signal function is not available on the device, the Signal Name column contains the primary
signal function name, ‘No primary signal’ is shown in the Signal Function column, and a dash appears in
the P/A/G, and I/O Type columns.

Figure 2-2. Primary Function Not Available on Device

The entries in the P/A/G column designate the position in the signal function hierarchy for multiplexed
functions. These symbols correspond to binary values for the Pin Assignment (PA) field in the SIU_PCR
registers that determine the active signal function. The PA field length varies from 1- to 3-bits, depending
on the PCR register.

Signal Names 2 Signal Functions

P/
A/
G

I/O
Type Voltage

Pad
Type

Status
Pin Loc

During
Reset

After
Reset 496

PCSA[3]_
SIND_
GPIO[99]

No primary signal
DSPI D data input
GPIO

—
A
G

—
I

I/O
VDDEH6 MH – / Up – / Up

R5, P5,
R7

Primary signal functions

Secondary signal functions 1

GPIO signal functions are

Primary
footnote
Table

Table 4-1. Signal Properties

are listed first

are alternate functions and are

general functions listed last

 function not
designed into this device

1 Some devices have two alternate signals muxed to the same ball: first alternate (A); second alternate (A2).

listed after the primary signal

Signals

MPC5534 Microcontroller Reference Manual, Rev. 2

2-4 Freescale Semiconductor

Figure 2-3 explains the symbol definitions used in the P/A/G column for Table 2-1.

Figure 2-3. Understanding the P/A/G Column Entries

2.2.2 Device Signals Summary

Table 2-1 gives a summary of the device’s external signals and properties. See Section 2.3, “Detailed
Signal Description,” for detailed descriptions of each signal. The signals shown in red are not available on
the 208 package; signals shown in blue are primary functions that are not available in this device.

Table 2-1. MPC5534 Signal Properties

Signal Name 1 Signal Function

P/
A/
G

I/O
Type Voltage2

Pad
Type3

Status Package

4964
VertiCal

During
Reset5

After
Reset6

208 324

Reset / Configuration

RESET External reset input P I VDDEH6 SH
RESET

/ Up

RESET /

Up
L16 R22 AA27

RSTOUT External reset output P O VDDEH6 SH
RSTOUT /

Low
RSTOUT /

High
K15 P21 W26

PLLCFG[0]_

IRQ[4]_

GPIO[208]

PLLMRFM mode selection

External interrupt request

GPIO

P

A

G

I

I

I/O

VDDEH6 MH
PLLCFG /

Up
– / Up V21 V21 AB27

PLLCFG[1]_

IRQ[5]_

SOUTD_

GPIO[209]

PLLMRFM reference selection

External interrupt request

DSPI D data output

GPIO

P

A

A2

G

I

I

O

I/O

VDDEH6 MH
PLLCFG /

Up
– / Up N15 U20 AA26

RSTCFG_7

GPIO[210]

Reset configuration input

GPIO
P
G

I

I/O
VDDEH6 SH

RSTCFG /
Up

– / Up — P22 Y28

BOOTCFG[0]_7

IRQ[2]_

GPIO[211]

Boot configuration input

External interrupt request

GPIO

P
A
G

I

I

I/O

VDDEH6 SH
BOOTCFG

/ Down
– / Down — U21 AB26

P/A/G
Symbol

PA Signal Type
Register Bits Number of

Muxed Signals 1

1 Two-bit PA fields include the 1-bit muxed signal values; 3-bit PA fields include the 1- and 2-bit
muxed signal values.

3 4 5

G General purpose I/O – – 0 1-bit
2 muxed signalsP Primary – – 1

A Alternate – 1 0 2-bits
4 muxed signalsMP Main – 1 1

A2 Second alternate 1 0 0 3-bits
> 4 muxed signalsAll other values reserved for future use. 1 n n

Bit 3 in the SUI_PCR registers Bit 5 in the
the PA field.

The main primary function
is used for compatibility.

PA[0:2]is bit 0 in the PA field.
SUI_PCR

is bit 2 in
registers

Signals

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 2-5

BOOTCFG[1]_

IRQ[3]_

GPIO[212]

Boot configuration input

External interrupt request

GPIO

P
A
G

I

I

I/O

VDDEH6 SH
BOOTCFG

/ Down
– / Down M15 T20 AB24

WKPCFG_

GPIO[213]

Weak pull configuration input

GPIO
P
G

I

I/O
VDDEH6 SH

WKPCFG /
Up

– / Up L15 R19 AA24

External Bus Interface (EBI) 8

CS[0]_

ADDR[8]_ 9

GPIO[0]

External chip selects

External address bus

GPIO

P
A
G

O

I/O

I/O

VDDE2 F – / Up – / Up10 R1 M4 T7

CS[1:3]_ 11

ADDR[9:11]_9

GPIO[1:3]

External chip selects

External address bus

GPIO

P
A
G

O

I/O

I/O

VDDE2 F – / Up – / Up10 —
M3,

N2, N1
R5, P5,

R7

ADDR[12:26]_9, 11

GPIO[8:22]

External address bus

GPIO

P

G

I/O

I/O
VDDE2 F – / Up – / Up10 —

T3, U3,
U4, V3,
P1, P2,
R1, R2,
T1, T2,
U1, U2,
V1, V2,

W1

Y7, AC3,
AC5,

AB5, T3,
T2, T1,
V2, W1,
W2, Y1,
Y2, AA2,

AB2,
AC2

ADDR[27:29]_9, 11

GPIO[23:25]

External address bus

GPIO

P

G

I/O

I/O
VDDE2 F – / Up – / Up10 —

Y2, Y1,
AA1

AD2,
AD3,
AD1

ADDR[30:31]_9, 11

GPIO[26:27]

External address bus

GPIO

P

G

I/O

I/O
VDDE2 F – / Up – / Up10 — W3, V4 AF2, AE3

DATA[0:15]_9, 11

GPIO[28:43]

External data bus

GPIO

P

G

I/O

I/O
VDDE3 F – / Up – / Up10 —

AB4,
AA5,
AB5,
AB6,
AB7,
AA8,
AB8,
AA9,

Y6, Y7,
Y8,
W9,

W10,
Y10,
W11,
Y11

AG11,
AF12,
AG13,
AH13,
AG14,
AH15,
AG15,
AH16,
AB12,
AF10,
AD13,
AF11,
AB15,
AD12,
AD15,
AF13

RD_WR_ 11

GPIO[62]

External read/write

GPIO

P

G

I/O

I/O
VDDE2 F – / Up – / Up10 — P3 U3

BDIP_ 11

GPIO[63]

External burst data in progress

GPIO

P

G

O

I/O
VDDE2 F – / Up – / Up10 — M1 N1

WE/BE[0:1]_ 11, 12

GPIO[64:65]

External write/byte enable

GPIO

P

G

O

I/O
VDDE2 F – / Up – / Up10 — N4, N3 U5, T5

Table 2-1. MPC5534 Signal Properties (continued)

Signal Name 1 Signal Function

P/
A/
G

I/O
Type Voltage2

Pad
Type3

Status Package

4964
VertiCal

During
Reset5

After
Reset6

208 324

Signals

MPC5534 Microcontroller Reference Manual, Rev. 2

2-6 Freescale Semiconductor

OE_

GPIO[68]

External output enable

GPIO

P

G

O

I/O
VDDE3 F – / Up – / Up10 T3 AB9 AF16

TS_ 11

GPIO[69]

External transfer start

GPIO

P

G

I/O

I/O
VDDE2 F – / Up – / Up10 — T4 W3

TA_ 11

GPIO[70]

External transfer acknowledge

GPIO

P

G

I/O

I/O
VDDE2 F – / Up – / Up10 — R4 V3

Calibration Bus

CAL_CS[0] 13 Calibration chip select P O VDDE12 F – / Up – / Up — — AB11

CAL_CS[2]_13

CAL_ADDR[10]

Calibration chip select

Calibration address bus

P

A
O VDDE12 F – / Up – / Up — — AA10

CAL_CS[3]_ 13

CAL_ADDR[11]

Calibration chip select

Calibration address bus

P

A
O VDDE12 F – / Up – / Up — — AB10

CAL_ADDR[12] 13 Calibration address bus P O VDDE12 F – / Up – / Up — — AA14

CAL_ADDR[13] 13 Calibration address bus P O VDDE12 F – / Up – / Up — — R8

CAL_ADDR[14] 13 Calibration address bus P O VDDE12 F – / Up – / Up — — AA15

CAL_ADDR[15] 13 Calibration address bus P O VDDE12 F – / Up – / Up — — W7

CAL_ADDR[16] 13 Calibration address bus P O VDDE12 F – / Up – / Up — — P7

CAL_ADDR[17] 13 Calibration address bus P O VDDE12 F – / Up – / Up — — P8

CAL_ADDR[18] 13 Calibration address bus P O VDDE12 F – / Up – / Up — — U7

CAL_ADDR[19] 13 Calibration address bus P O VDDE12 F – / Up – / Up — — N7

CAL_ADDR[20] 13 Calibration address bus P O VDDE12 F – / Up – / Up — — M8

CAL_ADDR[21] 13 Calibration address bus P O VDDE12 F – / Up – / Up — — M7

CAL_ADDR[22] 13 Calibration address bus P O VDDE12 F – / Up – / Up — — V7

CAL_ADDR[23] 13 Calibration address bus P O VDDE12 F – / Up – / Up — — L8

CAL_ADDR[24] 13 Calibration address bus P O VDDE12 F – / Up – / Up — — T8

CAL_ADDR[25] 13 Calibration address bus P O VDDE12 F – / Up – / Up — — K8

CAL_ADDR[26] 13 Calibration address bus P O VDDE12 F – / Up – / Up — — L7

CAL_ADDR[27] 13 Calibration address bus P O VDDE12 F – / Up – / Up — — U8

CAL_ADDR[28] 13 Calibration address bus P O VDDE12 F – / Up – / Up — — V8

CAL_ADDR[29] 13 Calibration address bus P O VDDE12 F – / Up – / Up — — AB13

CAL_ADDR[30] 13 Calibration address bus P O VDDE12 F – / Up – / Up — — AB14

CAL_DATA[0:7] 13 Calibration data bus P I/O VDDE12 F – / Up – / Up — —

W21,Y22
, V21,
W22,
U21,
U22,

T21, T22

Table 2-1. MPC5534 Signal Properties (continued)

Signal Name 1 Signal Function

P/
A/
G

I/O
Type Voltage2

Pad
Type3

Status Package

4964
VertiCal

During
Reset5

After
Reset6

208 324

Signals

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 2-7

CAL_DATA[8:15] 13 Calibration data bus P I/O VDDE12 F – / Up – / Up — —

AA17,
AB16,
AA18,
AB17,
AA19,
AB19,
AA20,
AB20

CAL_RD_WR 13 Calibration read/write P O VDDE12 F – / Up – / Up — — W8

CAL_WE/BE[0:1] 13 Calibration write/byte enable P O VDDE12 F – / Up – / Up — — Y8, AA7

CAL_OE 13 Calibration output enable P O VDDE12 F – / Up – / Up — — AD16

CAL_TS 13 Calibration transfer start P O VDDE12 F – / Up – / Up — — AA11

NEXUS

EVTI Nexus event in P I VDDE7 F I / Up EVTI / Up E15 F21 G26

EVTO Nexus event out P O VDDE7 F O / Low
EVTO /

High
D15 F22 G27

MCKO Nexus message clock out P O VDDE7 F O / Low
MCKO /

Enabled14 F15 G20 H26

MDO[0]15 Nexus message data out P O VDDE7 F O / High
MDO /
Low

A14 B20 C25

MDO[3:1] Nexus message data out P O VDDE7 F O / Low
MDO /
Low

B13,
A13,
B14

 D18,
C18,
C19

C23,
B21, C24

MDO[11:4]_

GPIO[82:75]16
Nexus message data out

GPIO

P

G

O

I/O
VDDE7 F O / Low – / Down —

A17:18
, B17,
A19,
B18,
D17,
C17,
B19

A23,
C22,
A20,
A24,
B23,
B20,

C20, B24

MSEO[1:0] Nexus message start/end out P O VDDE7 F O / High
MSEO /

High
E16,
C15

G22,
G21

G24, H24

RDY Nexus ready output P O VDDE7 F O / High RDY / High — G19 J24

JTAG / TEST

TCK JTAG test clock input P I VDDE7 F
TCK /
Down

TCK /
Down

C16 D21 E27

TDI JTAG test data input P I VDDE7 F TDI / Up TDI / Up E14 D22 E28

TDO JTAG test data output P O VDDE7 F TDO / Up TDO / Up F14 E21 F27

TMS JTAG test mode select input P I VDDE7 F TMS / Up TMS / Up D14 E20 E26

JCOMP JTAG TAP controller enable P I VDDE7 F
JCOMP /

Down
JCOMP /

Down
F16 F20 F26

TEST Test mode select P I VDDE7 F TEST / Up TEST / Up D16 E22 F28

Table 2-1. MPC5534 Signal Properties (continued)

Signal Name 1 Signal Function

P/
A/
G

I/O
Type Voltage2

Pad
Type3

Status Package

4964
VertiCal

During
Reset5

After
Reset6

208 324

Signals

MPC5534 Microcontroller Reference Manual, Rev. 2

2-8 Freescale Semiconductor

FlexCAN

CNTXA_ 17

GPIO[83]

FlexCAN A transmit

GPIO

P

G

O

I/O
VDDEH4 SH I / Up – / Up P12 Y17 AF22

CNRXA_ 17

GPIO[84]

FlexCAN A receive

GPIO

P

G

I

I/O
VDDEH4 SH – / Up – / Up R12 AA18 AG22

CNTXC_

PCSD[3]_

GPIO[87]

FlexCAN C transmit

DSPI D peripheral chip select

GPIO

P

A

G

O

O

I/O

VDDEH6 MH – / Up – / Up K13 P19 W24

CNRXC_

PCSD[4]_

GPIO[88]

FlexCAN C receive

DSPI D peripheral chip select

GPIO

P

A

G

I

O

I/O

VDDEH6 MH – / Up – / Up L14 R20 Y26

eSCI

TXDA_

GPIO[89]

eSCI A transmit

GPIO

P

G

O

I/O
VDDEH6 SH – / Up – / Up J14 N20 V24

RXDA_

GPIO[90]

eSCI A receive

GPIO

P

G

I

I/O
VDDEH6 SH – / Up – / Up K14 P20 U26

TXDB_

PCSD[1]_

GPIO[91]

eSCI B transmit

DSPI D peripheral chip select

GPIO

P

A

G

O

O

I/O

VDDEH6 MH – / Up – / Up L13 R21 Y27

RXDB_

PCSD[5]_

GPIO[92]

eSCI B receive

DSPI D peripheral chip select

GPIO

P

A

G

I

O

I/O

VDDEH6 MH – / Up – / Up M13 T19 Y24

DSPI

CNTXB 18

PCSC[3]_

GPIO[85]

No primary signal

DSPI C peripheral chip select

GPIO

—

A

G

—

O

I/O

VDDEH4 MH – / Up – / Up T12 AB18 AG23

CNRXB 18

PCSC[4]_

GPIO[86]

No primary signal

DSPI C peripheral chip select

GPIO

—

A

G

—

O

I/O

VDDEH4 MH – / Up – / Up R13 AB19 AH23

SCKA 18

PCSC[1]_

GPIO[93]

No primary signal

DSPI C peripheral chip select

GPIO

—

A

G

—

O

I/O

VDDEH6 MH – / Up – / Up — L22 U27

SINA 18

PCSC[2]_

GPIO[94]

No primary signal

DSPI C peripheral chip select

GPIO

—

A

G

—

O

I/O

VDDEH6 MH – / Up – / Up — L21 P27

SOUTA18

PCSC[5]_

GPIO[95]

No primary signal

DSPI C peripheral chip select

GPIO

—

A

G

—

O

I/O

VDDEH6 MH – / Up – / Up — L20 P24

PCSA[0] 18

PCSD[2]_

GPIO[96]

No primary signal

DSPI D peripheral chip select

GPIO

—

A

G

—

O

I/O

VDDEH6 MH – / Up – / Up — M20 R24

Table 2-1. MPC5534 Signal Properties (continued)

Signal Name 1 Signal Function

P/
A/
G

I/O
Type Voltage2

Pad
Type3

Status Package

4964
VertiCal

During
Reset5

After
Reset6

208 324

Signals

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 2-9

PCSA[1]18

PCSB[2]_

GPIO[97]

No primary signal

DSPI B peripheral chip select

GPIO

—

A

G

—

O

I/O

VDDEH6 MH – / Up – / Up — M19 T24

PCSA[2]_ 18

SCKD_

GPIO[98]

No primary signal

DSPI D clock

GPIO

—

A

G

—

I/O

I/O

VDDEH6 MH – / Up – / Up J15 M21 N26

PCSA[3] _18

SIND_

GPIO[99]

No primary signal

DSPI D data input

GPIO

—

A

G

—

I

I/O

VDDEH6 MH – / Up – / Up H13 K19 N24

PCSA[4]_18

SOUTD_

GPIO[100]

No primary signal

DSPI D data output

GPIO

—

A

G

—

O

I/O

VDDEH6 MH – / Up – / Up — N19 U24

PCSA[5]_ 18

PCSB[3]_

GPIO[101]

No primary signal

DSPI B peripheral chip select

GPIO

—

A

G

—

O

I/O

VDDEH6 MH – / Up – / Up — N21 T26

SCKB_19

PCSC[1]_

GPIO[102]

DSPI B clock

DSPI C peripheral chip select

GPIO

P

A

G

I/O

O

I/O

VDDEH10 MH – / Up – / Up J16 K21 T27

SINB_19

PCSC[2]_

GPIO[103]

DSPI B data input

DSPI C peripheral chip select

GPIO

P

A

G

I

O

I/O

VDDEH10 MH – / Up – / Up G15 H22 P28

SOUTB_19

PCSC[5]_

GPIO[104]

DSPI B data output

DSPI C peripheral chip select

GPIO

P

A

G

O

O

I/O

VDDEH10 MH – / Up – / Up G13 J19 N28

PCSB[0]_19

PCSD[2]_

GPIO[105]

DSPI B peripheral chip select

DSPI D peripheral chip select

GPIO

P

A

G

I/O

O

I/O

VDDEH10 MH – / Up – / Up G16 J21 R27

PCSB[1]_19

PCSD[0]_

GPIO[106]

DSPI B peripheral chip select

DSPI D peripheral chip select

GPIO

P

A

G

O

I/O

I/O

VDDEH10 MH – / Up – / Up H16 J22 R28

PCSB[2]_19

SOUTC_

GPIO[107]

DSPI B peripheral chip select

DSPI C data output

GPIO

P

A

G

O

O

I/O

VDDEH10 MH – / Up – / Up H15 K22 T28

PCSB[3]_19

SINC_

GPIO[108]

DSPI B peripheral chip select

DSPI C data input

GPIO

P

A

G

O

I

I/O

VDDEH6 MH – / Up – / Up G14 J20 M27

PCSB[4]_19

SCKC_

GPIO[109]

DSPI B peripheral chip select

DSPI C clock

GPIO

P

A

G

O

I/O

I/O

VDDEH6 MH – / Up – / Up H14 K20 N27

PCSB[5]_19

PCSC[0]_

GPIO[110]

DSPI B peripheral chip select

DSPI C peripheral chip select

GPIO

P

A

G

O

I/O

I/O

VDDEH6 MH – / Up – / Up J13 L19 M26

Table 2-1. MPC5534 Signal Properties (continued)

Signal Name 1 Signal Function

P/
A/
G

I/O
Type Voltage2

Pad
Type3

Status Package

4964
VertiCal

During
Reset5

After
Reset6

208 324

Signals

MPC5534 Microcontroller Reference Manual, Rev. 2

2-10 Freescale Semiconductor

eQADC

AN[0]_20

DAN0+

Single-ended analog input

Positive terminal differential input

P I
VDDA1 AE I / – AN[0] / – B5 B8 C9

AN[1]_20

DAN0–

Single-ended analog input

Negative terminal differential input

P I
VDDA1 AE I / – AN[1] / – A6 A8 B8

AN[2]_20

DAN1+

Single-ended analog input

Positive terminal differential input

P I
VDDA1 AE I / – AN[2] / – D6 D10 G12

AN[3]_20

DAN1–

Single-ended analog input

Negative terminal differential input

P I
VDDA1 AE I / – AN[3] / – C7 C9 E10

AN[4]_20

DAN2+

Single-ended analog input

Positive terminal differential input

P I
VDDA1 AE I / – AN[4] / – B6 B9 C10

AN[5]_20

DAN2–

Single-ended analog input

Negative terminal differential input

P I
VDDA1 AE I / – AN[5] / – A7 A9 B9

AN[6]_20

DAN3+

Single-ended analog input

Positive terminal differential input

P I
VDDA1 AE I / – AN[6] / – D7 D11 G13

AN[7]_20

DAN3–

Single-ended analog input

Negative terminal differential input

P I
VDDA1 AE I / – AN[7] / – C8 C10 E11

AN[8]_20

ANW

Single-ended analog input

External multiplexed analog input

P I
VDDA1 AE I / – AN[8] / – — C5 E7

AN[9]_20

ANX

Single-ended analog input

External multiplexed analog input

P I
VDDA1 AE I / – AN[9] / – A2 D7 C4

AN[10]_20

ANY

Single-ended analog input

External multiplexed analog input

P I
VDDA1 AE I / – AN[10] / – — D8 E6

AN[11]_20

ANZ

Single-ended analog input

External multiplexed analog input

P I
VDDA1 AE I / – AN[11] / – A3 A5 B6

AN[12]_21

MA[0]_

SDS 22

Single-ended analog input

Mux address

eQADC serial data strobe

MP

A

G

I

O

O

VDDEH9 MH, A23 I / – AN[12] / – A12 A16 H15

AN[13]_21

MA[1]_

SDO 22

Single-ended analog input

Mux address

eQADC serial data out

MP

A

G

I

O

O

VDDEH9 MH, A23 I / – AN[13] / – B12 B16 G15

AN[14]_ 21

MA[2]_

SDI 22

Single-ended analog input

Mux address

eQADC serial data in

MP

A

G

I

O

I

VDDEH9 MH, A23 I / – AN[14] / – C12 C16 E16

AN[15]_21

FCK 22
Single-ended analog input

eQADC free running clock

MP

G

I

O
VDDEH9 MH, A23 I / – AN[15] / – C13 D16 C16

AN[16:18] Single-ended analog input P I VDDA1
30 AE I / –

AN[16:18]
/ –

C6,
C4, D5

B7, C6,
D9

B7, E8,
H12

AN[19:20] Single-ended analog input P I VDDA1
30 AE I / –

AN[19:20]
/ –

— B6, C7 C7, C8

AN[21] Single-ended analog input P I VDDA1
30 AE I / – AN[21] / – B4 C8 E9

Table 2-1. MPC5534 Signal Properties (continued)

Signal Name 1 Signal Function

P/
A/
G

I/O
Type Voltage2

Pad
Type3

Status Package

4964
VertiCal

During
Reset5

After
Reset6

208 324

Signals

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 2-11

AN[22:25] Single-ended analog input P I VDDA0
30 AE I / –

AN[22:25]
/ –

B8,
C9,

D8, B9

C11,
B11,
D12,
C12

C11,
B11,

H13, E12

AN[26] Single-ended analog input P I VDDA0
30 AE I / – AN[26] / – — B12 C12

AN[27:28] Single-ended analog input P I VDDA0
30 AE I / –

AN[27:28]
/ –

A10,
B10

A12,
A13

B12, A13

AN[29] Single-ended analog input P I VDDA0
30 AE I / – AN[29] / – — D13 E13

AN[30:35] Single-ended analog input P I VDDA0
30 AE I / –

AN[30:35]
/ –

D9,
D10,
C10,
C11,
C5,
D11

C13,
B13,
B14,
C14,
D14,
A14

C13,
B13,
B14,
E14,

G14, A14

AN[36:39] Single-ended analog input P I VDDA1
30 AE I / –

AN[36:39]
/ –

F4,
E3,

B3, D2

B4, A4,
D6, B5

C5, B5,
B4, C6

VRH Voltage reference high P I – VDDINT – / – VRH A8 A10 A9

VRL Voltage reference low P I – VSSINT – / – VRL A9 A11 A10

REFBYPC Reference bypass capacitor input P I – VDDINT – / – REFBYPC B7 B10 B10

eTPU

TCRCLKA_

IRQ[7]_

GPIO[113]

eTPU A TCR clock

External interrupt request

GPIO

P

A

G

I

I

I/O

VDDEH1 SH – / Up – / Up L4 M2 N5

ETPUA[0:3]_

ETPUA[12:15]_

GPIO[114:117]

eTPU A channel

eTPU A channels (output only)

GPIO

P

A

G

I/O

O

I/O

VDDEH1 SH
– /

WKPCFG
– /

WKPCFG

N3,
M3,

P2, P1

L3, L4,
K3, L2

M5, G8,
M3, L3

ETPUA[4]_

ETPUA[16]_

GPIO[118]

eTPU A channel

eTPU A channel (output only)

GPIO

P

A

G

I/O

O

I/O

VDDEH1 MH
– /

WKPCFG
– /

WKPCFG
N2 L1 L2

ETPUA[5]_

ETPUA[17]_

GPIO[119]

eTPU A channel

eTPU A channel (output only)

GPIO

P

A

G

I/O

O

I/O

VDDEH1 MH
– /

WKPCFG
– /

WKPCFG
M4 K4 H9

ETPUA[6]_

ETPUA[18]_

GPIO[120]

eTPU A channel

eTPU A channel (output only)

GPIO

P

A

G

I/O

O

I/O

VDDEH1 SH
– /

WKPCFG
– /

WKPCFG
L3 J3 M2

ETPUA[7]_

ETPUA[19]_

GPIO[121]

eTPU A channel

eTPU A channel (output only)

GPIO

P

A

G

I/O

O

I/O

VDDEH1 SH
– /

WKPCFG
– /

WKPCFG
K3 K2 K3

ETPUA[8]_

ETPUA[20]_

GPIO[122]

eTPU A channel

eTPU A channel (output only)

GPIO

P

A

G

I/O

O

I/O

VDDEH1 SH
– /

WKPCFG
– /

WKPCFG
N1 K1 K2

ETPUA[9]_

ETPUA[21]_

GPIO[123]

eTPU A channel

eTPU A channel (output only)

GPIO

P

A

G

I/O

O

I/O

VDDEH1 SH
– /

WKPCFG
– /

WKPCFG
M2 J4 G9

Table 2-1. MPC5534 Signal Properties (continued)

Signal Name 1 Signal Function

P/
A/
G

I/O
Type Voltage2

Pad
Type3

Status Package

4964
VertiCal

During
Reset5

After
Reset6

208 324

Signals

MPC5534 Microcontroller Reference Manual, Rev. 2

2-12 Freescale Semiconductor

ETPUA[10]_

ETPUA[22]_

GPIO[124]

eTPU A channel

eTPU A channel (output only)

GPIO

P

A

G

I/O

O

I/O

VDDEH1 SH
– /

WKPCFG
– /

WKPCFG
M1 H3 L5

ETPUA[11]_

ETPUA[23]_

GPIO[125]

eTPU A channel

eTPU A channel (output only)

GPIO

P

A

G

I/O

O

I/O

VDDEH1 SH
– /

WKPCFG
– /

WKPCFG
L2 J2 J3

ETPUA[12]_

PCSB[1]_

GPIO[126]

eTPU A channel

DSPI B peripheral chip select

GPIO

P

A

G

I/O

O

I/O

VDDEH1 MH
– /

WKPCFG
– /

WKPCFG
L1 J1 J2

ETPUA[13]_

PCSB[3]_

GPIO[127]

eTPU A channel

DSPI B peripheral chip select

GPIO

P

A

G

I/O

O

I/O

VDDEH1 MH
– /

WKPCFG
– /

WKPCFG
J4 G4 G10

ETPUA[14]_

PCSB[4]_

GPIO[128]

eTPU A channel

DSPI B peripheral chip select

GPIO

P

A

G

I/O

O

I/O

VDDEH1 MH
– /

WKPCFG
– /

WKPCFG
J3 G3 K5

ETPUA[15]_

PCSB[5]_

GPIO[129]

eTPU A channel

DSPI B peripheral chip select

GPIO

P

A

G

I/O

O

I/O

VDDEH1 MH
– /

WKPCFG
– /

WKPCFG
K2 H2 H3

ETPUA[16]_

PCSD[1]_

GPIO[130]

eTPU A channel

DSPI D peripheral chip select

GPIO

P

A

G

I/O

O

I/O

VDDEH1 MH
– /

WKPCFG
– /

WKPCFG
K1 H1 K1

ETPUA[17]_

PCSD[2]_

GPIO[131]

eTPU A channel

DSPI D peripheral chip select

GPIO

P

A

G

I/O

O

I/O

VDDEH1 MH
– /

WKPCFG
– /

WKPCFG
H3 F3 H10

ETPUA[18]_

PCSD[3]_

GPIO[132]

eTPU A channel

DSPI D peripheral chip select

GPIO

P

A

G

I/O

O

I/O

VDDEH1 MH
– /

WKPCFG
– /

WKPCFG
H4 F4 J5

ETPUA[19]_

PCSD[4]_

GPIO[133]

eTPU A channel

DSPI D peripheral chip select

GPIO

P

A

G

I/O

O

I/O

VDDEH1 MH
– /

WKPCFG
– /

WKPCFG
J2 G2 G3

ETPUA[20]

IRQ[8]

GPIO[134]

eTPU A channel

External interrupt request

GPIO

P

A

G

I/O

I

I/O

VDDEH1 MH
– /

WKPCFG
– /

WKPCFG
J1 G1 J1

ETPUA[21]

IRQ[9]

GPIO[135]

eTPU A channel

External interrupt request

GPIO

P

A

G

I/O

I

I/O

VDDEH1 MH
– /

WKPCFG
– /

WKPCFG
G4 E4 H11

ETPUA[22]

IRQ[10]

GPIO[136]

eTPU A channel

External interrupt request

GPIO

P

A

G

I/O

I

I/O

VDDEH1 MH
– /

WKPCFG
– /

WKPCFG
H2 F2 F3

ETPUA[23]

IRQ[11]

GPIO[137]

eTPU A channel

External interrupt request

GPIO

P

A

G

I/O

I

I/O

VDDEH1 MH
– /

WKPCFG
– /

WKPCFG
H1 F1 H2

Table 2-1. MPC5534 Signal Properties (continued)

Signal Name 1 Signal Function

P/
A/
G

I/O
Type Voltage2

Pad
Type3

Status Package

4964
VertiCal

During
Reset5

After
Reset6

208 324

Signals

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 2-13

ETPUA[24:26]_

IRQ[12:14]_

GPIO[138:140]

eTPU A channel (output only)

External Interrupt Request

GPIO

P

A

G

O

I

I/O

VDDEH1 SH
– /

WKPCFG
– /

WKPCFG
G1,

G3, F3
E1, E3,

D3
G2, H5,

G5

ETPUA[27]_

IRQ[15]_

GPIO[141]

eTPU A channel (output only)

External Interrupt Request

GPIO

P

A

G

O

I

I/O

VDDEH1 SH
– /

WKPCFG
– /

WKPCFG
G2 E2 E3

ETPUA[28]_

PCSC[1]_

GPIO[142]

eTPU A channel (output only)

DSPI C peripheral chip select

GPIO

P

A

G

O

O

I/O

VDDEH1 MH
– /

WKPCFG
– /

WKPCFG
F1 D1 F1

ETPUA[29]_

PCSC[2]_

GPIO[143]

eTPU A channel (output only)

DSPI C peripheral chip select

GPIO

P

A

G

O

O

I/O

VDDEH1 MH
– /

WKPCFG
– /

WKPCFG
F2 D2 F2

ETPUA[30]_

PCSC[3]_

GPIO[144]

eTPU A channel

DSPI C peripheral chip select

GPIO

P

A

G

I/O

O

I/O

VDDEH1 MH
– /

WKPCFG
– /

WKPCFG
E1 C1 E1

ETPUA[31]_

PCSC[4]_

GPIO[145]

eTPU A channel

DSPI C peripheral chip select

GPIO

P

A

G

I/O

O

I/O

VDDEH1 MH
– /

WKPCFG
– /

WKPCFG
E2 C2 E2

eMIOS

EMIOS[0:2]_

ETPUA[0:2]_

GPIO[179:181]

eMIOS channel

eTPU A channel (output only)

GPIO

P

A

G

I/O

O

I/O

VDDEH4 SH
– /

WKPCFG
– /

WKPCFG
T4,

T5, N7

AB10,
AB11,
W12

AD16,
AD21,
P21

EMIOS[3:5]_

ETPUA[3:5]_

GPIO[182:184]

eMIOS channel

eTPU A channel (output only)

GPIO

P

A

G

I/O

O

I/O

VDDEH4 SH
– /

WKPCFG
– /

WKPCFG
R6,

R5, T6

AA11,
AB12,
AA12

R22,
AD18,
AD22

EMIOS[6:7]_

ETPUA[6:7]_

GPIO[185:186]

eMIOS channel

eTPU A channel (output only)

GPIO

P

A

G

I/O

O

I/O

VDDEH4 SH
– /

WKPCFG
– /

WKPCFG
P7, T7

Y12,
AB13

P22,
AD19

EMIOS[8:9]_

ETPUA[8:9]_

GPIO[187:188]

eMIOS channel

eTPU A channel (output only)

GPIO

P

A

G

I/O

O

I/O

VDDEH4 SH
– /

WKPCFG
– /

WKPCFG
P8, R7

W13,
AA13

N21,
AD23

EMIOS[10:11]_

PCSD[3:4]_

GPIO[189:190]

eMIOS channel

DSPI D peripheral chip select

GPIO

P

A

G

I/O

I/O

I/O

VDDEH4 SH
– /

WKPCFG
– /

WKPCFG
N8, R8

Y13,
AB14

N22,
AG18

EMIOS[12]_

SOUTC_

GPIO[191]

eMIOS channel (output only)

DSPI C data output

GPIO

P

A

G

O

O

I/O

VDDEH4 MH
– /

WKPCFG
– /

WKPCFG
N10 W15 M21

EMIOS[13]_

SOUTD_

GPIO[192]

eMIOS channel (output only)

DSPI D data output

GPIO

P

A

G

O

O

I/O

VDDEH4 MH
– /

WKPCFG
– /

WKPCFG
T8 AA14 AF18

EMIOS[14]_

IRQ[0]_

GPIO[193]

eMIOS channel (output only)

External interrupt request

GPIO

P

A

G

O

I

I/O

VDDEH4 SH
– /

WKPCFG
– /

WKPCFG
R9 AB15 AH19

Table 2-1. MPC5534 Signal Properties (continued)

Signal Name 1 Signal Function

P/
A/
G

I/O
Type Voltage2

Pad
Type3

Status Package

4964
VertiCal

During
Reset5

After
Reset6

208 324

Signals

MPC5534 Microcontroller Reference Manual, Rev. 2

2-14 Freescale Semiconductor

EMIOS[15]_

IRQ[1]_

GPIO[194]

eMIOS channel (output only)

External interrupt request

GPIO

P

A

G

O

I

I/O

VDDEH4 SH
– /

WKPCFG
– /

WKPCFG
T9 Y14 M22

EMIOS[16]_

GPIO[195]

eMIOS channel

GPIO

P

G

I/O

O
VDDEH4 SH

– /
WKPCFG

– /
WKPCFG

P9 AA15 AG19

EMIOS[17]_

GPIO[196]

eMIOS channel

GPIO

P

G

I/O

O
VDDEH4 SH

– /
WKPCFG

– /
WKPCFG

P10 Y15 AF19

EMIOS[18]_

GPIO[197]

eMIOS channel

GPIO

P

G

I/O

O
VDDEH4 SH

– /
WKPCFG

– /
WKPCFG

T10 AB16 AH20

EMIOS[19]_

GPIO[198]

eMIOS channel

GPIO

P

G

I/O

O
VDDEH4 SH

– /
WKPCFG

– /
WKPCFG

R10 AA16 AG20

EMIOS[20]_

GPIO[199]

eMIOS channel

GPIO

P

G

I/O

I/O
VDDEH4 SH

– /
WKPCFG

– /
WKPCFG

T11 AB17 AG21

EMIOS[21]_

GPIO[200]

eMIOS channel

GPIO

P

G

I/O

I/O
VDDEH4 SH

– /
WKPCFG

– /
WKPCFG

N11 W16 L21

EMIOS[22]_

GPIO[201]

eMIOS channel

GPIO

P

G

I/O

I/O
VDDEH4 SH

– /
WKPCFG

– /
WKPCFG

P11 Y16 AF20

EMIOS[23]_

GPIO[202]

eMIOS channel

GPIO

P

G

I/O

I/O
VDDEH4 SH

– /
WKPCFG

– /
WKPCFG

R11 AA17 AF21

GPIO

EMIOS[14:15]_

GPIO[203:204]24
eMIOS channel (output only)

GPIO

P

G

O

I/O
VDDEH6 SH – / Up – / Up —

H20,
H21

J26, H27

GPIO[206:207]25 GPIO G I/O VDDE3 F – / Up – / Up R4, P5
AA7,
Y9 AH10,

AG10

Clock Synthesizer

XTAL Crystal oscillator output P O VDDSYN AE O / – XTAL26 / – P16 V22 AD28

EXTAL_

EXTCLK27
Crystal oscillator input

External clock input

P

A
I
I

VDDSYN AE I / –
EXTAL28 /

–
N16 U22 AC28

CLKOUT System clock output P O VDDE5 F
CLKOUT /
Enabled

CLKOUT /
Enabled

— AA20 AF25

ENGCLK Engineering clock output P O VDDE5 F
ENGCLK/
Enabled

ENGCLK /
Enabled

T14 AB21 AG26

Power / Ground

VRC33
29 Voltage regulator control supply P I 3.3 V VDDINT I / – VRC33 P15 W21 AD26

VRCCTL Voltage regulator control output P O 3.3 V VDDINT O / – VRCCTL N14 V20 AC26

VRCVSS Voltage regulator control ground P I — VSSE I / – VRCVSS — T21 V27

VDDA0
30 Analog power input ADC[0] P I 5.0 V VDDINT I / – VDDA0 B11 C15 E15

VSSA0
30 Analog ground input ADC[0] P I — VSSINT I / – VSSA0 A11

A15,
B15

A15, B15

VDDA1
30 Analog power input ADC[1] P I 5.0 V VDDINT I / – VDDA1 A4 A6 A5

VSSA1
30 Analog ground input ADC[1] P I — VSSINT I / – VSSA1 A5 A7 A6

Table 2-1. MPC5534 Signal Properties (continued)

Signal Name 1 Signal Function

P/
A/
G

I/O
Type Voltage2

Pad
Type3

Status Package

4964
VertiCal

During
Reset5

After
Reset6

208 324

Signals

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 2-15

VDDSYN Clock synthesizer power input P I 3.3 V VDDE I / – VDDSYN R16 W22 AD27

VSSSYN Clock synthesizer ground input P I — VSSE I / – VSSSYN M16 T22 AC27

VFLASH Flash read supply input P I 3.3 V VDDINT I / – VFLASH — N22 W27

VPP
31 Flash program/erase supply input P I 5.0 V VDDINT I / – VPP K16 M22 W28

VSTBY
32 SRAM standby power input P I 0.8–1.2 V VSTBY I / – VSTBY C1 A3 B3

VDD Internal logic supply input P I 1.5 V VDD I / – VDD

B1,
C2,
D3,
E4,

B16,
P13,
R14,
T15,
N5,
P4,

R3, T2

A2,
A20,

B3, C4,
C22,
D5,
V19,
W5,

W20,
Y4,

Y21,
AA3,

AA22,
AB2

B25, C2,
D3, D27,
F5, H7,
J8, Y21,

AA9,
AA22,
AB8,

AC24,
AD6,
AE26,
AF4,

AF27,
AG3

VDDE2
33 External I/O supply input P I 1.8–3.3 V — I / – VDDE2 P6

M9:10,
N11,
P11,
R3,
W2,
W6,
W8,
Y5,

AA4,
AA6,

AA10,
AB3

M11,
N11:13,
P11:13,
R1, V5,

AA5,
AC1

VDDE3
33 External I/O supply input P I 1.8–3.3 V — I / – VDDE3 — —

T14,
U13:14,
V12:14,

AD9,
AD14,
AH6,
AH14

VDDE5 External I/O supply input P I 1.8–3.3 V — I / – VDDE5 T13

W17,
Y18,

AA19,
AB20,

AF23,
AG24,
AH24

VDDE7 External I/O supply input P I 1.8–3.3 V — I / – VDDE7 E13

B22,
C21,
D20,
E19,
F19,
J14

C27,
D26,
F24,

H22, J21,
L15:18,
M11,
M18,

N11:13,
N18

Table 2-1. MPC5534 Signal Properties (continued)

Signal Name 1 Signal Function

P/
A/
G

I/O
Type Voltage2

Pad
Type3

Status Package

4964
VertiCal

During
Reset5

After
Reset6

208 324

Signals

MPC5534 Microcontroller Reference Manual, Rev. 2

2-16 Freescale Semiconductor

VDDE12
External I/O supply input –
calibration

P I 1.8–3.3 V — I / – VDDE12 — —

K7, N8,
R11:13,
R17:18,

R21,
T11:12,

T15, T18,
U2, U11,
U15:16,
V15:17,

V22,
AA13,
AA16,
AB18,
AB21,
AE2,
AG4,
AG12

VDDEH1 External I/O supply input P I 3.3–5.0 V — I / – VDDEH K4 H4 G11, J7

VDDEH4 External I/O supply input P I 3.3–5.0 V — I / – VDDEH N9 W14 AD20

VDDEH6 External I/O supply input P I 3.3–5.0 V — I / – VDDEH F13 U19 V26

VDDEH8 External I/O supply input P I 3.3–5.0 V — I / – VDDEH — — C21

VDDEH9
34 External I/O supply input P I 3.3–5.0 V — I / – VDDEH D12 D15 H14

VDDEH10 External I/O supply input P I 3.3–5.0 V — I / – VDDEH — H19 K24

VDD33
35 I/O pad pre-driver and level shifter

reference voltage input
P I 3.3 V — — 3.3 V

A15,
D1,
N6,
N12

B1,
A21,
P4,

Y22,
W7

B26, D2,
W5,

AE27,
AF9

Table 2-1. MPC5534 Signal Properties (continued)

Signal Name 1 Signal Function

P/
A/
G

I/O
Type Voltage2

Pad
Type3

Status Package

4964
VertiCal

During
Reset5

After
Reset6

208 324

Signals

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 2-17

VSS MCU ground P — — — — VSS

A1,
B2,
C3,
D4,

D13,
C14,
B15,
A16,
N13,
P14,
R15,
T16,
N4,
P3,
R2,
T1,

G7:10,
H7:10,
J7:10,
K7:10

A1,
A22,
B2,

B21,
C3,

C20,
D4,

D19,
J9:13,
K9:14,
L9:14,
M11:1
4 N9:

10,
N12:1

4,
P9:10,
P12:1
4, W4,
W19,

Y3,
Y20,
AA2,

AA21,
AB1,
AB22

A1, A2,
A27,

A28, B1,
B2, B27,
B28, C3,
C26, E5,
E24, G7,
G22, H8,

H21,
L11:14,
M12:17,
N14:17,
P14:17,
R14:16,

T13,
T16:17,

U12,
U17:18,
V7, V18,

AA8,
AA21,
AB7,

AB22,
AD5,
AF3,

AF26,
AG1:2,

AG27:28
AH1:2,

AH27:28

No Connect

NC36 No connect — — — — — — —
W18,

Y19

A19,

B17:19,

C17:19,

E17:23,

G16:21,

H16:20,

J22,

J27:28,

K21:22,

K26:28,

L22,

L24,

L26:27,

M24, P2,

R2,

AA12,

AG17

1 Because more than one signal is often multiplexed to one pin, each row in the signal name column is a separate function. For all device I/O pins, the
primary, alternate, or GPIO signal functions are designated in the PA field of the system integration unit (SIU) PCR registers except where explicitly noted.

Table 2-1. MPC5534 Signal Properties (continued)

Signal Name 1 Signal Function

P/
A/
G

I/O
Type Voltage2

Pad
Type3

Status Package

4964
VertiCal

During
Reset5

After
Reset6

208 324

Signals

MPC5534 Microcontroller Reference Manual, Rev. 2

2-18 Freescale Semiconductor

2 VDDE (fast I/O) and VDDEH (slow I/O) power supply inputs are grouped into segments. Each segment of VDDEH pins connects to a separate
3.3–5.0 V (+5% and –10%) power supply input. Each segment of VDDE pins connects to a separate 1.8–3.3 V (±10%) power supply, with the exception
of the VDDE2 and VDDE3 segments that are shorted together and must use the same power supply input. This segment is labeled VDDE2 in the BGA map.

3 The pad type is indicated by one of the abbreviations; F for fast, MH for medium (high voltage), SH for slow (high voltage), A for analog, AE for analog
with ESD protection circuitry. Some pads have two types, depending on which pad function is selected.

4 The 496 assembly contains the VertiCal base that includes all pins in the 324 and 208 packages.
5 The Status During Reset pin is sampled after the internal POR is deasserted. Prior to exiting POR, the signal has a high impedance.

Terminology is O - output, I - input, Up - weak pullup enabled, Down - weak pulldown enabled, Low - output driven low, High - output driven high. A dash
on the left side of the slash denotes that both the input and output buffers for the pin are off. A dash on the right side of the slash denotes that there is no
weak pullup/down enabled on the pin. The signal name to the left or right of the slash indicates the pin is enabled.

6 Function after reset of GPI is general purpose input. A dash on the left side of the slash denotes that both the input and output buffers for the pin are off.
A dash on the right side of the slash denotes that there is no weak pullup/down enabled on the pin.

7 The BOOTCFG[0] and RSTCFG pin are not available in the 208 package and are internally asserted (driven to 0) in the package.
8 The EBI is specified and tested at 1.8–3.3 V.
9 When using the EBI functions, select the function in the SIU_PCR register, and then enable the EBI functions in the EBI registers for these pins. Both the

SIU and EBI configurations must match to operate correctly.
10 The function and state of this pin(s) after execution of the BAM program is determined by the BOOTCFG[0:1] pins. See for detail on the External Bus

Interface (EBI) configuration after execution of the BAM program. BOOTCFG[0] is not available on the 208 package and is internally asserted (driven to 0).
11 CS[1:3], ADDR[12:31], RD_WR, BDIP, TS, TA, BR, and BG signals are not available on the 208 package due to pin limitations.
12 The functions for the WE/BE[0:1]_GPIO[64:65] and CAL_WE/BE[0:1] pins are specified in the SIU. To configure the EBI, the write enable or byte enable

operation is specified in the EBI_BR0 through EBI_BR3 registers.To configure the calibration bus, the write enable or byte enable operation is specified
in the EBI_CAL_BR0 through EBI_CAL_BR3 registers for each chip select region. WE/BE[0:1] are not available on the 208 package due to pin limitations.

13 These signals are available on the VertiCal assembly only.
14 MCKO is only enabled if debug mode is enabled. Debug mode can be enabled before or after exiting System Reset (RSTOUT deasserted).
15 MDO[0] is driven high following a power-on reset until the system clock achieves lock, at which time it is then deasserted. There is an internal pullup on

MDO[0].
16 The function of the MDO[11:4]_GPIO[82:75] pins is selected during a debug port reset by the EVTI pin or by selecting FPM in the NPC_PCR. When

functioning as MDO[11:4] the pad configuration specified by the SIU does not apply. See 2.3.4.4 for more detail on MDO[11:4] pin operation.
17 The function and state of the FlexCAN A pins after execution of the BAM program is determined by the BOOTCFG[0:1] pins. See Table 15-9 for details

on the FlexCAN pin configurations after the BAM executes. BOOTCFG[0] is not available on the 208 package and is internally asserted
(driven to 0).

18 The primary signal is not available on this device and is listed only for reference to the pin label in the BGA Map.
19 For compatibility to the MPC5554, always power VDDEH6 and VDDEH10 from the same power supply 3.0–5.25 V. To allow one DSPI to operate at a different

operating voltage, connect VDDEH6 and VDDEH10 to separate power supplies, but this configuration is not compatible with the MPC5554,
20 All analog input channels are connected to both ADC blocks. The supply designation for this pin(s) specifies only the ESD rail used.
21 Because the primary signal function designations for the analog functions AN[12] through AN[15] are internally reserved, the PA field of the corresponding

SIU_PCR registers must be set to the main primary function value of 0b011 to use analog functions AN[12] through AN[15].
22 To use the serial data strobe functions, the PA field in the SIU_PCR registers must be set to 0b00. Because SDS, SDO, SDI, and FCK use the GPIO

setting, a G is shown in the P/A/G column. However, these signals do not support GPIO functionality.
23 If analog features are used, tie VDDEH9 to VDDA1.
24 Because other balls on this device are labeled EMIOS[14:15], the balls for these signals are referred to as GPIO[203:204]. These pins are not available

on the 208 package.
25 The GPIO[206:207] pins are protect-for-pins for double data rate (DDR) memory data strobes. These pins can be selected as the source for the eQADC

trigger in the eQADC Trigger Input Select Register (SIU_ETISR). These pins are not available on the 208 package.
26 The Function After Reset of the XTAL pin is determined by the value of the signal on the PLLCFG[1] pin. Ground the XTAL pin when using bypass mode.
27 When the FMPLL is configured for external reference mode, the VDDE5 supply affects the acceptable signal levels for the external reference. See

Section 11.1.4.2, “External Reference Mode.”
28 The function after reset of the EXTAL_EXTCLK pin is determined by the value of the signal on the PLLCFG[1] pin. The operating voltage for the EXTAL

function is 3.3 V; the operating voltage for the EXTCLK function is 1.62–3.6 V.
29 VRC33 is the 3.3 V input for the voltage regulator control.
30 The VDDAn and VSSAn supply inputs are split into separate traces in the package substrate. Each trace is bonded to a separate pad location, which

provides isolation between the analog and digital sections within each ADC.
31 Can be tied to 5.0 V for both read operation and program / erase.
32 Tie the VSTBY pin to VSSA0 if the battery backed SRAM is not used.
33 Both VDDE2 and VDDE3 pins are labeled as VDDE2 pins on the BGA maps. VDDE3 are connected internally VDDE2.
34 The VDDEH9 segment can be powered by 3.0–5.0 V for mux addresses or SSI functions, however the VDDEH9 segment must comply with the VDDA1

specifications (4.5–5.25 V) for analog input functions.
35 All pins with pad type F (pad_fc) are driven to the high state if their VDDE segment is powered before VDD33.
36 The pins are reserved for the clock and inverted clock outputs for the DDR memory interface.

Signals

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 2-19

2.3 Detailed Signal Description
Descriptions of the signals for the device are provided in the following sections. See Table 2-1 for signal
properties.

2.3.1 Reset and Configuration Signals

2.3.1.1 External Reset Input
RESET

Assert the RESET signal as an active low input from an external device during a power-on reset or external
reset to reset all device modules. See Section 4.2.1, “Reset Input (RESET).”

2.3.1.2 External Reset Output
RSTOUT

The RSTOUT output is a push/pull output that is asserted during an internal device reset. You can assert
RSTOUT via software without causing an internal reset to the device MCU. See Section 4.2.2, “Reset
Output (RSTOUT).”

NOTE
During a power-on-reset (POR), RSTOUT is tri-stated.

2.3.1.3 FMPLL Mode Selection / External Interrupt Request / GPIO
PLLCFG[0]_IRQ[4]_GPIO[208]

PLLCFG[0]_IRQ[4]_GPIO[208] are sampled on the deassertion of the RESET input pin, if the RSTCFG
pin is asserted at that time. The values are used to configure the FMPLL mode of operation. The alternate
function is external interrupt request input.

2.3.1.4 FMPLL Mode Selection / External Interrupt Request / DSPI D / GPIO
PLLCFG[1]_IRQ[5]_SOUTD_GPIO[209]

PLLCFG[1]_IRQ[5]_SOUTD_GPIO[209] are sampled on the deassertion of the RESET input pin, if the
RSTCFG pin is asserted at that time. The values are used to configure the FMPLL mode of operation. The
alternate functions are external interrupt request input, and data output for the DSPI module D.

2.3.1.5 Reset Configuration Input / GPIO
RSTCFG_GPIO[210]

The RSTCFG input is used to enable the BOOTCFG[0:1] and PLLCFG[0:1] pins during reset. If RSTCFG
is deasserted during reset, the BOOTCFG and PLLCFG pins are not sampled at the deassertion of
RSTOUT. In that case, the default values for BOOTCFG and PLLCFG are used. If RSTCFG is asserted
during reset, the values on the BOOTCFG and PLLCFG pins are sampled and configure the boot and
FMPLL modes.

Signals

MPC5534 Microcontroller Reference Manual, Rev. 2

2-20 Freescale Semiconductor

208 Package: RSTCFG_GPIO[210] is not available due to pin limitations. The BOOTCFG[0] and
the RSTCFG signals are internally asserted (driven to 0).

2.3.1.6 Reset Configuration / External Interrupt Request / GPIO
BOOTCFG[0:1]_IRQ[2:3]_GPIO[211:212]

The BOOTCFG[0:1]_IRQ[2:3]_GPIO[211:212] are sampled when RSTOUT deasserts, if the RSTCFG
pin is asserted at that time. The BOOTCFG[0:1] values are used by the BAM program to determine the
boot configuration of the device. Use the alternate function for external interrupt request inputs.

208 Package: BOOTCFG[0]_IRQ[2]_GPIO[211] and RSTCFG_GPIO[210] are not available due to
pin limitations, and are internally asserted.

2.3.1.7 Weak Pull Configuration / GPIO
WKPCFG_GPIO[213]

WKPCFG_GPIO[213] determines whether specific eTPU and eMIOS pins are connected to a weak pullup
or weak pulldown during and immediately after reset.

2.3.2 External Bus Interface (EBI)

This package has a 16-pin data bus [0:15] on the EBI.

208 Package: This package does not have EBI pins, therefore the external bus signals are not
available except for the chip select 0 (CS[0]) and the output enable (OE) pins.

2.3.2.1 External Chip Selects / External Address / GPIO
CS[0]_ADDR[8]_GPIO[0]

CS[0]_ADDR[8]_GPIO[0] is the external bus interface (EBI) chip select output signal. The alternate
function is an EBI address signal.

2.3.2.2 External Chip Selects / External Address / GPIO
CS[1:3]_ADDR[9:11]_GPIO[1:3]

CS[1:3]_ADDR[9:11]_GPIO[1:3] are the external bus interface (EBI) chip select output signals. The
alternate functions are EBI address signals. They can be individually configured as chip selects, address
signals or GPIO.

208 Package: The CS[1:3]_ADDR[9:11]_GPIO[1:3] are not available due to pin limitations.

2.3.2.3 External Address / GPIO
ADDR[12:31]_GPIO[8:27]

ADDR[12:31]_GPIO[8:27] are the EBI address signals.

208 Package: The ADDR[12:31]_GPIO[8:27] are not available due to pin limitations.

Signals

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 2-21

2.3.2.4 External Data / GPIO
DATA[0:15]_GPIO[28:43]

DATA[0:15]_GPIO[28:43] are the EBI data signals.

208 Package: DATA[0:15]_GPIO[28:43] are not available due to pin limitations.

2.3.2.5 External Read/Write / GPIO
RD_WR_GPIO[62]

RD_WR_GPIO[62] indicates whether an external bus transfer is a read or write operation.

208 Package: The RD_WR_GPIO[62] is not available due to pin limitations.

2.3.2.6 External Burst Data In Progress / GPIO
BDIP_GPIO[63]

BDIP_GPIO[63] indicates that an EBI burst transfer is in progress.

208 Package: The BDIP_GPIO[63] signal is not available due to pin limitations.

2.3.2.7 External Write/Byte Enable / GPIO
WE/BE[0:1]_GPIO[64:65]

WE/BE[0:1]_GPIO[64:65] specify which data pins contain valid data for an external bus transfer.

208 Package: The WE/BE[0:1]_GPIO[64:65] are not available due to pin limitations.

2.3.2.8 External Output Enable / GPIO
OE_GPIO[68]

OE_GPIO[68] indicates that the EBI is ready to accept read data.

2.3.2.9 External Transfer Start / GPIO
TS_GPIO[69]

TS_GPIO[69] is asserted by the EBI owner to indicate the start of a transfer.

208 Package: The TS_GPIO[69] is not available due to pin limitations.

2.3.2.10 External Transfer Acknowledge
TA_GPIO[70]

TA_GPIO[70] is asserted by the EBI owner to acknowledge that the slave has completed the current
transfer.

208 Package: The TA_GPIO[70] is not available due to pin limitations.

Signals

MPC5534 Microcontroller Reference Manual, Rev. 2

2-22 Freescale Semiconductor

2.3.3 Calibration Bus Interface (CBI)

NOTE
Calibration bus signals for the 324 package require the 496 VertiCal
assembly. In the 208 package, the calibration signals are not available due
to pin limitations.

2.3.3.1 Calibration Chip Select
CAL_CS[0]

CAL_CS[0] is the calibration chip select output signal. The 496 VertiCal assembly is required to use the
calibration bus signals.

208 Package: The CAL_CS[0] signal is not available due to pin limitations.

2.3.3.2 Calibration Chip Selects / Calibration Address
CAL_CS[2:3]_CAL_ADDR[10:11]

CAL_CS[2:3]_CAL_ADDR[10:11] are the calibration chip select output signals. The alternate functions
are calibration address signals.

208 Package: The CAL_CS[2:3] signals are not available due to pin limitations.

2.3.3.3 Calibration Address
CAL_ADDR[12:30]

CAL_ADDR[12:30] are the calibration address signals. The 496 VertiCal assembly is required to use the
calibration bus signals.

208 Package: The CAL_ADDR[12:30] signals are not available due to pin limitations.

2.3.3.4 Calibration Data
CAL_DATA[0:15]

The CAL_DATA[0:15] are the calibration data signals. The 496 VertiCal assembly is required to use the
calibration bus signals.

208 Package: CAL_DATA[0:15] are not available due to pin limitations.

2.3.3.5 Calibration Read/Write
CAL_RD_WR

CAL_RD_WR indicates whether a calibration bus transfer is a read or write operation. The 496 VertiCal
assembly is required to use the calibration bus signals.

208 Package: The CAL_RD_WR is not available due to pin limitations.

Signals

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 2-23

2.3.3.6 Calibration Write / Byte Enable
CAL_WE/BE[0:1]

CAL_WE/BE[0:1] specify which data pins contain valid data for a calibration bus transfer. The 496
VertiCal assembly is required to use the calibration bus signals.

208 Package: The CAL_WE/BE[0:1] signals are not available due to pin limitations.

2.3.3.7 Calibration Output Enable
CAL_OE

CAL_OE indicates that the calibration interface is ready to accept read data. The 496 VertiCal assembly
is required to use the calibration bus signals.

208 Package: The CAL_OE signal is not available due to pin limitations.

2.3.3.8 Calibration Transfer Start
CAL_TS

CAL_TS is asserted by the device to indicate the start of a transfer. The 496 VertiCal assembly is required
to use the calibration bus signals.

208 Package: The CAL_TS signal is not available due to pin limitations.

2.3.4 Nexus Controller

2.3.4.1 Nexus Event In
EVTI

EVTI is an input that is read when TRST asserts to enable or disable the Nexus debug port. After reset, the
EVTI pin is used to initiate program and data trace synchronization messages or generate a breakpoint.

2.3.4.2 Nexus Event Out
EVTO

EVTO is an output that provides timing to a development tool for a single watchpoint or breakpoint
occurrence.

2.3.4.3 Nexus Message Clock Out
MCKO

MCKO is a free running clock output to the development tools which is used for timing of the MDO and
MSEO signals.

Signals

MPC5534 Microcontroller Reference Manual, Rev. 2

2-24 Freescale Semiconductor

2.3.4.4 Nexus Message Data Out
MDO[3:0]

MDO[3:0] are the trace message outputs to the development tools.

In addition to being a trace output, MDO[0] indicates the lock status of the system clock following a
power-on reset. MDO[0] is driven high following a power-on reset until the system clock achieves lock,
at which time it is then deasserted. There is an internal pullup on MDO[0].

2.3.4.5 Nexus Message Data Out / GPIO
MDO[4:11]_GPIO[82:75]

MDO[11:4]_GPIO[82:75] are the trace message outputs to the development tools for full port mode. These
pins function as GPIO when the Nexus port controller (NPC) operates in reduced port mode.

208 Package: MDO[11:4]_GPIO[82:75] signals are not available due to pin limitations.

2.3.4.6 Nexus Message Start/End Out
MSEO[1:0]

MSEO[1:0] are outputs that indicate when messages start and end on the MDO pins.

2.3.4.7 Nexus Ready Output
RDY

RDY is an output that indicates to the development tools the data is ready to be read from or written to the
Nexus read/write access registers.

208 Package: The RDY is not available due to pin limitations.

2.3.5 JTAG

2.3.5.1 JTAG Test Clock Input
TCK

TCK provides the clock input for the on-chip test logic.

2.3.5.2 JTAG Test Data Input
TDI

TDI provides the serial test instruction and data input for the on-chip test logic.

2.3.5.3 JTAG Test Data Output
TDO

TDO provides the serial test data output for the on-chip test logic.

Signals

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 2-25

2.3.5.4 JTAG Test Mode Select Input
TMS

TMS controls test mode operations for the on-chip test logic.

2.3.5.5 JTAG Compliance Input
JCOMP

The JCOMP pin is used to enable the JTAG TAP controller.

2.3.5.6 Test Mode Enable Input
TEST

The TEST pin is used to place the chip in test mode. Deassert this signal for normal operation.

2.3.6 Flexible Controller Area Network (FlexCAN)

2.3.6.1 FlexCAN A Transmit / GPIO
CNTXA_GPIO[83]

CNTXA_GPIO[83] is the transmit pin for the FlexCAN A module.

2.3.6.2 FlexCAN A Receive / GPIO
CNRXA_GPIO[84]

CNRXA_GPIO[84] is the receive pin for the FlexCAN A module.

2.3.6.3 FlexCAN B Transmit / DSPI C Chip Select / GPIO
CNTXB_PCSC[3]_GPIO[85]

The primary function, CNTXB, is not available on this device. PCSC[3]_GPIO[85] is the alternate
function and is a peripheral chip select output for the DSPI C module.

2.3.6.4 FlexCAN B Receive / DSPI C Chip Select / GPIO
CNRXB_PCSC[4]_GPIO[86]

The primary function, CNRXB, is not available on this device. PCSC[4]_GPIO[86] is the alternate
function and is a peripheral chip select output for the DSPI C module.

2.3.6.5 FlexCAN C Transmit / DSPI D Chip Select / GPIO
CNTXC_PCSD[3]_GPIO[87]

CNTXC_PCSD[3]_GPIO[87] is the transmit pin for the FlexCAN C module. The alternate function is a
peripheral chip select for the DSPI D module.

Signals

MPC5534 Microcontroller Reference Manual, Rev. 2

2-26 Freescale Semiconductor

2.3.6.6 FlexCAN C Receive / DSPI D Chip Select / GPIO
CNRXC_PCSD[4]_GPIO[88]

CNRXC_PCSD[4]_GPIO[88] is the receive pin for the FlexCAN C module. The alternate function is a
peripheral chip select for the DSPI D module.

2.3.7 Enhanced Serial Communications Interface (eSCI)

2.3.7.1 eSCI A Transmit / GPIO
TXDA_GPIO[89]

TXDA_GPIO[89] is the transmit pin for the eSCI A module.

2.3.7.2 eSCI A Receive / GPIO
RXDA_GPIO[90]

RXDA_GPIO[90] is the receive pin for the eSCI A module. The pin is an input only for the RXD function,
but as GPIO the pin is input or output based on the SIU PCR configuration.

2.3.7.3 eSCI B Transmit / DSPI D Chip Select / GPIO
TXDB_PCSD[1]_GPIO[91]

TXDB_PCSD[1]_GPIO[91] is the transmit pin for the eSCI B module. The alternate function is a
peripheral chip select output for the DSPI D module.

2.3.7.4 eSCI B Receive / DSPI D Chip Select / GPIO
RXDB_PCSD[5]_GPIO[92]

RXDB_PCSD[5]_GPIO[92] is the transmit pin for the eSCI B module. The alternate function is a
peripheral chip select for the DSPI D module.

2.3.8 Deserial/Serial Peripheral Interface (DSPI)

2.3.8.1 DSPI A Clock / DSPI C / GPIO
SCKA_PCSC[1]_GPIO[93]

The primary function, SCKA, is not available on this device. PCSC[1]_GPIO[93] is the peripheral chip
select output pin for the DSPI C module.

2.3.8.2 DSPI A Input / DSPI C / GPIO
SINA_PCSC[2]_GPIO[94]

The primary function, SINA, is not available on this device. PCSC[2]_GPIO[94] is the peripheral chip
select output pin for the DSPI C module.

Signals

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 2-27

2.3.8.3 DSPI A Output / DSPI C / GPIO
SOUTA_PCSC[5]_GPIO[95]

The primary function, SOUTA, is not available on this device. PCSC[5]_GPIO[95] is the peripheral chip
select output pin for the DSPI C module.

2.3.8.4 DSPI A / DSPI D / GPIO
PCSA[0]_PCSD[2]_GPIO[96]

The primary function, PCSA[0], is not available on this device. PCSD[2]_GPIO[96] are peripheral chip
select output pins for the peripheral chip select output pin for the DSPI D module.

208 Package: The PCSA[0]_PCSD[2]_GPIO[96] pin is not available due to pin limitations.

2.3.8.5 DSPI A / DSPI B / GPIO
PCSA[1]_PCSB[2]_GPIO[97]

The primary function, PCSA[1], is not available on this device. PCSB[2]_GPIO[97] are peripheral chip
select output pins for the DSPI B module.

208 Package: The PCSA[1]_PCSB[2]_GPIO[97] pin is not available due to pin limitations.

2.3.8.6 DSPI A / DSPI D Clock / GPIO
PCSA[2]_SCKD_GPIO[98]

The primary function, PCSA[2], is not available on this device. SCKD_GPIO[98] is a peripheral chip
select output pin for the DSPI D module.

2.3.8.7 DSPI A / DSPI D Data Input / GPIO
PCSA[3]_SIND_GPIO[99]

The primary function, PCSA[3], is not available on this device. SIND_GPIO[99] is a peripheral chip select
output pin for the DSPI D module.

2.3.8.8 DSPI A / DSPI D Data Output / GPIO
PCSA[4]_SOUTD_GPIO[100]

The primary function, PCSA[4], is not available on this device. SOUTD_GPIO[100] is the alternate
function is the data output for the DSPI D module.

208 Package: The PCSA[4]_SOUTD_GPIO[100] pin is not available due to pin limitations.

2.3.8.9 DSPI A / DSPI B / GPIO
PCSA[5]_PCSB[3]_GPIO[101]

The primary function, PCSA[5], is not available on this device. PCSB[3] is the alternate function and is a
peripheral chip select output pin for the DSPI B module. The GPIO[101] signal is the general purpose
input/output function

Signals

MPC5534 Microcontroller Reference Manual, Rev. 2

2-28 Freescale Semiconductor

208 Package: The PCSA[5]_PCSB[3]_GPIO[101] pin is not available due to pin limitations.

2.3.8.10 DSPI B Clock / DSPI C Chip Select / GPIO
SCKB_PCSC[1]_GPIO[102]

SCKB_PCSC[1]_GPIO[102] is the SPI clock pin for the DSPI B module. The alternate function is a chip
select output for the DSPI C module.

2.3.8.11 DSPI B Data Input / DSPI C Chip Select / GPIO
SINB_PCSC[2]_GPIO[103]

SINB_PCSC[2]_GPIO[103] is the data input pin for the DSPI B module. The alternate function is a chip
select output for the DSPI C module.

2.3.8.12 DSPI B Data Output / DSPI C Chip Select / GPIO
SOUTB_PCSC[5]_GPIO[104]

SOUTB_PCSC[5]_GPIO[104] is the data output pin for the DSPI B module. The alternate function is a
chip select output for the DSPI C module.

2.3.8.13 DSPI B Chip Select / DSPI D Chip Select / GPIO
PCSB[0]_PCSD[2]_GPIO[105]

PCSB[0]_PCSD[2]_GPIO[105] is a peripheral chip select output pin (slave select input pin for slave
operation) for the DSPI B module. The alternate function is a chip select output for the DSPI D module.

2.3.8.14 DSPI B Chip Select / DSPI D Chip Select / GPIO
PCSB[1]_PCSD[0]_GPIO[106]

PCSB[1]_PCSD[0]_GPIO[106] is a peripheral chip select output pin for the DSPI B module. The alternate
function is a chip select output (slave select input pin for slave operation) for the DSPI D module.

2.3.8.15 DSPI B Chip Select / DSPI C Data Output / GPIO
PCSB[2]_SOUTC_GPIO[107]

PCSB[2]_SOUTC_GPIO[107] is a peripheral chip select output pin for the DSPI B module. The alternate
function is the data output for the DSPI C module.

2.3.8.16 DSPI B Chip Select / DSPI C Data Input / GPIO
PCSB[3]_SINC_GPIO[108]

PCSB[3]_SINC_GPIO[108] is a peripheral chip select output pin for the DSPI B module. The alternate
function is the data input for the DSPI C module.

Signals

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 2-29

2.3.8.17 DSPI B Chip Select / DSPI C Clock / GPIO
PCSB[4]_SCKC_GPIO[109]

PCSB[4]_SCKC_GPIO[109] is a peripheral chip select output pin for the DSPI B module. The alternate
function is the SPI clock for the DSPI C module.

2.3.8.18 DSPI B Chip Select / DSPI C Chip Select / GPIO
PCSB[5]_PCSC[0]_GPIO[110]

PCSB[5]_PCSC[0]_GPIO[110] is a peripheral chip select output pin for the DSPI B module. The alternate
function is a chip select output (slave select input in slave mode) for the DSPI C module.

2.3.9 Enhanced Queued Analog/Digital Converter (eQADC)

NOTE
The eQADC has 40 channels in the 324 package; the 208 packages in
limited to 34 channels due to pin limitations.

2.3.9.1 Analog Input / Differential Analog Input
AN[0]_DAN0+

AN[0] is a single-ended analog input to the two on-chip ADCs. DAN0+ is the positive terminal of the
differential analog input DAN0 (DAN0+ to DAN0–).

2.3.9.2 Analog Input / Differential Analog Input
AN[1]_DAN0–

AN[1] is a single-ended analog input to the two on-chip ADCs. DAN0– is the negative terminal of the
differential analog input DAN0 (DAN0+ to DAN0–).

2.3.9.3 Analog Input / Differential Analog Input
AN[2]_DAN1+

AN[2] is a single-ended analog input to the two on-chip ADCs. DAN1+ is the positive terminal of the
differential analog input DAN1 (DAN1+ to DAN1–).

2.3.9.4 Analog Input / Differential Analog Input
AN[3]_DAN1–

AN[3] is a single-ended analog input to the two on-chip ADCs. DAN1– is the negative terminal of the
differential analog input DAN1 (DAN1+ to DAN1–).

2.3.9.5 Analog Input / Differential Analog Input
AN[4]_DAN2+

AN[4] is a single-ended analog input to the two on-chip ADCs. DAN2+ is the positive terminal of the
differential analog input DAN2 (DAN2+ to DAN2–).

Signals

MPC5534 Microcontroller Reference Manual, Rev. 2

2-30 Freescale Semiconductor

2.3.9.6 Analog Input / Differential Analog Input
AN[5]_DAN2–

AN[5] is a single-ended analog input to the two on-chip ADCs. DAN2– is the negative terminal of the
differential analog input DAN2 (DAN2+ to DAN2–).

2.3.9.7 Analog Input / Differential Analog Input
AN[6]_DAN3+

AN[6] is a single-ended analog input to the two on-chip ADCs. DAN3+ is the positive terminal of the
differential analog input DAN3 (DAN3+ to DAN3–).

2.3.9.8 Analog Input / Differential Analog Input
AN[7]_DAN3–

AN[7] is a single-ended analog input to the two on-chip ADCs. DAN3– is the negative terminal of the
differential analog input DAN3 (DAN3+ to DAN3–).

2.3.9.9 Analog Input / Multiplexed Analog Input
AN[8]_ANW

AN[8] is an analog input pin. The alternate function, ANW, is an analog input in external multiplexed
mode. This pin has reduced analog to digital conversion accuracy as compared to the AN[0:7] and
AN[16:39] analog input pins.

208 Package: The AN[8]_ANW pin is not available due to pin limitations.

2.3.9.10 Analog Input / Multiplexed Analog Input
AN[9]_ANX

AN[9] is an analog input pin. The alternate function, ANX, is an analog input in external multiplexed
mode. This pin has reduced analog to digital conversion accuracy as compared to the AN[0:7] and
AN[16:39] analog input pins.

2.3.9.11 Analog Input / Multiplexed Analog Input
AN[10]_ANY

AN[10] is an analog input pin. The alternate function, ANY, is an analog input in external multiplexed
mode. This pin has reduced analog to digital conversion accuracy as compared to the AN[0:7] and
AN[16:39] analog input pins.

208 Package: The AN[10]_ANY pin is not available due to pin limitations.

Signals

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 2-31

2.3.9.12 Analog Input / Multiplexed Analog Input
AN[11]_ANZ

AN[11] is an analog input pin. The alternate function, ANZ, is an analog input in external multiplexed
mode. This pin has reduced analog to digital conversion accuracy as compared to the AN[0:7] and
AN[16:39] analog input pins.

2.3.9.13 Analog Input / Mux Address 0 / eQADC Serial Data Strobe
AN[12]_MA[0]_SDS

AN[12]_MA[0]_SDS is an analog input pin. The alternate function, MA[0], is a MUX address pin. The
second alternate function is the serial data strobe for the eQADC SSI. This pin has reduced analog to digital
conversion accuracy as compared to the AN[0:7] and AN[16:39] analog input pins.

2.3.9.14 Analog Input / Mux Address 1 / eQADC Serial Data Out
AN[13]_MA[1]_SDO

AN[13]_MA[1]_SDO is an analog input pin. The alternate function, MA[1], is a MUX address pin. The
second alternate function is the serial data output for the eQADC SSI. This pin has reduced analog to
digital conversion accuracy as compared to the AN[0:7] and AN[16:39] analog input pins.

2.3.9.15 Analog Input / Mux Address 2 / eQADC Serial Data In
AN[14]_MA[2]_SDI

AN[14]_MA[2]_SDI is an analog input pin. The alternate function, MA[2], is a MUX address pin. The
second alternate function is the serial data input for the eQADC SSI. This pin has reduced analog to digital
conversion accuracy as compared to the AN[0:7] and AN[16:39] analog input pins.

2.3.9.16 Analog Input / eQADC Free Running Clock
AN[15]_FCK

AN[15]_FCK is an analog input pin. The alternate function is the free running clock for the eQADC SSI.
This pin has reduced analog to digital conversion accuracy as compared to the AN[0:7] and AN[16:39]
analog input pins.

2.3.9.17 Analog Input
AN[16:39]

AN[16:39] are analog input pins.

208 Package: The AN[19:20, 26, 29] pins are not available due to pin limitations.

2.3.9.18 Voltage Reference High
VRH

VRH is the voltage reference high input pin for the eQADC.

208 Package: The VRH pin is not available due to pin limitations.

Signals

MPC5534 Microcontroller Reference Manual, Rev. 2

2-32 Freescale Semiconductor

2.3.9.19 Voltage Reference Low
VRL

VRL is the voltage reference low input pin for the eQADC.

208 Package: The VRL pin is not available due to pin limitations.

2.3.9.20 Reference Bypass Capacitor
REFBYPC

REFBYPC is a bypass capacitor input for the eQADC. Use a 100nF external bias capacitor to connect the
REFBYPC pin to the VRL.

2.3.10 Enhanced Time Processing Unit (eTPU)

2.3.10.1 eTPU A TCR Clock / External Interrupt Request / GPIO
TCRCLKA_IRQ[7]_GPIO[113]

TCRCLKA_IRQ[7]_GPIO[113] is the TCR A clock input for the eTPU module. The alternate function is
an external interrupt request input for the SIU module.

2.3.10.2 eTPU A Channel / eTPU A Channel (Output Only) / GPIO
ETPUA[0:11]_ETPUA[12:23]_GPIO[114:125]

ETPUA[0:11]_ETPUA[12:23]_GPIO[114:125] are input/output channel pins for the eTPU A module.
The alternate function is for output channels of the eTPU A module; that is, when configured as
ETPUA[12:23], the pins function as outputs only.

2.3.10.3 eTPU A Channel / DSPI / GPIO
ETPUA[12:19]_PCSXn_GPIO[126:133]

ETPUA[12:19]_PCSXn_GPIO[126:133] are input/output channel pins for the eTPU A module muxed
with DSPI B and D pins.

2.3.10.4 eTPU A Channel / External Interrupt Request / GPIO
ETPUA[20:27]_IRQ[8:15]_GPIO[134:141]

ETPUA[20:27]_IRQ[8:15]_GPIO[134:141] are input/output channel pins for the eTPU A module muxed
with interrupt request pins.

2.3.10.5 eTPU A Channels / DSPI C / GPIO
ETPUA[28:31]_PCSC[1:4]_GPIO[142:145]

ETPUA[28:31]_PCSC[1:4]_GPIO[142:145] are input/output channel pins for the eTPU A module
multiplexed with DSPI C pins.

Signals

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 2-33

2.3.11 Enhanced Modular Input/Output System (eMIOS)

2.3.11.1 eMIOS Channels / eTPU A Channels (Output Only) / GPIO
EMIOS[0:9]_ETPUA[0:9]_GPIO[179:188]

EMIOS[0:9]_ETPUA[0:9]_GPIO[179:188] are the primary functions for input/output channel pins for the
eMIOS module. The alternate functions are output channels for the eTPU A module; that is, when
configured as ETPUA[0:9], the pins function as outputs only.

2.3.11.2 eMIOS Channels / GPIO
EMIOS[10:11]_GPIO[189:190]

EMIOS[10:11]_GPIO[189:190] are input/output channel pins for the eMIOS module.

2.3.11.3 eMIOS Channel (Output Only) / DSPI C Data Output / GPIO
EMIOS[12]_SOUTC_GPIO[191]

EMIOS[12]_SOUTC_GPIO[191] is an output channel pin for the eMIOS module. The alternate function
is the data output for the DSPI C module.

2.3.11.4 eMIOS Channel (Output Only) / DSPI D Data Output / GPIO
EMIOS[13]_SOUTD_GPIO192

EMIOS[13]_SOUTD_GPIO[192] is an output channel pin for the eMIOS module. The alternate function
is the data output for the DSPI D module.

2.3.11.5 eMIOS Channel (Output Only) / External Interrupt Request / GPIO
EMIOS[14:15]_IRQ[0:1]_GPIO[193:194]

EMIOS[14:15]_IRQ[0:1]_GPIO[193:194] are output channel pins for the eMIOS module. The alternate
function is for external interrupt request inputs.

2.3.11.6 eMIOS Channel (Output Only) / GPIO
EMIOS[16:23]_GPIO[195:202]

EMIOS[16:23]_GPIO[195:202] are input/output channel pins for the eMIOS module.

2.3.12 GPIO

2.3.12.1 GPIO
EMIOS[14:15]_GPIO[203:204]

EMIOS[14:15]_GPIO[203:204] are input or output pins. When configured as EMIOS[14:15], the pins
function as output channels for the eMIOS module.

208 Package: The EMIOS[14:15]_GPIO[203:204] signals are not available due to pin limitations.

Signals

MPC5534 Microcontroller Reference Manual, Rev. 2

2-34 Freescale Semiconductor

2.3.12.2 GPIO
GPIO[206:207]

The GPIO[206:207] pins only have GPIO functionality. These pins are reserved for double data rate
memory interface support.The pad type for GPIO[206:207] is fast driver and CMOS input buffer
(1.62–1.98 V).

2.3.13 Clock Synthesizer

2.3.13.1 Crystal Oscillator Output
XTAL

XTAL is the output pin for an external crystal oscillator.

2.3.13.2 Crystal Oscillator Input / External Clock Input
EXTAL_EXTCLK

EXTAL is the input pin for an external crystal oscillator or an external clock source. The alternate function
is the external clock input. The function of this pin is determined by the PLLCFG configuration pins.

2.3.13.3 System Clock Output
CLKOUT

CLKOUT is the system clock output.

208 Package: The CLKOUT signal is not available due to pin limitations.

2.3.13.4 Engineering Clock Output
ENGCLK

ENGCLK is a 50% duty cycle output clock with a maximum frequency of the device’s system clock
divided by two. ENGCLK is not synchronous to CLKOUT.

2.3.14 Power/Ground

2.3.14.1 Voltage Regulator Control Supply Input
VRC33

VRC33 is the 3.3 V supply input pin for the on-chip 1.5 V regulator control circuit.

2.3.14.2 Voltage Regulator Control Ground Input
VRCVSS

VRCVSS is the ground reference for the on-chip 1.5 V regulator control circuit.

208 Package: The VRCVSS signal is not available due to pin limitations.

Signals

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 2-35

2.3.14.3 Voltage Regulator Control Output
VRCCTL

VRCCTL is the output pin for the on-chip 1.5 V regulator control circuit.

2.3.14.4 eQADC Analog Supply
VDDAn

VDDAn is the analog supply input pin for the eQADC.

2.3.14.5 eQADC Analog Ground Reference
VSSAn

VSSAn is the analog ground reference input pin for the eQADC.

2.3.14.6 Clock Synthesizer Power Input
VDDSYN

VDDSYN is the power supply input for the FMPLL.

2.3.14.7 Clock Synthesizer Ground Input
VSSSYN

VSSSYN is the ground reference input for the FMPLL.

2.3.14.8 Flash Read Supply Input
VFLASH

VFLASH is the on-chip Flash read supply input.

208 Package: The VFLASH signal is not available due to pin limitations.

2.3.14.9 Flash Program/Erase Supply Input
VPP

VPP is the on-chip Flash program/erase supply input.

2.3.14.10 SRAM Standby Power Input
VSTBY

VSTBY is the power supply input that is used to maintain a portion of the contents of internal SRAM during
power down. If not used, tie VSTBY to VSS.

2.3.14.11 Internal Logic Supply Input
VDD

VDD is the 1.5 V logic supply input.

Signals

MPC5534 Microcontroller Reference Manual, Rev. 2

2-36 Freescale Semiconductor

2.3.14.12 External I/O Supply Input
VDDEn

VDDEn is the 1.8–3.3 V ±10% external I/O supply input.

2.3.14.13 External I/O Supply Input
VDDEHn

VDDEHn is the 3.3–5.0 V -10% to +5% external I/O supply input.

2.3.14.14 Fixed 3.3 V Internal Supply Input
VDD33

VDD33 is the 3.3 V internal supply input.

2.3.14.15 Ground
VSS

VSS is the ground reference input.

2.3.15 I/O Power/Ground Segmentation

Table 2-2 gives the power/ground segmentation of the device MCU. Each segment provides the power and
ground for the given set of I/O pins. Each segment can be powered by either of the allowed voltages
regardless of the power on the other segments. The power/ground segmentation applies regardless of
whether a particular pin is configured for its primary function or GPIO.

See Table 2-1, as not all signals are available on the 324 and 208 packages. The primary signals shown in
blue are not available in this device, but are shown to locate the pin on the ball grid array (BGA). The
signals shown in red are not available on the 208 package.

Table 2-2. MPC5534 Power/Ground Segmentation

Power
Segment

VDDE

Voltage
Range1 I/O Pins Powered by Segment

VDDEH1 3.3–5.0 V TCRCLKA_IRQ[7]_GPIO[113], ETPUA[0:11]_ETPUA[12:23]_GPIO[114:125],
ETPUA[12]_PCSB[1]_GPIO[126], ETPUA[13:15]_PCSB[3:5]_GPIO[127:129],
ETPUA[16:19]_PCSD[1:4]_GPIO[130:133], ETPUA[20:27]_IRQ[8:15]_GPIO[134:141],
ETPUA[28:31]_PCSC[1:4]_GPIO[141:145]

VDDE2
2 1.8–3.3 V CS[0]_ADDR[8]_GPIO[0], CS[1:3]_ADDR[9:11]_GPIO[1:3], ADDR[12:31]_GPIO[8:27],

DATA[0:15]_GPIO[28:43], RD_WR_GPIO[62], BDIP_GPIO[63],
WE/BE[0:1]_GPIO[64:65], OE_GPIO[68], TS_GPIO[69], TA_GPIO[70], GPIO[206:207]

VDDEH4 3.3–5.0 V EMIOS[0:9]_ETPUA[0:9]_GPIO[179:188], EMIOS[10:11]_PCSD[3:4]_GPIO[189:190],
EMIOS[12]_SOUTC_GPIO[191], EMIOS[13]_SOUTD_GPIO[192],
EMIOS[14:15]_IRQ[0:1]_GPIO[193:194], EMOIS[16:23]_GPIO[195:202],
CNTXA_GPIO[83], CNRXA_GPIO[84], CNTXB_PCSC[3]_GPIO[85],
CNRXB_PCSC[4]_GPIO[86]

Signals

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 2-37

2.4 eTPU Pin Connections and Serialization

2.4.1 ETPUA[0:15]

The ETPUA[0:15] module channels connect to external pins or can be serialized out through the DSPI C
module. A diagram for the ETPUA[0:15] and DSPI C connections is given in Figure 2-4. The full list of
connections is given in Table 2-3. Although not shown in Figure 2-4, the output channels of
ETPUA[12:15] are connected to the ETPUA[0:3]_ETPUA[12:15]_GPIO[114:117] pins.

The eTPU TCRCLKA clock input is connected to an external pin only.

VDDE5 1.8–3.3 V CLKOUT, ENGCLK

VDDEH6 3.3–5.0 V RESET, RSTOUT, RSTCFG_GPIO[210], WKPCFG_GPIO[213],
BOOTCFG[0]_IRQ[2]_GPIO[211], BOOTCFG[1]_IRQ[3]_GPIO[212],
PLLCFG[0]_IRQ[4]_GPIO[208], PLLCFG[1]_IRQ[5]_SOUTD_GPIO[209],
CNTXC_PCSD[3]_GPIO[87], CNRXC_PCSD[4]_GPIO[88],
TXDA_GPIO[89], RXDA_GPIO[90], TXDB_PCSD[1]_GPIO[91],
RXDB_PCSD[5]_GPIO[92], SCKA_PCSC[1]_GPIO[93], SINA_PCSC[2]_GPIO[94],
SOUTA_PCSC[5]_GPIO[95], PSCA[0]_PCSD[2]_GPIO[96],
PSCA[1]_PCSB[2]_GPIO[97], PSCA[2]_SCKD_GPIO[98], PSCA[3]_SIND_GPIO[99],
PSCA[4]_SOUTD_GPIO[100], PSCA[5]_PCSB[3]_GPIO[101],
PCSB[3]_SINC_GPIO[108], PCSB[4]_SCKC_GPIO[109], PCSB[5]_PCSC[0]_GPIO[110],
EMIOS[14:15]_GPIO[203:204]

VDDE7 1.8–3.3 V EVTI, EVTO, MCKO, MDO[3:0], MDO[11:4]_GPIO[82:75], MSEO[1:0], RDY, TCK, TDI,
TDO, TMS, JCOMP, TEST

VDDEH9 3.3–5.0 V AN[12]_MA[0]_SDS, AN[13]_MA[1]_SDO, AN[14]_MA[2]_SDI, AN[15]_FCK

VDDEH10 3.3–5.0 V SCKB_PCSC[1]_GPIO[102], SINB_PCSC[2]_GPIO[103], SOUTB_PCSC[5]_GPIO[104],
PCSB[0]_PCSD[2]_GPIO[105], PCSB[1]_PCSD[0]_GPIO[106],
PCSB[2]_SOUTC_GPIO[107]

VDDE12 1.8–3.3 V CAL_ADDR[12:30], CAL_DATA[0:15], CAL_CS[0], CAL_CS[2:3], CAL_RD_WR,
CAL_WE/BE[0:1], CAL_OE, CAL_TS

VDDA0 5.0 V AN[22:35], VRH

VDDA1 5.0 V AN[0:11,16:21, 36:39]

VDDSYN 3.3 V XTAL, EXTAL_EXTCLK

VRC33 3.3 V VRCCTL

1 These are nominal voltages. All VDDE and VDDEH voltages are ±10% (VDDE 1.62–3.6 V; VDDEH 3.0–5.25 V). VRC33 is ±10%.
VDDSYN is ±10%. VDDA is +5%, -10%.

2 VDDE2 and VDDE3 are separate segments in the device pad ring. These segments are shorted together in the package
substrate. The following pins are part of the VDDE3 segment: DATA[0:15], GPIO[206:207], OE.

Table 2-2. MPC5534 Power/Ground Segmentation

Power
Segment

VDDE

Voltage
Range1 I/O Pins Powered by Segment

Signals

MPC5534 Microcontroller Reference Manual, Rev. 2

2-38 Freescale Semiconductor

Figure 2-4. ETPUA[0:15]—DSPI C I/O Connections

Table 2-3. ETPUA[0:15]—DSPI C I/O Mapping

DSPI C Serialized
Input

eTPU A Channel Output

15 11

14 10

13 9

12 8

11 7

10 6

9 5

8 4

7 3

6 2

5 1

4 0

3 15

eTPU A
ETPUA[0]_

ETPUA[12]_
GPIO[114]

CH0 IN

EMIOS[0]_
ETPUA[0]

GPIO[179]

CH0 OUT

CH9 IN
CH9 OUT

CH10 IN
CH10 OUT

CH15 IN
CH15 OUT

IN 4 IN 13 IN 14 IN 3

DSPI C

ETPUA[9]_
ETPA[21]_
GPIO[123]

EMIOS[9]_
ETPUA[9]_
GPIO[188]

ETPUA[10]_
ETPUA[22]_

GPIO[124]

ETPUA[15]_
GPIO[129]

•
•
•

•
•
•

•
•
•

•
•
•

• • •• • •

Signals

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 2-39

2.4.2 ETPUA[16:31]

ETPUA[16:23,30:31] connect to external pins for both the input and output function.
ETPUA[16:21,24:29] are serialized out on the DSPI B and DSPI D modules and ETPUA[22:23,30:31] are
not serialized out. ETPUA[24:29] connect to external pins for only the output function. Figure 2-5 shows
the connections for ETPUA[16] and applies to ETPUA[16:21]. Figure 2-6 shows the connections for
ETPUA[24] and applies to ETPUA[24:29]. The full ETPUA to DSPI B connections are given in Table 2-4,
and ETPUA to DSPI D in Table 2-5. Although not shown in Figure 2-5, the output channels of
ETPUA[16:23] are also connected to the ETPUA[4:11]_ETPUA[16:23]_GPIO[118:125] pins.

Figure 2-5. ETPUA[16:21]—DSPI B–DSPI D I/O Connections

Figure 2-6. ETPU A[24:29]—DSPI B and DSPI D I/O Connections

2 14

1 13

0 12

Table 2-4. ETPU A[16:31]—DSPI B I/O Mapping

DSPI B Serialized
Inputs / Outputs1 eTPU A Channel Output eTPU A Channel Input

13 24 24

12 25 25

11 26 26

Table 2-3. ETPUA[0:15]—DSPI C I/O Mapping (continued)

DSPI C Serialized
Input

eTPU A Channel Output

eTPU A

CH16 IN
CH16 OUT

IN 7 IN 5

DSPI B

ETPUA[16]_
GPIO[130]

DSPI D

eTPU A

CH24 IN
CH24 OUT

IN 13 IN 15

DSPI B

ETPUA[24]_
GPIO[138]

DSPI D
OUT 13

Signals

MPC5534 Microcontroller Reference Manual, Rev. 2

2-40 Freescale Semiconductor

10 27 27

9 28 28

8 29 29

7 16 —

6 17 —

5 18 —

4 19 —

3 20 —

2 21 —

1 DSPI B serialized input channels 0, 1, 14, and 15 are connected to EMIOS channels. DSPI B
serialized output channels 14, 15 are connected to EMIOS channels. DSPI B serialized
output channels 0–7 are not connected.

Table 2-5. ETPUA[16:31]—DSPI D I/O Mapping

DSPI D Serialized
Inputs1

1 DSPI D serialized input channels 6–9 are connected to
EMIOS channels.

eTPU A Channel Output

15 24

14 25

13 26

12 27

11 28

10 29

5 16

4 17

3 18

2 19

1 20

0 21

Table 2-4. ETPU A[16:31]—DSPI B I/O Mapping (continued)

DSPI B Serialized
Inputs / Outputs1 eTPU A Channel Output eTPU A Channel Input

Signals

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 2-41

2.5 eMIOS Pin Connections and Serialization
The eMIOS channels connect to external pins or can be serialized in and out of the device. The input and
output channels of EMIOS[0:11, 16:23] connect to pins. Only the output channels of EMIOS[12:15]
connect to pins. The output channels of EMIOS[10:13] can be serialized out, and the inputs of
EMIOS[12:15] can be serialized in. The DSPI connections for EMIOS[10:11] are given in Figure 2-7,
Figure 2-8 for EMIOS[12:13], and Figure 2-9 for EMIOS[14:15].

Figure 2-7. EMIOS[10:11]—DSPI B–DSPI D I/O Connections

Figure 2-8. EMIOS[12:13]—DSPI B–DSPI D I/O Connections

Figure 2-9. EMIOS[14:15]—DSPI D I/O Connections

CH11 IN
CH11 OUT

IN 1 IN 7

DSPI B

EMIOS[11]_
GPIO[190]

DSPI D
IN 0

eMIOS

CH10 IN
CH10 OUT

EMIOS[10]_
GPIO[189]

IN 6

CH13 IN
CH13 OUT

IN 14 IN 9

DSPI B DSPI D
OUT 14

eMIOS

CH12 IN
CH12 OUT

EMIOS[13]_
SOUTD_

GPIO[192]

EMIOS[12]_
SOUTC_

GPIO[191]

IN 8OUT 15IN 15

CH15 IN
CH15 OUT

OUT 15
GPIO[204]_
EMIOS[15]

DSPI D

eMIOS

CH14 IN
CH14 OUT

OUT 14

GPIO[203]_
EMIOS[14]

EMIOS[14]_
IRQ[0]_

GPIO[193]

EMIOS[15]_
IRQ[1]_

GPIO[194]

Signals

MPC5534 Microcontroller Reference Manual, Rev. 2

2-42 Freescale Semiconductor

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 3-1

Chapter 3
Core Complex (e200z3)
The e200z3 integrates a Z3 CPU core, a Memory Management Unit (MMU), a Signal Processing
Extension (SPE) Auxiliary Processing Unit (APU), and a Nexus Class 3 real-time Debug unit. Separate
Instruction and Data AHB 2.v6 system interfaces are provided. Overviews of the major components are
described in this chapter.

Additional information:

• e200z3 PowerPC Core Reference Manual

• EREF: A Programmer's Reference Manual for Freescale Book E Processors

• Variable-Length Encoding (VLE) Extension Programming Interface Manual

3.1 Overview
The e200 processor family are a set of core devices that implement low-cost versions of the PowerPC Book
E architecture. These processors are designed for deeply embedded control applications that require low
cost solutions over maximum performance.

The initial e200z3 processor integrates an integer execution unit, branch control unit, instruction fetch and
load/store units, and a multi-ported register file capable of sustaining three read and two write operations
per clock. Most integer instructions execute in a single clock cycle. Branch target prefetching is performed
by the branch unit to allow single-cycle branches in many cases.

The e200z3 core is a single-issue, 32-bit PowerPC Book E compliant design with 32 general purpose
registers (GPRs). PowerPC Book E floating-point instructions are not supported by e200 in hardware, but
are trapped and can be emulated by software. All arithmetic instructions that execute in the core operate
on data in the general purpose registers (GPRs).

A Signal Processing Extension (SPE) APU is provided to support real-time fixed point and single
precision, embedded numerics operations using the general-purpose registers. All arithmetic instructions
that execute in the core operate on data in the general purpose registers (GPRs). The GPRs have been
extended to 64-bits to support vector instructions defined by the SPE APU. These instructions operate on
a vector pair of 16-bit or 32-bit data types, and deliver vector and scalar results.

In addition to the base PowerPC Book E instruction set, the e200z3 core also implements the VLE
(Variable Length Encoding) APU, providing improved code density.

In the remainder of this chapter, the e200z3 core is also referred to as “the core.”

Core Complex (e200z3)

MPC5534 Microcontroller Reference Manual, Rev. 2

3-2 Freescale Semiconductor

3.2 Features
The following is a list of some of the key features of the e200z3 core:

• 32-bit PowerPC Book E programmer’s model

• Single issue, 32-bit PowerPC Book E compliant CPU

• Implements the VLE APU for reduced code footprint

• In-order execution and retirement

• Precise exception handling

• Branch processing unit

— Dedicated branch address calculation adder

— Branch acceleration using Branch Lookahead Instruction Buffer

• Load/store unit

— 1 cycle load latency

— Fully pipelined

— Big and Little endian support

— Misaligned access support

— Zero load-to-use pipeline bubbles

• Power management

— Low power design

— Dynamic power management of execution units

• Testability

— Synthesizeable, full MuxD scan design

— ABIST/MBIST for optional memory arrays

3.2.1 e200z3 Core Features Not Supported in the Device

This device implements a subset of the e200z3 core complex features. The e200z3 core complex features
that are not supported in the device are described in Table 4-2.

Table 3-1. e200z3 Features Not Supported in the Device Core

Function / Category Description

Disabled events The external debug event (DEVT2) and unconditional debug event (UDE) are not supported

Power management e200z3 core halted state and stopped state are not supported

Power management The following low-power modes are not supported:
 • Doze mode
 • Nap mode
 • Sleep mode
 • Time-base interrupt wake-up from low-power mode is not supported

Power management Core wake up is not supported
MSR[WE] bit in the machine state register is not supported
The OCR[WKUP] bit in the e200z3 OnCE control register (OCR) has no effect

Core Complex (e200z3)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 3-3

3.3 Microarchitecture Summary
The e200 processor utilizes a four stage pipeline for instruction execution. The Instruction Fetch (stage 1),
Instruction Decode/Register file Read/Effective Address Calculation (stage 2), Execute/Memory Access
(stage 3), and Register Writeback (stage 4) stages operate in an overlapped fashion, allowing single clock
instruction execution for most instructions.

The integer execution unit consists of a 32-bit Arithmetic Unit (AU), a Logic Unit (LU), a 32-bit Barrel
shifter (Shifter), a Mask-Insertion Unit (MIU), a Condition Register manipulation Unit (CRU), a
Count-Leading-Zeros unit (CLZ), a 32x32 Hardware Multiplier array, result feed-forward hardware, and
support hardware for division.

Most arithmetic and logical operations are executed in a single cycle with the exception of the divide
instructions. A Count-Leading-Zeros unit operates in a single clock cycle.

The Instruction Unit contains a PC incrementer and a dedicated Branch Address adder to minimize delays
during change of flow operations. Sequential prefetching is performed to ensure a supply of instructions
into the execution pipeline. Branch target prefetching is performed to accelerate taken branches.
Prefetched instructions are placed into an instruction buffer capable of holding six instructions.

Branches can also be decoded at the instruction buffer and branch target addresses calculated prior to the
branch reaching the instruction decode stage, allowing the branch target to be prefetched early. When a
branch is detected at the instruction buffer, a prediction can be made on whether the branch is taken or not.
If the branch is predicted to be taken, a target fetch is initiated and its target instructions are placed in the
instruction buffer following the branch instruction.

Conditional branches which are not taken and not folded execute in a single clock. Branches with
successful target prefetching which are not folded have an effective execution time of one clock. All other
taken branches have an execution time of two clocks.

Machine check The machine check input pin is not supported. HID0 [EMCP] has no effect, and MCSR[MCP]
always reads a negated value.

PVR value Least significant halfword of processor version register (PVR) is 0x0000, that contains the
following bitfields:
 • MBG Use = 0x00
 • MBG Rev = 0x0
 • MBG ID = 0x0
The PVR register has two bitfields in the device.

Reservation management Reservation management logic external to the e200z3 is not implemented.

Verification The system version register (SVR) of the e200z3 is 0x 0000_0000.

Time Base The decrement counters are always enabled in the e200z3.

The timer external clock is not connected to a clock; Do not select the timer external clock.

Context control The CTXCR and ALTCXTCR registers are not supported.

Table 3-1. e200z3 Features Not Supported in the Device Core (continued)

Function / Category Description

Core Complex (e200z3)

MPC5534 Microcontroller Reference Manual, Rev. 2

3-4 Freescale Semiconductor

Memory load and store operations are provided for byte, halfword, and word (32-bit) data with automatic
zero or sign extension of byte and halfword load data as well as optional byte reversal of data. These
instructions can be pipelined to allow effective single cycle throughput. Load and store multiple word
instructions allow low overhead context save and restore operations. The load/store unit contains a
dedicated effective address adder to allow effective address generation to be optimized. Also, a load-to-use
dependency does not incur any pipeline bubbles for most cases.

The Condition Register unit supports the condition register (CR) and condition register operations defined
by the PowerPC architecture. The condition register consists of eight 4-bit fields that reflect the results of
certain operations, such as move, integer and floating-point compare, arithmetic, and logical instructions,
and provide a mechanism for testing and branching.

Vectored and autovectored interrupts are supported by the CPU. Vectored interrupt support is provided to
allow multiple interrupt sources to have unique interrupt handlers invoked with no software overhead.

The SPE APU supports vector instructions operating on 16- and 32-bit fixed-point data types, as well as
32-bit IEEE-754 single-precision floating-point formats, and supports single-precision floating-point
operations. The 64-bit general purpose register file is used for source and destination operands, and there
is a unified storage model for single-precision floating-point data types of 32-bits and the normal integer
type. Low latency fixed-point and floating-point add, subtract, multiply, multiply-add, multiply-subtract,
divide, compare, and conversion operations are provided.

3.3.1 Instruction Unit Features

The features of the e200 Instruction unit are:

• 64-bit instruction fetch path supports fetching of two 32-bit instruction per clock, or up to four
16-bit VLE APU instructions per clock

• Instruction buffer holds up to six sequential instructions and two prefetched branch target
instructions

• Dedicated PC incrementer supporting instruction prefetches

• Branch unit with dedicated branch address adder, and small branch target buffer logic supporting
single cycle of execution of certain branches, two cycles for all others

3.3.2 Integer Unit Features

The e200 integer unit supports single cycle execution of most integer instructions:

• 32-bit AU for arithmetic and comparison operations

• 32-bit LU for logical operations

• 32-bit priority encoder for count leading zero’s function

• 32-bit single cycle barrel shifter for static shifts and rotates

• 32-bit mask unit for data masking and insertion

• Divider logic for signed and unsigned divide in ≤16 clocks with minimized execution timing

• 32x32 hardware multiplier array supports single-cycle 32x32→32 multiply

Core Complex (e200z3)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 3-5

3.3.3 Load/Store Unit Features

The e200 load/store unit supports load, store, and the load multiple / store multiple instructions:

• 32-bit effective address adder for data memory address calculations

• Pipelined operation supports throughput of one load or store operation per cycle

• Dedicated 64-bit interface to memory supports saving and restoring of up to two registers per cycle
for load multiple and store multiple word instructions

3.3.4 e200 System Bus Features

The features of the e200 System Bus interface are as follows:

• Independent Instruction and Data Buses

• AMBA AHB2.v6 protocol

• 32-bit address bus plus attributes and control on each bus

• 64-bit read data bus for Instruction Interface

• Separate unidirectional 64-bit read data bus and 64-bit write data bus for Data Interface

• Overlapped, in-order accesses

3.3.5 MMU Features

The features of the MMU are as follows:

• Virtual Memory support

• 32-bit Virtual and Physical Addresses

• 8-bit Process Identifier

• 16-entry Fully associative TLB

• Support for multiple page sizes from 4 KB to 256 MB

• Entry Flush Protection

3.3.6 Nexus 3 Features

The Nexus 3 module is compliant with Class 3 of the IEEE-ISTO 5001-2003 standard. The following
features are implemented:

• Program Trace via Branch Trace Messaging (BTM). Branch trace messaging displays program
flow discontinuities (direct and indirect branches, exceptions, etc.), allowing the development tool
to interpolate what transpires between the discontinuities. Thus static code can be traced.

• Data Trace via Data Write Messaging (DWM) and Data Read Messaging (DRM). This provides
the capability for the development tool to trace reads and/or writes to selected internal memory
resources.

• Ownership Trace via Ownership Trace Messaging (OTM). OTM facilitates ownership trace by
providing visibility of which process ID or operating system task is activated. An Ownership Trace

Core Complex (e200z3)

MPC5534 Microcontroller Reference Manual, Rev. 2

3-6 Freescale Semiconductor

Message is transmitted when a new process/task is activated, allowing the development tool to
trace ownership flow.

• Run-time access to embedded processor registers and memory map via the JTAG port. This allows
for enhanced download/upload capabilities.

• Watchpoint Messaging via the auxiliary pins

• Watchpoint Trigger enable of Program and/or Data Trace Messaging

• Auxiliary interface for higher data input/output

— Configurable (min./max) Message Data Out pins (MDO[11:0])

— One or two Message Start/End Out pins (MSEO[1:0])

— One Read/Write Ready pin (RDY) pin

— One Watchpoint Event pin (EVTO)

— One Event In pin (EVTI)

— One Message Clock Out (MCKO) pin

• Registers for Program Trace, Data Trace, Ownership Trace and Watchpoint Trigger.

• All features controllable and configurable via the JTAG port

Core Complex (e200z3)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 3-7

3.4 Block Diagram
Figure 4-1 shows a block diagram of the e200z3 core complex.

Figure 3-1. e200z3 Block Diagram

3.5 Memory Management Unit (MMU)

3.5.1 Overview

The e200z3 Memory Management Unit is a 32-bit PowerPC Book E compliant implementation, with the
following feature set:

• Freescale Book E MMU architecture compliant

• Translates from 32-bit effective to 32-bit real addresses

• 16-entry fully associative TLB with support for nine page sizes
(4 K, 16 K, 64 K, 256 K, 1 M, 4 M, 16 M, 64 M, 256 M)

• Hardware assist for TLB miss exceptions

• Software managed by tlbre, tlbwe, tlbsx, tlbsync, and tlbivax instructions

OnCE/Nexus
Control Logic

CPU
Control Logic

Memory
Management

Unit

Signal
Processing Unit

(SPE APU)

Instruction Unit

Instruction Buffer

Branch
Unit

PC
Unit

Instruction
Bus

Interface
Unit

Alternate Contexts

LR
CR

CTR
XER

SPR GPR

Load/Store
Unit

64
Data

Integer
Execution

Unit

Multiply
Unit

External
SPR

Interface
(MTSPR/MFSPR)

Control

Data

32
Address

N
Control

32 64 N

DataAddress Control

Data Bus Interface Unit

Core Complex (e200z3)

MPC5534 Microcontroller Reference Manual, Rev. 2

3-8 Freescale Semiconductor

3.5.2 Translation Lookaside Buffer (TLB)

The Freescale Book E architecture defines support for zero or more TLBs in an implementation, each with
its own characteristics, and provides configuration information for software to query the existence and
structure of the TLB(s) through a set of special purpose registers: MMUCFG, TLB0CFG, TLB1CFG, etc.
By convention, TLB0 is used for a set associative TLB with fixed page sizes, TLB1 is used for a fully
associative TLB with variable page sizes, and TLB2 is arbitrarily defined by an implementation. The
e200z3 MMU supports a single TLB which is fully associative and supports variable page sizes, thus it
corresponds to TLB1. For the rest of this document, TLB, TLBCAM, and TLB1 are used interchangeably.

The TLB consists of a 16-entry, fully associative CAM array with support for nine page sizes. To perform
a lookup, the CAM is searched in parallel for a matching TLB entry. The contents of this TLB entry are
then concatenated with the page offset of the original effective address. The result is the physical address
of the access.

A hit to multiple TLB entries is considered to be a programming error. If this occurs, the TLB generates
an invalid address and TLB entries can be corrupted (an exception is not reported).

Table 4-3 shows the TLB entry bit definitions.

The TLB is accessed indirectly through several MMU Assist (MAS) registers. Software can write and read
the MMU Assist registers with mtspr and mfspr instructions. These registers contain information related
to reading and writing a given entry within the TLB. Data is read from the TLB into the MAS registers
with a tlbre (TLB read entry) instruction. Data is written to the TLB from the MAS registers with a tlbwe
(TLB write entry) instruction.

Certain fields of the MAS registers are also written by hardware when an Instruction TLB Error, Data TLB
Error, DSI, or ISI interrupt occurs.

Table 3-2. TLB Entry Bit Definitions

Field Comments

V Valid bit for entry

TS Translation address space (compared against AS bit)

TID[0:7] Translation ID (compared against PID0 or ‘0’)

EPN[0:19] Effective page number (compared against effective address)

RPN[0:19] Real page number (translated address)

SIZE[0-3] Page size (4 KB, 16 KB, 64 KB, 256 KB, 1 MB, 4 MB, 16 MB, 64 MB, 256 MBs)

SX, SW, SR Supervisor execute, write, and read permission bits

UX, UW, UR User execute, write, and read permission bits

WIMGE Translation attributes (Write-through required, cache-Inhibited, Memory coherence required, Guarded,
Endian)

U0–U3 Use bits for software

IPROT Invalidation protect

VLE VLE page indicator

Core Complex (e200z3)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 3-9

On a TLB Error interrupt, the MAS registers are written by hardware with the proper EA, default attributes
(TID, WIMGE, permissions, etc.), and TLB selection information, and an entry in the TLB to replace.
Software manages this entry selection information by updating a replacement entry value during TLB miss
handling. Software must provide the correct RPN and permission information in one of the MAS registers
before executing a tlbwe instruction.

On taking a DSI or ISI interrupt, the hardware updates only the search PID (SPID) and search address
space (SAS) fields in the MAS registers using PID0, and appropriate MSR[IS] or MSR[DS] values which
were used when the DSI or ISI exception was recognized. During the interrupt handler, software can issue
a TLB search instruction (tlbsx), which uses the SPID field along with the SAS field, to determine the
entry related to the DSI or ISI exception. (It is possible that the entry which caused the DSI or ISI interrupt
no longer exists in the TLB by the time the search occurs if a TLB invalidate or replacement removes the
entry between the time the exception is recognized and when the tlbsx is executed.)

The tlbre, tlbwe, tlbsx, tlbivax, and tlbsync instructions are privileged.

3.5.3 Translation Flow

The effective address, concatenated with the address space value of the corresponding MSR bit (MSR[IS]
or MSR[DS], is compared to the appropriate number of bits of the EPN field (depending on the page size)
and the TS field of TLB entries. If the contents of the effective address plus the address space bit matches
the EPN field and TS bit of the TLB entry, that TLB entry is a candidate for a possible translation match.
In addition to a match in the EPN field and TS, a matching TLB entry must match with the current Process
ID of the access (in PID0), or have a TID value of 0, indicating the entry is globally shared among all
processes.

Figure 4-2 shows the translation match logic for the effective address plus its attributes, collectively called
the virtual address, and how it is compared with the corresponding fields in the TLB entries.

Figure 3-2. Virtual Address and TLB-Entry Compare Process

TLB entry Hit

=0?

private page

shared page

=?

=?

TLB_entry[V]

TLB_entry[TS]

AS (from MSR[IS] or MSR[DS])

Process ID

TLB_entry[TID]

TLB_entry[EPN]
EA page number bits

=?

Core Complex (e200z3)

MPC5534 Microcontroller Reference Manual, Rev. 2

3-10 Freescale Semiconductor

The page size for a TLB entry determines how many bits of the effective address are compared with the
corresponding EPN field in the TLB entry as shown in Table 3-3. On a TLB hit, the corresponding bits of
the Real Page Number (RPN) field are used to form the real address.

On a TLB hit, the generation of the physical address occurs as shown in Figure 3-3.

Figure 3-3. Effective to Real Address Translation Flow

3.5.4 Permissions

An operating system can restrict access to virtual pages by selectively granting permissions for user mode
read, write, and execute, and supervisor mode read, write, and execute on a per page basis. These
permissions can be set up for a particular system (for example, program code might be execute-only, data
structures can be mapped as read/write/no-execute) and can also be changed by the operating system based
on application requests and operating system policies.

Table 3-3. Page Size and EPN Field Comparison

SIZE Field
Page Size

(4SIZE KBs)
EA to EPN Comparison

0001 4 KB EA[0:19] =? EPN[0:19]

0010 16 KB EA[0:17] =? EPN[0:17]

0011 64 KB EA[0:15] =? EPN[0:15]

0100 256 KB EA[0:13] =? EPN[0:13]

0101 1 MB EA[0:11] =? EPN[0:11]

0110 4 MB EA[0:9] =? EPN[0:9]

0111 16 MB EA[0:7] =? EPN[0:7]

1000 64 MB EA[0:5] =? EPN[0:5]

1001 256 MB EA[0:3] =? EPN[0:3]

32-bit Effective Address

32-bit Real Address

Virtual Address

PID Effective Page Address Offset

0 31

TLB
multiple-entry

MSR[IS] for instruction fetch

AS

MSR[DS] for data access

RPN field of matching entry

n–1 n

Real Page Number Offset

0 31

NOTE: n = 32 – log2 (page size)
n >= 20
n = 20 for 4 KB page size

n–1 n

Core Complex (e200z3)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 3-11

The UX, SX, UW, SW, UR, and SR access control bits are provided to support selective permissions
(access control):

• SR—Supervisor read permission. Allows loads and load-type cache management instructions to
access the page while in supervisor mode (MSR[PR=0]).

• SW—Supervisor write permission. Allows stores and store-type cache management instructions to
access the page while in supervisor mode (MSR[PR=0]).

• SX—Supervisor execute permission. Allows instruction fetches to access the page and instructions
to be executed from the page while in supervisor mode (MSR[PR=0]).

• UR—User read permission. Allows loads and load-type cache management instructions to access
the page while in user mode (MSR[PR=1]).

• UW—User write permission. Allows stores and store-type cache management instructions to
access the page while in user mode (MSR[PR=1]).

• UX—User execute permission. Allows instruction fetches to access the page and instructions to be
executed from the page while in user mode (MSR[PR=1]).

If the translation match was successful, the permission bits are checked as shown in Figure 3-4. If the
access is not allowed by the access permission mechanism, the processor generates an Instruction or Data
Storage interrupt (ISI or DSI).

Figure 3-4. Granting of Access Permission

3.6 Bus Interface Unit (BIU)
The BIU encompasses control and data signals supporting instruction and data transfers. The memory
interface supported by the BIU is based on the AMBA AHB-Lite subset of the AMBA 2.0 AHB, with V6
AMBA Extensions. (Ref. documents ARM IHI 0011A, ARM DVI 0044A, and ARM
PR022-GENC-001011 0.7). Additional sideband signals have been added to support additional control
functions.

Access Granted

Instruction Fetch
MSR[PR]

TLB_entry[UX]

TLB_entry[SX]

Load-class Data Access
TLB_entry[UR]

TLB_entry[SR]

Store-class Data Access
TLB_entry[UW]

TLB_entry[SW]

TLB

Core Complex (e200z3)

MPC5534 Microcontroller Reference Manual, Rev. 2

3-12 Freescale Semiconductor

NOTE
 The AMBA AHB bit and byte ordering reflect a natural little-endian
ordering, as used by the AMBA documentation. The e200z3 BIU
automatically performs byte lane conversions for big-endian transfers.

Single-beat and misaligned transfers are supported for read and write cycles, and write-buffer writes.

3.7 Core Registers and Programmer’s Models
This section describes the registers implemented in the e200z3 core. It includes an overview of registers
defined by the PowerPC Book E architecture, highlighting differences in how these registers are
implemented in the e200 core, and provides a detailed description of e200-specific registers. Full
descriptions of the architecture-defined register set are provided in Book E: Enhanced PowerPCtm
Architecture.

The PowerPC Book E architecture defines register-to-register operations for all computational
instructions. Source data for these instructions are accessed from the on-chip registers or are provided as
immediate values embedded in the opcode. The three-register instruction format allows specification of a
target register distinct from the two source registers, thus preserving the original data for use by other
instructions. Data is transferred between memory and registers with explicit load and store instructions
only.

e200z3 extends the General Purpose Registers to 64-bits for supporting SPE APU operations. PowerPC
Book E instructions operate on the lower 32 bits of the GPRs only, and the upper 32 bits are unaffected by
these instructions. SPE vector instructions operate on the entire 64-bit register. The SPE APU defines load
and store instructions for transferring 64-bit values to/from memory.

NOTE
e200z3 is a 32-bit implementation of the PowerPC Book E architecture. In
this document, register bits are sometimes numbered from bit 31
(Most Significant Bit) to 0 (Least Significant Bit), rather than the Book E
numbering scheme of 32:63, thus register bit numbers for some registers in
Book E are 32 higher. Where appropriate, the Book E defined bit numbers
are shown in parentheses.

Core Complex (e200z3)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 3-13

Figure 3-5 and Figure 3-6 show the complete e200 register set. Figure 3-5 shows the registers which are
accessible while in supervisor mode.

Figure 3-5. e200z3 Supervisor Mode Programmer’s Model

SUPERVISOR MODE PROGRAMMER’S MODEL

1 Not all e200-specific registers are

2 Optional registers defined by the PowerPC

GPR0
GPR1

• • •
GPR31

General Registers

SPR General

SPR 9

SPR 8

SPR 1

CR

CTR

LR

XER

SPR 272SPRG0
SPR 273SPRG1
SPR 274SPRG2
SPR 275SPRG3

supported by all PowerPC processors.

Count Register

Link Register

XER

General Purpose
Registers

SPR 276SPRG4
SPR 277SPRG5
SPR 278SPRG6
SPR 279SPRG7

SPR 26SRR0
SPR 27SRR1
SPR 58CSRR0
SPR 59CSRR1
SPR 574DSRR01

SPR 575DSRR11

Save & Restore

SPR 62ESR

Exception

MCSR

Machine Check
Syndrome Register

SPR 572

DEAR

Data Exception
Address

SPR 61

IVPR

Interrupt Vector
Prefix

SPR 63

IVOR0

Interrupt Vector
Offset

SPR 400
IVOR1 SPR 401

• • •
IVOR15 SPR 415

IVOR321 SPR 528

IVOR341 SPR 530

Syndrome

User SPR
SPR 256USPRG0

Condition Register

Processor Control Registers

SPR 287

SPR 286

MSR

PVR

PIR

Processor Version

Processor ID

System Version1

Machine State

Exception Handling/Control Registers

Hardware Implementation
Dependent1

HID0
HID1

SPR 1023SVR

SPR 1008
SPR 1009

SPR 560CTXCR

Context Control1

SPR 568ALTCTXCR Timers

TBL

Time Base
(Write-Only)

SPR 284
TBU SPR 285

Control & Status
SPR 340TCR
SPR 336TSR

SPR 22DEC

Decrementer

SPR 54DECAR
SPR 1013BUCSR

BTB Control1

BTB Register

Debug Registers2

Instruction Address
Compare

IAC1
IAC2

SPR 312
SPR 313

IAC3
IAC4

SPR 314
SPR 315

Debug Control
SPR 308DBCR0
SPR 309DBCR1
SPR 310DBCR2
SPR 561DBCR31

SPR 512SPEFSCR

APU Register
SPE APU Status &
Control Register

Debug Status
SPR 304DBSR

Debug Counter1

SPR 562DBCNT

Memory Management Registers

MMU Assist1

SPR 624MAS0
SPR 625MAS1
SPR 626MAS2
SPR 627MAS3
SPR 628MAS4

SPR 630MAS6

Data Address
Compare

DAC1
DAC2

SPR 316
SPR 317

SPR 48PID0

Process ID
SPR 1012MMUCSR0

Control &
Configuration

SPR 1015MMUCFG
SPR 688TLB0CFG
SPR 689TLB1CFG

Cache Register

L1CFG0

Cache Configuration
(Read-Only)

SPR 515

Book-E architecture.

• • •

• • • • • •

Core Complex (e200z3)

MPC5534 Microcontroller Reference Manual, Rev. 2

3-14 Freescale Semiconductor

Figure 3-6 shows the set of registers which are accessible while in user mode. The number to the right of
the special-purpose registers (SPRs) is the decimal number used in the instruction syntax to access the
register (for example, the integer exception register (XER) is SPR 1).

Figure 3-6. e200 User Mode Programmer’s Model

General purpose registers (GPRs) are accessed through instruction operands. Access to other registers can
be explicit (by using instructions for that purpose such as Move to Special Purpose Register (mtspr) and
Move from Special Purpose Register (mfspr) instructions) or implicit as part of the execution of an
instruction. Some registers are accessed both explicitly and implicitly.

3.7.1 PowerPC Book E Registers

e200 supports most of the registers defined by Book E: Enhanced PowerPC™ Architecture. Notable
exceptions are the Floating Point registers FPR0-FPR31 and FPSCR. e200 does not support the Book E
Floating Point Architecture in hardware. The General Purpose registers have been extended to 64-bits. The
e200 supported PowerPC BookE registers are described as follows:

3.7.1.1 User-level Registers

The user-level registers can be accessed by all software with either user or supervisor privileges, and are
grouped as follows:

• General-purpose registers (GPRs)—The thirty-two 64-bit GPRs (GPR0–GPR31) are data source
or destination registers for integer instructions, and provide data to generate addresses.

• Condition register (CR)—The 32-bit CR consists of eight 4-bit fields, (CR0–CR7), that reflect the
results of arithmetic operations and are used for testing and branching.

The remaining user-level registers are SPRs. The PowerPC architecture has the mtspr and mfspr
instructions for accessing SPRs.

• Integer exception register (XER)—The XER indicates overflow and carries for integer operations.

USER MODE PROGRAMMER’S MODEL

GPR0
GPR1

• • •
GPR31

General Registers

SPR 9

SPR 8

SPR 1

CR

CTR

LR

XER

SPR 260SPRG4
SPR 261SPRG5
SPR 262SPRG6
SPR 263SPRG7

Count Register

Link Register

XER

General Purpose
Registers

SPR 515L1CFG0

User SPR
SPR 256USPRG0

Condition Register

Timers

TBL SPR 268
TBU SPR 269

SPR 512SPEFSCR

APU Register
SPE APU Status &
Control Register

SPR General
(Read-Only)

Control Registers

Time Base
(Read-Only)

Cache Register
Cache Configuration

(Read-Only)

Core Complex (e200z3)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 3-15

• Link register (LR)—The LR provides the branch target address for the Branch Conditional to Link
Register (bclr, bclrl) instructions, and is used to hold the address of the instruction that follows a
branch and link instruction, typically used for linking to subroutines.

• Count register (CTR)—The CTR holds a loop count that can be decremented during execution of
appropriately coded branch instructions. The CTR also provides the branch target address for the
Branch Conditional to Count Register (bcctr, bcctrl) instructions.

• Time Base facility (TB)— consists of two 32-bit registers—Time Base Upper (TBU) and Time
Base Lower (TBL). These two registers are accessible in a read-only fashion to user-level software.

• Software-use Special Purpose Registers (SPRGs)—The PowerPC Book E architecture defines how
software uses the SPRG4 through SPRG7 (SPRG4–SPRG7). These registers are read-only and are
accessed by user-level software. The e200z3 does not allow user mode access to the SPRG3
register (defined as implementation-dependent by Book E).

• User Software-Use Special Purpose Register (USPRG0)—The PowerPC Book E architecture
defines USPRG0 as a read-write register that is accessible by user-level software.

3.7.1.2 Supervisor-level Registers

In addition to the registers accessible in user mode, Supervisor-level software has access to additional
control and status registers used for configuration, exception handling, and other operating system
functions. The PowerPC Book E architecture defines the following supervisor-level registers:

• Processor Control registers
— Machine State Register (MSR). The MSR defines the state of the processor. The MSR can be

modified by the Move to Machine State Register (mtmsr), System Call (sc), and Return from
Exception (rfi, rfci, rfdi) instructions. It can be read by the Move from Machine State Register
(mfmsr) instruction. When an interrupt occurs, the contents of the MSR are saved to one of the
machine state save/restore registers (SRR1, CSRR1, DSRR1).

— Processor version register (PVR). This register is a read-only register that identifies the version
(model) and revision level of the PowerPC processor.

— Processor Identification Register (PIR). This read-only register is provided to distinguish the
processor from other processors in the system.

• Storage Control register
— Process ID Register (PID, also referred to as PID0). This register is provided to indicate the

current process or task identifier. It is used by the MMU as an extension to the effective address,
and by Nexus 2 module for Ownership Trace message generation. PowerPC Book E allows for
multiple PIDs; e200z3 implements only one.

• Interrupt Registers
— Data Exception Address Register (DEAR). After most Data Storage Interrupt (DSI), or on an

Alignment Interrupt, or Data TLB Miss Interrupt, the DEAR is set to the effective address (EA)
generated by the faulting instruction.

— SPRG0–SPRG7, USPRG0. The SPRG0–SPRG7 and USPRG0 registers are used by thee
operating system. e200 does not allow user mode access to the SPRG3 register (defined as
implementation dependent by Book E).

Core Complex (e200z3)

MPC5534 Microcontroller Reference Manual, Rev. 2

3-16 Freescale Semiconductor

— Exception Syndrome Register (ESR). The ESR register provides a syndrome to differentiate
between the different kinds of exceptions which can generate the same interrupt.

— Interrupt Vector Prefix Register (IVPR) and the Interrupt Vector Offset Registers
(IVOR0–IVOR15, IVOR32–IVORxx). These registers together provide the address of the
interrupt handler for different classes of interrupts.

— Save/Restore Register 0 (SRR0). The SRR0 register is used to save machine state on a
non-critical interrupt, and contains the address of the instruction at which execution resumes
when an rfi instruction is executed at the end of a non-critical class interrupt handler routine.

— Critical Save/Restore register 0 (CSRR0). The CSRR0 register is used to save machine state on
a critical interrupt, and contains the address of the instruction at which execution resumes when
an rfci instruction is executed at the end of a critical class interrupt handler routine.

— Save/Restore register 1 (SRR1). The SRR1 register is used to save machine state from the MSR
on non-critical interrupts, and to restore machine state when rfi executes.

— Critical Save/Restore register 1 (CSRR1). The CSRR1 register is used to save machine state
from the MSR on critical interrupts, and to restore machine state when rfci executes.

• Debug facility registers

— Debug Control Registers (DBCR0–DBCR2). These registers provide control for enabling and
configuring debug events.

— Debug Status Register (DBSR). This register contains debug event status.

— Instruction Address Compare registers (IAC1–IAC4). These registers contain addresses and/or
masks which are used to specify Instruction Address Compare debug events.

— Data address compare registers (DAC1–2). These registers contain addresses and/or masks
which are used to specify Data Address Compare debug events.

— e200 does not implement the Data Value Compare registers (DVC1 and DVC2).

• Timer Registers

— The clock inputs for the timers are connected to the internal system clock.

— Time base (TB). The TB is a 64-bit structure provided for maintaining the time of day and
operating interval timers. The TB consists of two 32-bit registers, Time Base Upper (TBU) and
Time Base Lower (TBL). The Time Base registers can be written to only by supervisor-level
software, but can be read by both user and supervisor-level software.

— Decrementer register (DEC). This register is a 32-bit decrementing counter that provides a
mechanism for causing a decrementer exception after a programmable delay.

— Decrementer Auto-Reload (DECAR). This register is provided to support the auto-reload
feature of the Decrementer.

— Timer Control Register (TCR). This register controls Decrementer, Fixed-Interval Timer, and
Watchdog Timer options.

— Timer Status Register (TSR). This register contains status on timer events and the most recent
Watchdog Timer-initiated processor reset.

More details about these registers can be found in the PowerPC Book E architecture specifications.

Core Complex (e200z3)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 3-17

3.7.2 e200-specific Registers

The PowerPC Book E architecture allows implementation-specific registers. Those incorporated in the
e200 core are described in the following sections.

3.7.2.1 User-level Registers

The user-level registers can be accessed by all software with either user or supervisor privileges. They
include the following:

• Signal Processing Extension APU status and control register (SPEFSCR). The SPEFSCR contains
all fixed-point and floating-point exception signal bits, exception summary bits, exception enable
bits, and rounding control bits needed for compliance with the IEEE 754 standard.

• The L1 Cache Configuration register (L1CFG0). This read-only register allows software to query
the configuration of the L1 cache.

3.7.2.2 Supervisor-level Registers

The following supervisor-level registers are defined in e200 in addition to the PowerPC Book E registers
described above:

• Configuration Registers

— Hardware implementation-dependent register 0 (HID0). This register controls various
processor and system functions.

— Hardware implementation-dependent register 1 (HID1). This register controls various
processor and system functions.

• Exception Handling and Control Registers

— Machine Check Syndrome register (MCSR). This register provides a syndrome to differentiate
between the different kinds of conditions which can generate a Machine Check.

— Debug Save/Restore register 0 (DSRR0). When enabled, the DSRR0 register is used to save
the address of the instruction at which execution continues when rfdi executes at the end of a
debug interrupt handler routine.

— Debug Save/Restore register 1 (DSRR1). When enabled, the DSRR1 register is used to save
machine status on debug interrupts and to restore machine status when rfdi executes.

• Debug Facility Registers

— Debug Control Register 3 (DBCR3)—This register provides control for debug functions not
described in PowerPC Book E architecture.

— Debug Counter Register (DBCNT)—This register provides counter capability for debug
functions.

• Branch Unit Control and Status Register (BUCSR) controls operation of the optional BTB. If an
optional BTB is not present, this register returns all zeros.

• L1 Cache Configuration Register (L1CFG0) is a read-only register that allows software to query
the configuration of the L1 Cache. This register returns all zeros.

• MMU Configuration Register (MMUCFG) is a read-only register that allows software to query the
configuration of the MMU.

Core Complex (e200z3)

MPC5534 Microcontroller Reference Manual, Rev. 2

3-18 Freescale Semiconductor

• Memory Management Unit Registers

— MMU Assist (MAS0-MAS4, MAS6) registers. These registers provide the interface to the core
from the Memory Management Unit.

— MMU Control and Status Register (MMUCSR0) controls invalidation of the MMU.

— TLB Configuration Registers (TLB0CFG, TLB1CFG) are read-only registers that allow
software to query the configuration of the TLBs.

• System version register (SVR). This register is a read-only register that identifies the version
(model) and revision level of the System which includes an e200 PowerPC processor.

It is not guaranteed that the implementation of e200 core-specific registers is consistent among PowerPC
processors, although other processors can implement similar or identical registers. More details about
these registers are in the e200z3 PowerPC Core Reference Manual.

3.8 Signal Processing Extension APU (SPE APU)

3.8.1 Overview

The e200z3 core provides a register file with thirty-two 64-bit registers. The PowerPC 32-bit Book E
instructions operate on the lower (least significant) 32 bits of the 64-bit register. New SPE instructions are
defined that view the 64-bit register as being composed of a vector of two 32-bit elements, and some of
the instructions also read or write 16-bit elements. These new instructions can also be used to perform
scalar operations by ignoring the results of the upper 32-bit half of the register file. Some instructions are
defined that produce a 64-bit scalar result. Vector fixed-point instructions operate on a vector of two 32-bit
or four 16-bit fixed-point numbers resident in the 64-bit GPRs. Vector floating-point instructions operate
on a vector of two 32-bit single-precision floating-point numbers resident in the 64-bit GPRs. Scalar
floating-point instructions operate on the lower half of GPRs. These single-precision floating-point
instructions do not have a separate register file; there is a single shared register file for all instructions. The
SPE and Book E instructions issue from a single instruction stream. Figure 3-7 shows two different
representations of the 64-bit GPRs. The shaded half is the only region operated on by the 32-bit PowerPC
instructions.

Figure 3-7. 64-bit General Purpose Registers

3.8.2 SPE Programming Model

Not all SPE instructions record events such as overflow, saturation and negative/positive result. See the
description of the individual SPE instruction in the e200z3 PowerPC Core Reference Manual for
information on which conditions are recorded and where they are recorded. Most SPE instructions record

0 31 32 63

GPRx Upper/Most Significant Word

15 16 47 480 31 32 63

GPRx

Lower/Least Significant Word

Core Complex (e200z3)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 3-19

conditions to the SPEFSCR. Vector compare instructions store the result of the comparison into the
condition register (CR).

The e200z3 core has a 64-bit architectural accumulator register that holds the results of the SPE multiply
accumulate (MAC) fixed-point instructions. The accumulator allows back-to-back execution of dependent
fixed-point MAC instructions, something that is found in the inner loops of DSP code such as filters. The
accumulator is partially visible to the programmer in that its results do not have to be explicitly read to use
them. Instead, they are always copied into a 64-bit destination GPR specified as part of the instruction. The
accumulator however, has to be explicitly cleared when starting a new MAC loop. Based upon the type of
instruction, an accumulator can hold either a single 64-bit value or a vector of two 32-bit elements.

3.9 Instruction Summary
In addition to the PowerPC Book E instructions, the MPC5534 supports e200 core specific instructions,
SPE APU instructions and VLE instructions.

See the PowerPC Microprocessor Family: The Programming Environment for 32-bit Microprocessors,
the e200z3 PowerPC Core Reference Manual and the Variable-Length Encoding (VLE) Extension
Programming Interface Manual documents.

3.9.1 SPE APU Simple and Complex Integer Instructions

The SPE APU supports both scalar and vector integer instructions. The instructions are grouped into two
categories according to the latency and throughput; Simple Integer Instructions and Complex Integer
Instructions.

The SPE APU Simple Integer Instructions perform operations such as addition, subtraction, logical
operations, rotate, shift, compare, round, merge and swap, and sign or zero-extend. Table 3-4 briefly
describes the SPE Simple Integer Instructions.

Table 3-4. SPE Simple Integer Instructions

Instruction Description

brinc Bit Reversed Increment

evabs Vector Absolute Value

evaddiw Vector Add Immediate Word

evaddw Vector Add Word

evand Vector AND

evandc Vector AND with Complement

evcmpeq Vector Compare Equal

evcmpgts Vector Compare Greater Than Signed

evcmpgtu Vector Compare Greater Than Unsigned

evcmplts Vector Compare Less Than Signed

evcmpltu Vector Compare Less Than Unsigned

Core Complex (e200z3)

MPC5534 Microcontroller Reference Manual, Rev. 2

3-20 Freescale Semiconductor

evcntlsw Vector Count Leading Sign Bits Word

evcntlzw Vector Count Leading Zeros Word

evdivws Vector Divide Word Signed

evdivwu Vector Divide Word Unsigned

eveqv Vector Equivalent

evextsb Vector Extend Sign Byte

evextsh Vector Extend Sign Half Word

evmergehi Vector Merge High

evmergehilo Vector Merge High/Low

evmergelo Vector Merge Low

evmergelohi Vector Merge Low/High

evnand Vector NAND

evneg Vector Negate

evnor Vector NOR

evor Vector OR

evorc Vector OR with Complement

evrlw Vector Rotate Left Word

evrlwi Vector Rotate Left Word Immediate

evrndw Vector Round Word

evsel Vector Select

evslw Vector Shift Left Word

evslwi Vector Shift Left Word Immediate

evsplatfi Vector Splat Fractional Immediate

evsplati Vector Splat Immediate

evsrwis Vector Shift Right Word Immediate Signed

evsrwiu Vector Shift Right Word Immediate Unsigned

evsrws Vector Shift Right Word Signed

evsrwu Vector Shift Right Word Unsigned

evsubfw Vector Subtract from Word

evsubifw Vector Subtract Immediate from Word

evxor Vector XOR

Table 3-4. SPE Simple Integer Instructions (continued)

Instruction Description

Core Complex (e200z3)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 3-21

The SPE APU Complex Integer Instructions perform operations such as multiplication, division, and
multiply and accumulate. Table 3-5 briefly describes the SPE Complex Integer Instructions.

Table 3-5. SPE Complex Integer Instructions

Instruction Description

evaddsmiaaw Vector Add Signed, Modulo, Integer to Accumulator Word

evaddssiaaw Vector Add Signed, Saturate, Integer to Accumulator Word

evaddumiaaw Vector Add Unsigned, Modulo, Integer to Accumulator Word

evaddusiaaw Vector Add Unsigned, Saturate, Integer to Accumulator Word

evdivws Vector Divide Word Signed

evdivwu Vector Divide Word Unsigned

evmhegsmfaa Vector Multiply Half Words, Even, Guarded, Signed, Modulo, Fractional and Accumulate

evmhegsmfan Vector Multiply Half Words, Even, Guarded, Signed, Modulo, Fractional and Accumulate Negative

evmhegsmiaa Vector Multiply Half Words, Even, Guarded, Signed, Modulo, Integer and Accumulate

evmhegsmian Vector Multiply Half Words, Even, Guarded, Signed, Modulo, Integer and Accumulate Negative

evmhegumiaa Vector Multiply Half Words, Even, Guarded, Unsigned, Modulo, Integer and Accumulate

evmhegumian Vector Multiply Half Words, Even, Guarded, Unsigned, Modulo, Integer and Accumulate Negative

evmhesmf Vector Multiply Half Words, Even, Signed, Modulo, Fractional

evmhesmfa Vector Multiply Half Words, Even, Signed, Modulo, Fractional, to Accumulator

evmhesmfaaw Vector Multiply Half Words, Even, Signed, Modulo, Fractional and Accumulate into Words

evmhesmfanw Vector Multiply Half Words, Even, Signed, Modulo, Fractional and Accumulate Negative into Words

evmhesmi Vector Multiply Half Words, Even, Signed, Modulo, Integer

evmhesmia Vector Multiply Half Words, Even, Signed, Modulo, Integer, to Accumulator

evmhesmiaaw Vector Multiply Half Words, Even, Signed, Modulo, Integer and Accumulate into Words

evmhesmianw Vector Multiply Half Words, Even, Signed, Modulo, Integer and Accumulate Negative into Words

evmhessf Vector Multiply Half Words, Even, Signed, Saturate, Fractional

evmhessfa Vector Multiply Half Words, Even, Signed, Saturate, Fractional, to Accumulator

evmhessfaaw Vector Multiply Half Words, Even, Signed, Saturate, Fractional and Accumulate into Words

evmhessfanw Vector Multiply Half Words, Even, Signed, Saturate, Fractional and Accumulate Negative into Words

evmhessiaaw Vector Multiply Half Words, Even, Signed, Saturate, Integer and Accumulate into Words

evmhessianw Vector Multiply Half Words, Even, Signed, Saturate, Integer and Accumulate Negative into Words

evmheumi Vector Multiply Half Words, Even, Unsigned, Modulo, Integer

evmheumia Vector Multiply Half Words, Even, Unsigned, Modulo, Integer, to Accumulator

evmheumiaaw Vector Multiply Half Words, Even, Unsigned, Modulo, Integer and Accumulate into Words

evmheumianw Vector Multiply Half Words, Even, Unsigned, Modulo, Integer and Accumulate Negative into Words

evmheusiaaw Vector Multiply Half Words, Even, Unsigned, Saturate, Integer and Accumulate into Words

Core Complex (e200z3)

MPC5534 Microcontroller Reference Manual, Rev. 2

3-22 Freescale Semiconductor

evmheusianw Vector Multiply Half Words, Even, Unsigned, Saturate, Integer and Accumulate Negative into Words

evmhogsmfaa Multiply Half Words, Odd, Guarded, Signed, Modulo, Fractional and Accumulate

evmhogsmfan Multiply Half Words, Odd, Guarded, Signed, Modulo, Fractional and Accumulate Negative

evmhogsmiaa Multiply Half Words, Odd, Guarded, Signed, Modulo, Integer and Accumulate

evmhogsmian Multiply Half Words, Odd, Guarded, Signed, Modulo, Integer and Accumulate Negative

evmhogumiaa Multiply Half Words, Odd, Guarded, Unsigned, Modulo, Integer and Accumulate

evmhogumian Multiply Half Words, Odd, Guarded, Unsigned, Modulo, Integer and Accumulate Negative

evmhosmf Vector Multiply Half Words, Odd, Signed, Modulo, Fractional

evmhosmfa Vector Multiply Half Words, Odd, Signed, Modulo, Fractional, to Accumulator

evmhosmfaaw Vector Multiply Half Words, Odd, Signed, Saturate, Fractional and Accumulate into Words

evmhosmfanw Vector Multiply Half Words, Odd, Signed, Saturate, Fractional and Accumulate Negative into Words

evmhosmi Vector Multiply Half Words, Odd, Signed, Modulo, Integer

evmhosmia Vector Multiply Half Words, Odd, Signed, Modulo, Integer, to Accumulator

evmhosmiaaw Vector Multiply Half Words, Odd, Signed, Modulo, Integer and Accumulate into Words

evmhosmianw Vector Multiply Half Words, Odd, Signed, Modulo, Integer and Accumulate Negative into Words

evmhossf Vector Multiply Half Words, Odd, Signed, Saturate, Fractional

evmhossfa Vector Multiply Half Words, Odd, Signed, Saturate, Fractional, to Accumulator

evmhossfaaw Vector Multiply Half Words, Odd, Signed, Saturate, Fractional and Accumulate into Words

evmhossfanw Vector Multiply Half Words, Odd, Signed, Saturate, Fractional and Accumulate Negative into Words

evmhossiaaw Vector Multiply Half Words, Odd, Signed, Saturate, Integer and Accumulate into Words

evmhossianw Vector Multiply Half Words, Odd, Signed, Saturate, Integer and Accumulate Negative into Words

evmhoumi Vector Multiply Half Words, Odd, Unsigned, Modulo, Integer

evmhoumia Vector Multiply Half Words, Odd, Unsigned, Modulo, Integer, to Accumulator

evmhoumiaaw Vector Multiply Half Words, Odd, Unsigned, Modulo, Integer and Accumulate into Words

evmhoumianw Vector Multiply Half Words, Odd, Unsigned, Modulo, Integer and Accumulate Negative into Words

evmhousiaaw Vector Multiply Half Words, Odd, Unsigned, Saturate, Integer and Accumulate into Words

evmhousianw Vector Multiply Half Words, Odd, Unsigned, Saturate, Integer and Accumulate Negative into Words

evmra Move Register to Accumulator

evmwhsmf Vector Multiply Word High Signed, Modulo, Fractional

evmwhsmfa Vector Multiply Word High Signed, Modulo, Fractional, to Accumulator

evmwhsmi Vector Multiply Word High Signed, Modulo, Integer

evmwhsmia Vector Multiply Word High Signed, Modulo, Integer, to Accumulator

evmwhssf Vector Multiply Word High Signed, Saturate, Fractional

Table 3-5. SPE Complex Integer Instructions (continued)

Instruction Description

Core Complex (e200z3)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 3-23

evmwhssfa Vector Multiply Word High Signed, Saturate, Fractional, to Accumulator

evmwhumi Vector Multiply Word High Unsigned, Modulo, Integer

evmwhumia Vector Multiply Word High Unsigned, Modulo, Integer, to Accumulator

evmwlsmf Vector Multiply Word Low Signed, Modulo, Fractional

evmwlsmfa Vector Multiply Word Low Signed, Modulo, Fractional, to Accumulator

evmwlsmfaaw Vector Multiply Word Low Signed, Modulo, Fractional and Accumulate in Words

evmwlsmfanw Vector Multiply Word Low Signed, Modulo, Fractional and Accumulate Negative in Words

evmwlsmiaaw Vector Multiply Word Low Signed, Modulo, Integer and Accumulate in Words

evmwlsmianw Vector Multiply Word Low Signed, Modulo, Integer and Accumulate Negative in Word

evmwlssf Vector Multiply Word Low Signed, Saturate, Fractional

evmwlssfa Vector Multiply Word Low Signed, Saturate, Fractional, to Accumulator

evmwlssfaaw Vector Multiply Word Low Signed, Saturate, Fractional and Accumulate in Words

evmwlssfanw Vector Multiply Word Low Signed, Saturate, Fractional and Accumulate Negative in Words

evmwlssiaaw Vector Multiply Word Low Signed, Saturate, Integer and Accumulate in Words

evmwlssianw Vector Multiply Word Low Signed, Saturate, Integer and Accumulate Negative in Words

evmwlumi Vector Multiply Word Low Unsigned, Modulo, Integer

evmwlumia Vector Multiply Word Low Unsigned, Modulo, Integer, to Accumulator

evmwlumiaaw Vector Multiply Word Low Unsigned, Modulo, Integer and Accumulate in Words

evmwlumianw Vector Multiply Word Low Unsigned, Modulo, Integer and Accumulate Negative in Words

evmwlusiaaw Vector Multiply Word Low Unsigned, Saturate, Integer and Accumulate in Words

evmwlusianw Vector Multiply Word Low Unsigned, Saturate, Integer and Accumulate Negative in Words

evmwsmf Vector Multiply Word Signed, Modulo, Fractional

evmwsmfa Vector Multiply Word Signed, Modulo, Fractional, to Accumulator

evmwsmfaa Vector Multiply Word Signed, Modulo, Fractional and Accumulate

evmwsmfan Vector Multiply Word Signed, Modulo, Fractional and Accumulate Negative

evmwsmi Vector Multiply Word Signed, Modulo, Integer

evmwsmia Vector Multiply Word Signed, Modulo, Integer, to Accumulator

evmwsmiaa Vector Multiply Word Signed, Modulo, Integer and Accumulate

evmwsmian Vector Multiply Word Signed, Modulo, Integer and Accumulate Negative

evmwssf Vector Multiply Word Signed, Saturate, Fractional

evmwssfa Vector Multiply Word Signed, Saturate, Fractional, to Accumulator

evmwssfaa Vector Multiply Word Signed, Saturate, Fractional and Accumulate

evmwssfan Vector Multiply Word Signed, Saturate, Fractional and Accumulate Negative

Table 3-5. SPE Complex Integer Instructions (continued)

Instruction Description

Core Complex (e200z3)

MPC5534 Microcontroller Reference Manual, Rev. 2

3-24 Freescale Semiconductor

3.9.2 SPE APU Scalar and Vector Floating Point Instructions

Support for a single precision floating point format is implemented in the SPE APU. The single precision
format consists of a sign bit, an 8-bit exponent, and a 23-bit fraction. The floating point instructions can
operate on both of the 32-bit fields in the 64-bit GPRs e.g. two pairs of single precision floating point
numbers can be multiplied simultaneously. The supported floating point operations include: add, subtract,
compare/test, multiply, and divide.

The SPE unit in the e200 implements several instructions to facilitate converting between floating point
and fixed point formats. Various fixed point formats are supported including signed and unsigned, integer
and fractional formats. Table 3-6 briefly describes the SPE Scalar Floating Point and Conversion
Instructions.

evmwumi Vector Multiply Word Unsigned, Modulo, Integer

evmwumia Vector Multiply Word Unsigned, Modulo, Integer, to Accumulator

evmwumiaa Vector Multiply Word Unsigned, Modulo, Integer and Accumulate

evmwumian Vector Multiply Word Unsigned, Modulo, Integer and Accumulate Negative

evsubfsmiaaw Vector Subtract Signed, Modulo, Integer to Accumulator Word

evsubfssiaaw Vector Subtract Signed, Saturate, Integer to Accumulator Word

evsubfumiaaw Vector Subtract Unsigned, Modulo, Integer to Accumulator Word

evsubfusiaaw Vector Subtract Unsigned, Saturate, Integer to Accumulator Word

Table 3-6. SPE Scalar Floating Point and Conversion Instructions

Instruction Description

efsabs Floating-Point Absolute Value

efsadd Floating-Point Add

efscfsf Convert Floating-Point from Signed Fraction

efscfsi Convert Floating-Point from Signed Integer

efscfuf Convert Floating-Point from Unsigned Fraction

efscfui Convert Floating-Point from Unsigned Integer

efscmpeq Floating-Point Compare Equal

efscmpgt Floating-Point Compare Greater Than

efscmplt Floating-Point Compare Less Than

efsctsf Convert Floating-Point to Signed Fraction

efsctsi Convert Floating-Point to Signed Integer

efsctsiz Convert Floating-Point to Signed Integer with Round toward Zero

efsctuf Convert Floating-Point to Unsigned Fraction

Table 3-5. SPE Complex Integer Instructions (continued)

Instruction Description

Core Complex (e200z3)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 3-25

Table 3-7 briefly describes the SPE Vector Floating Point and Conversion Instructions.

efsctui Convert Floating-Point to Unsigned Integer

efsctuiz Convert Floating-Point to Unsigned Integer with Round toward Zero

efsdiv Floating-Point Divide

efsmul Floating-Point Multiply

efsnabs Floating-Point Negative Absolute Value

efsneg Floating-Point Negate

efssub Floating-Point Subtract

efststeq Floating-Point Test Equal

efststgt Floating-Point Test Greater Than

efststlt Floating-Point Test Less Than

efsabs Floating-Point Absolute Value

efsadd Floating-Point Add

efscfsf Convert Floating-Point from Signed Fraction

efscfsi Convert Floating-Point from Signed Integer

efscfuf Convert Floating-Point from Unsigned Fraction

efscfui Convert Floating-Point from Unsigned Integer

efscmpeq Floating-Point Compare Equal

Table 3-7. SPE Vector Floating Point and Conversion Instructions

Instruction Description

evfsabs Vector Floating-Point Absolute Value

evfsadd Vector Floating-Point Add

evfscfsf Vector Convert Floating-Point from Signed Fraction

evfscfsi Vector Convert Floating-Point from Signed Integer

evfscfuf Vector Convert Floating-Point from Unsigned Fraction

evfscfui Vector Convert Floating-Point from Unsigned Integer

evfscmpeq Vector Floating-Point Compare Equal

evfscmpgt Vector Floating-Point Compare Greater Than

evfscmplt Vector Floating-Point Compare Less Than

evfsctsf Vector Convert Floating-Point to Signed Fraction

evfsctsi Vector Convert Floating-Point to Signed Integer

evfsctsiz Vector Convert Floating-Point to Signed Integer with Round toward Zero

Table 3-6. SPE Scalar Floating Point and Conversion Instructions (continued)

Instruction Description

Core Complex (e200z3)

MPC5534 Microcontroller Reference Manual, Rev. 2

3-26 Freescale Semiconductor

3.9.3 SPE APU Load and Store Instructions

To effectively operate on the 64-bit register file, the SPE APU supports load and store instructions that
handle up to 64 bits at the time. These 64 bits can be interpreted as two words or four half-words depending
on the instruction as shown in Figure 3-7.

Every Vector Load/Store instruction has an indexed and a non-indexed version. The mnemonic for the
indexed version is appended with an ’x’ to indicate an indexed instruction. For example the indexed
version of the evldd instruction is evlddx. Table 3-8 briefly describes the SPE Load and Store Instructions.

evfsctuf Vector Convert Floating-Point to Unsigned Fraction

evfsctui Vector Convert Floating-Point to Unsigned Integer

evfsctuiz Vector Convert Floating-Point to Unsigned Integer with Round toward Zero

evfsdiv Vector Floating-Point Divide

evfsmul Vector Floating-Point Multiply

evfsnabs Vector Floating-Point Negative Absolute Value

evfsneg Vector Floating-Point Negate

evfssub Vector Floating-Point Subtract

evfststeq Vector Floating-Point Test Equal

evfststgt Vector Floating-Point Test Greater Than

evfststlt Vector Floating-Point Test Less Than

Table 3-8. SPE Load and Store Instructions

Instruction Description

evldd Vector Load Double into Double

evldh Vector Load Double into Halfwords

evldw Vector Load Double into Words

evlhhesplat Vector Load Halfword into Halfword Even and Splat

evlhhossplat Vector Load Halfword into Halfword Odd Signed and Splat

evlhhousplat Vector Load Halfword into Halfword Odd Unsigned and Splat

evlwhe Vector Load Word into Halfwords Even

evlwhos Vector Load Word into Halfwords Odd Signed (with sign extension)

evlwhou Vector Load Word into Halfwords Odd Unsigned (zero-extended)

evlwhsplat Vector Load Word into Halfwords and Splat

evlwwsplat Vector Load Word into Word and Splat

evstdd Vector Store Double of Double

Table 3-7. SPE Vector Floating Point and Conversion Instructions (continued)

Instruction Description

Core Complex (e200z3)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 3-27

3.10 Book E Instruction Extensions—VLE
The variable length encoding (VLE) provides an extension to 32-bit PowerPC Book E. There are
additional operations defined using an alternate instruction encoding to enable reduced code footprint.
This alternate encoding set is selected on an instruction page basis. A single page attribute bit selects
between standard PowerPC Book E instruction encodings and VLE instructions for that page of memory.
This page attribute is an extension to the PowerPC Book E page attributes. Pages can be freely intermixed,
allowing for a mixture of code using both types of encodings.

Instruction encodings in pages marked as using the VLE extension are either 16 or 32 bits, and are aligned
on 16-bit boundaries. Therefore, all instruction pages marked as VLE are required to use big-endian byte
ordering.

This section describes the various extensions to Book E instructions to support the VLE extension.

rfci, rfdi, rfi—no longer mask bit 62 of CSRR0, DSRR0, or SRR0 respectively. The destination address
is [D,C]SRR0[32:62] || 0b0.

bclr, bclrl, bcctr, bcctrl—no longer mask bit 62 of the LR or CTR respectively. The destination address
is [LR,CTR][32:62] || 0b0.

evstdh Vector Store Double of Four Halfwords

evstdw Vector Store Double of Two Words

evstwhe Vector Store Word of Two Halfwords from Even

evstwho Vector Store Word of Two Halfwords from Odd

evstwwe Vector Store Word of Word from Even

evstwwo Vector Store Word of Word from Odd

Table 3-8. SPE Load and Store Instructions (continued)

Instruction Description

Core Complex (e200z3)

MPC5534 Microcontroller Reference Manual, Rev. 2

3-28 Freescale Semiconductor

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 4-1

Chapter 4
Reset

4.1 Introduction
The following reset sources are supported in this device:

• Power-on reset

• External reset (324 package only)

• Loss-of-lock reset

• Loss-of-clock reset

• Watchdog timer/debug reset

• JTAG reset

• Checkstop reset

• Software system reset

• Software external reset (324 package only)

The reset status register (SIU_RSR) gives the source of the last reset and indicates whether a glitch
occurred on the RESET pin. The SIU_RSR is updated for all reset sources.

All reset sources are processed by the reset controller, which is located in the SIU module. The reset
controller monitors the reset input sources and when a reset event is detected, resets the internal logic and
controls the assertion of the RSTOUT pin. All reset sources invoke the boot assist module (BAM)
program, except for the software external reset.

You can assert the RSTOUT signal by setting the SER bit in the SIU_SRCR to 1. The PLL configuration
determines the number of system clocks1 the RSTOUT signal is asserted. This does not reset the MCU.
All other reset sources initiate an internal reset of the MCU.

For more information, see Section 4.2.2, “Reset Output (RSTOUT)”.

For all reset sources, use the BOOTCFG[0:1] signals to determine the boot mode and the PLLCFG[0:1]
signals to determine the FMPLL configuration. If the RSTCFG pin is asserted during reset, the values on
the BOOTCFG[0:1] pins are latched in the SIU_RSR four clock cycles before the RSTOUT pin deasserts,
determining the boot mode. The values on the PLLCFG[0:1] pins are latched when the RSTOUT pin
deasserts, determining the configuration of the FMPLL. If the RSTCFG pin deasserts during reset, the
FMPLL defaults to normal operation (PLL enabled) with a crystal reference, and the boot mode (latched
in the SIU_RSR) defaults to internal boot from flash.

1. Unless noted otherwise, the use of ‘clock’ or ‘clocks’ in this section is a reference to the system clock.

Reset

MPC5534 Microcontroller Reference Manual, Rev. 2

4-2 Freescale Semiconductor

208 Package: BOOTCFG[0] and RSTCFG signals are not available due to pin limitations and are
internally asserted (driven to 0). Therefore, the BOOTCFG[1] and PLLCFG[0:1] pins
are always sampled.

The state of the BOOTCFG[0:1] pins specifies the location of the RCHW (internal flash or external
memory), or that the MCU is configured to boot from a serial (eSCI) or FlexCAN port. See Chapter 2,
“Signals” a complete description of the BOOTCFG[0:1].

The BAM program reads the values of the BOOTCFG[0:1] pins from the SIU_RSR, then reads the RCHW
from the specified location and uses the RCHW value to determine and execute the specified boot
procedure. See Section 4.4.3, “Reset Configuration and Configuration Pins,” for a complete description.

The reset status register (SIU_RSR) gives the source of the last reset and indicates whether a glitch
occurred on the RESET pin. The SIU_RSR is updated for all reset sources.

The reset configuration half word (RCHW) provides several basic functions at reset:

• Locates the boot code

• Configures flash memory to either program or erase

• Enables or disables the watchdog timer

• Configures the MMU to boot: classic PowerPC Book E code or Freescale VLE code

• Sets the bus size (external boot only)

208 Package: BOOTCFG[0] is not available due to pin limitations and is internally asserted
(driven to 0).

4.2 External Signal Description

4.2.1 Reset Input (RESET)

Assert the RESET pin as an active low input by an external device during a power-on or external reset.
The RESET pin must assert for at least 10 clock cycles to assert the internal reset signal. Assertion of the
RESET pin while the device is in reset restarts the reset cycle. The RESET pin has a glitch detector to
detect spikes more than two clocks in duration that fall below the switch point of the input buffer logic.

4.2.2 Reset Output (RSTOUT)

The RSTOUT pin is an active low output that uses a push/pull configuration. The RSTOUT pin is driven
to the low state by the MCU for all internal and external reset sources.

After the RESET input deasserts, if the PLL is configured for 1:1 (dual controller) mode or bypass mode,
the RSTOUT signal asserts for 16000 clocks, plus four clocks for sampling the configuration pins. If the
PLL is configured for another operating mode, the RSTOUT signal asserts for 2400 clocks, plus four
clocks for sampling of the configuration pins. See Section 11.1.4, “FMPLL Modes of Operation” for
details of PLL configuration.

Writing a one to the SER bit of the system reset control register (SIU_SRCR) asserts the RSTOUT pin.

Reset

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 4-3

NOTE
During a power on reset, RSTOUT is tri-stated.

4.2.3 Reset Configuration (RSTCFG)

The RSTCFG input is used to enable the BOOTCFG[0:1] and PLLCFG[0:1] pins during reset. If RSTCFG
deasserts during reset, the BOOTCFG and PLLCFG pins are not sampled when RSTOUT deasserts. In that
case, the default values for BOOTCFG and PLLCFG are used. If RSTCFG asserts during reset, the values
on the BOOTCFG and PLLCFG pins are sampled and used to configure the boot and FMPLL modes.

208 Package: BOOTCFG[0] and RSTCFG signals are not available due to pin limitations and are
internally asserted (driven to 0). Therefore, the BOOTCFG[1] and PLLCFG[0:1] pins
are always sampled.

4.2.4 Weak Pull Configuration (WKPCFG)

WKPCFG determines whether specified eTPU and eMIOS pins are connected to a weak pullup or weak
pulldown during and immediately after reset.

4.2.5 Boot Configuration (BOOTCFG[0:1])

BOOTCFG determines the function and state of the following pins after execution of the BAM reset:
CS[0, 2:3], ADDR[8:31], DATA[0:15], RD_WR, BDIP, WE/BE[0:1], OE, TS, TA.

208 Package: BOOTCFG[0] is not available due to pin limitations and is internally asserted
(driven to 0). CS[1:3] are not available due to pin limitations in the 208 package.

4.3 Memory Map/Register Definition
Table 4-1 summarizes the reset controller registers. The base address of the system integration unit is
0xC3F9_0000.

Table 4-1. Reset Controller Memory Map

Address Register Name Register Description Bits

Base (0xC3F9_0000) + 0x000C SIU_RSR Reset status register 32

Base (0xC3F9_0000) + 0x0010 SIU_SRCR System reset control register 32

Reset

MPC5534 Microcontroller Reference Manual, Rev. 2

4-4 Freescale Semiconductor

4.3.1 Register Descriptions

This section describes all the reset controller registers. It includes details about the fields in each register,
the number of bits per field, the reset value of the register, and the function of the register.

4.3.1.1 Reset Status Register (SIU_RSR)

The reset status register (SIU_RSR) can be read at all times and contains a bit flag for each reset source,
as well as the source of the last reset. A reset source bit flag set to 1 indicates that type of reset occurred.
Simultaneous reset requests set more than one bit at the same time. Once set, the reset source bits in the
SIU_RSR remain set until another reset occurs, except for a software external reset.

A software external reset sets the SERF bit, but does not clear any previously set bits in the SIU_RSR.

For additional information about the SIU_RSR, see Section 6.4.1.2, “Reset Status Register (SIU_RSR).”

The SIU_RSR also contains the values latched at the last reset on the WKPCFG and BOOTCFG[0:1] pins
and a RESET input pin glitch flag. The reset glitch flag (RGF) is cleared to 0 by writing a 1 to the bit. A
write of 0 has no effect on the bit value.

208 Package: BOOTCFG[0] is not available due to pin limitations and is internally asserted
(driven to 0).

Address: Base + 0x000C Access: User R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R PORS ERS LLRS LCRS WDRS CRS 0 0 0 0 0 0 0 0 SSRS SERF

W w1c

Reset1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R WKP
CFG

0 0 0 0 0 0 0 0 0 0 0 0 BOOTCFG RGF

W w1c

Reset —2 0 0 0 0 0 0 0 0 0 0 0 0 —3, 4 —3 0
1 The RESET values for this register are defined for power-on reset only.
2 The RESET value of this bit or field is determined by the value latched on the associated pin or pins at the

deassertion of the last reset.
3 The RESET value of this bit or field is determined by the value latched on the associated pin or pins at the

deassertion of the last reset. On the 324 package, when RSTCFG is not asserted, a default value of 0b10 is loaded
into BOOTCFG.

4 208 Package: BOOTCFG[0] is not available due to pin limitations and is internally asserted ((driven to 0).

Figure 4-1. Reset Status Register (SIU_RSR)

Reset

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 4-5

Table 4-2. SIU_RSR Field Descriptions

Field Description

0
PORS

Power-on reset status
0 No power-on reset has occurred
1 A power-on reset has occurred

1
ERS

External reset status
0 No external reset has occurred
1 An external reset has occurred
The ERS bit is also set during a POR event

2
LLRS

Loss-of-lock reset status
0 No loss-of-lock reset has occurred
1 A loss-of-lock reset has occurred

3
LCRS

Loss-of-clock reset status
0 No loss-of-clock reset has occurred
1 A loss-of-clock reset has occurred due to a loss of the reference or failure of the FMPLL

4
WDRS

Watchdog timer/debug reset status
0 No watchdog timer or debug reset has occurred
1 A watchdog timer or debug reset has occurred

5
CRS

Checkstop reset status
0 No enabled checkstop reset has occurred
1 An enabled checkstop reset has occurred

6–13 Reserved

14
SSRS

Software system reset status
0 No software system reset has occurred.
1 A software system reset has occurred.

15
SERF

Software external reset flag. Write a 1 to clear this bit.
0 No software external reset has occurred
1 A software external reset has occurred

16
WKPCFG

Weak pull configuration pin status
0 WKPCFG pin latched during the last reset was logic 0 and weak pull down is the default setting
1 WKPCFG pin latched during the last reset was logic 1 and weak pull up is the default setting

17–28 Reserved

29–30
BOOTCFG

Reset configuration pin status. Holds the value of the BOOTCFG[0:1] pins that was latched 4 clocks before
the last deassertion of the RSTOUT pin, if the RSTCFG pin was asserted. If the RSTCFG pin was deasserted
at the last deassertion of RSTOUT, the BOOTCFG field is set to the value 0b00. The BOOTCFG field is used
by the BAM program to determine the location of the reset configuration half word. See Section 4.4.3.5,
“Reset Configuration Half Word (RCHW),” for a translation of the reset configuration half word location from
the BOOTCFG field value.

208Package: BOOTCFG[0] and RSTCFG are not available due to pin limitations and are internally asserted
(driven to 0) in the 208 package. Therefore, BOOTCFG[1] and PLLCFG[0:1] are always
sampled.

31
RGF

RESET glitch flag. Set by the MCU when the RESET pin is asserted for more than 2 clocks clock cycles, but
less than the minimum RESET assertion time of 10 consecutive clocks to cause a reset. This bit is cleared
by the reset controller for a valid assertion of the RESET pin or a power-on reset or a write of 1 to the bit.
0 No glitch was detected on the RESET pin
1 A glitch was detected on the RESET pin

Reset

MPC5534 Microcontroller Reference Manual, Rev. 2

4-6 Freescale Semiconductor

4.3.1.2 System Reset Control Register (SIU_SRCR)

The system reset control register (SIU_SRCR) allows software to generate either a software system reset
or software external reset. The software system reset causes an internal reset sequence, while the software
external reset only causes the external RSTOUT pin to be asserted. When written to 1, the SER bit
automatically clears after a predetermined number of clock cycles (see Section 4.2.2, “Reset Output
(RSTOUT)”). If the value of the SER bit is 1 and a 0 is written to the bit, the bit is cleared and the RSTOUT
pin is deasserted regardless of whether the relevant number of clocks has expired.

The CRE bit in the SIU_SRCR allows software to enable a checkstop reset. If enabled, a checkstop reset
occurs if the checkstop reset input to the reset controller asserts. The checkstop reset is enabled by default.

Address: Base + 0x0010 Access: User R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
SSR SER

0 0 0 0 0 0 0 0 0 0 0 0 0 0
CRE

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 The CRE bit is reset to 1 by POR. Other resets sources do not reset the bit value.

Figure 4-2. System Reset Control Register (SIU_SRCR)

Table 4-3. SIU_SRCR Field Descriptions

Field Description

0
SSR

Software system reset. Writing a 1 to this bit causes an internal reset and assertion of the RSTOUT pin. The
bit is automatically cleared by all reset sources except the software external reset.
0 Do not generate a software system reset
1 Generate a software system reset

1
SER

Software external reset. Writing a 1 to this bit causes an software external reset. The RSTOUT pin is
asserted for a predetermined number of clock cycles (see Section 4.2.2, “Reset Output (RSTOUT)”), but the
MCU is not reset. The bit is automatically cleared when the software external reset completes.
0 Do not generate an software external reset
1 Generate an software external reset

2–15 Reserved

16
CRE

Checkstop reset enable
Writing a 1 to this bit enables a checkstop reset when the e200z3 core enters a checkstop state. The CRE
bit defaults to checkstop reset enabled. This bit is reset at POR.
0 No reset occurs when the e200z3 core enters a checkstop state
1 A reset occurs when the e200z3 core enters a checkstop state

17–31 Reserved

Reset

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 4-7

4.4 Functional Description

4.4.1 Reset Vector Locations

The reset vector contains a pointer to the instruction where code execution begins after BAM execution.
The location of the reset vector is determined by boot mode, as illustrated in Table 4-4.

4.4.2 Reset Sources

4.4.2.1 FMPLL Lock

A loss-of-lock of the FMPLL can cause a reset (provided the reset source is enabled by the
FMPLL_SYNCR[LOLRE] bit). Regardless of the reset source, RESET remains asserted until the FMPLL
locks.

4.4.2.2 Flash High Voltage

There is no flash access gating signal implemented in this device. This device remains in RESET to
guarantee that high voltage circuits are reset and stabilized and that flash memory is accessible.

4.4.2.3 Reset Source Descriptions

For the following reset source descriptions see the reset flow diagrams in Figure 4-5 and Figure 4-6.
Figure 4-5 shows the reset flow for assertion of the RESET pin. Figure 4-6 shows the internal processing
of reset for all reset sources.

4.4.2.3.1 Power-on Reset

The power-on reset (POR) circuit is designed to detect a POR event and ensure that the RESET signal is
correctly sensed. Do not use the POR to detect falling power supply voltages. Ensure that the external
power supply is monitored. The output signals from the power-on reset circuits are active low signals. All
power-on reset output signals are combined into one POR signal at the VDD level and input to the reset
controller.

Table 4-4. Reset Vector Locations

Boot Mode Reset Vector Location

External Boot 0x0000_0004 (0x0000_0000 must have a valid RCHW)

Internal Boot Next word address after the first valid RCHW found. The BAM searches the lowest
address of each of the six low address space blocks in flash memory for a valid
RCHW. Hence, the possible reset vector locations are:
0x0000_0004
0x0000_4004
0x0001_0004
0x0001_C004
0x0002_0004
0x0003_0004

Serial Boot Specified over serial download

Reset

MPC5534 Microcontroller Reference Manual, Rev. 2

4-8 Freescale Semiconductor

NOTE
Even though asserting the power-on reset (POR) signal causes a reset, you
must also assert the RESET pin at the same time to guarantee the MCU
operates correctly.

The PLLCFG[0:1] and RSTCFG pins determine the configuration of the FMPLL.

• If RSTCFG is asserted when RSTOUT deasserts, the PLLCFG[0:1] pins set the operating mode of
the FMPLL.

• If RSTCFG is asserted anytime that RSTOUT is asserted, the FMPLL switches to the mode
specified by the PLLCFG[0:1] pins.

The values on the RSTCFG and the PLLCFG[0:1] pins must be kept constant once RSTCFG asserts to
avoid transient mode changes in the FMPLL. If the reset configuration RSTCFG pin is in the deasserted
state when RSTOUT deasserts, the FMPLL defaults to enabled with a crystal reference. See Chapter 11,
“Frequency Modulated Phase Locked Loop and System Clocks (FMPLL),” for more details on the
operation of the FMPLL and the PLLCFG[0:1] pins.

The signal on the WKPCFG pin determines whether weak pullup or pulldown devices are enabled after
reset on the eTPU and eMIOS pins. The WKPCFG pin is applied when the internal reset signal asserts, as
indicated by the assertion of RSTOUT. See Figure 4-4 and Chapter 2, “Signals,” for more information on
WKPCFG and RSTOUT.

Once the RESET input pin deasserts, the reset controller checks if the FMPLL is locked. The internal reset
signal and RSTOUT remain asserted until the FMPLL is locked. After the FMPLL is locked, the reset
controller waits a predetermined number of clock cycles (See Section 4.2.2, “Reset Output (RSTOUT)”)
before deasserting the RSTOUT pin. The WKPCFG and BOOTCFG[0:1] pins (the BOOTCFG[0:1] pins
are sampled only if RSTCFG asserts) are sampled four clock cycles before RSTOUT deasserts, and the
reset status register (SIU_RSR) fields are updated. The PORS and ERS bits are set, and all other reset
status bits are cleared.

208 Package: BOOTCFG[0] and RSTCFG are not available due to pin limitations, and are internally
asserted (driven to 0). Therefore, BOOTCFG[1] and PLLCFG[0:1] are always
sampled.

4.4.2.3.2 External Reset

The external reset feature is available on this device in the 324 package only, which has a 16-bit external
bus interface. The 208 package does not have EBI pins, therefore the external reset feature is not
supported.

When the reset controller detects assertion of the RESET pin, the internal reset signal and RSTOUT are
asserted. Starting at the assertion of the internal reset signal (as indicated by assertion of RSTOUT), the
value on the WKPCFG pin is applied; at the same time the PLLCFG[0:1] values are applied if RSTCFG
is asserted. Once the RESET pin is deasserted and the FMPLL loss-of-lock request signal is deasserted,
the reset controller waits the predetermined number of clock cycles (see Section 4.2.2, “Reset Output
(RSTOUT)”).

Reset

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 4-9

Once the clock count completes, the WKPCFG and BOOTCFG[0:1] pins are sampled (BOOTCFG[0:1]
are sampled only if RSTCFG is asserted). The reset controller then waits four clock cycles before the
deasserting RSTOUT, and updates the fields in the SIU_RSR. In addition, the ERS bit is set, and all other
reset status bits in the SIU_RSR are cleared.

208 Package: There are no external bus interface (EBI) pins on this package.

4.4.2.3.3 Loss-of-Lock Reset

A loss-of-lock reset occurs when the FMPLL loses lock and the loss-of-lock reset enable (LOLRE) bit in
the FMPLL synthesizer control register (FMPLL_SYNCR) is set. Beginning when the internal reset
asserts, as indicated by the device reset signal (RSTOUT) asserting, the weak pull value is applied on the
WKPCFG pin. At the same time, the PLLCFG[0:1] values are applied if RSTCFG is asserted.

When the FMPLL locks, the reset controller waits until the predetermined clock count finishes and then
the WKPCFG and BOOTCFG[0:1] pins are sampled (BOOTCFG[0:1] pins are only sampled if RSTCFG
is asserted). The reset controller then waits four clock cycles before deasserting RSTOUT, and updating
the Reset Status Register (SIU_RSR) fields. In addition, the LLRS bit is set, and all other reset status bits
in the SIU_RSR are cleared.

208 Package: BOOTCFG[0] is not available due to pin limitations and is internally asserted
(driven to 0).

For more information, see:

• Section 4.2.2, “Reset Output (RSTOUT)”

• Chapter 11, “Frequency Modulated Phase Locked Loop and System Clocks (FMPLL)”

4.4.2.3.4 Loss-of-Clock Reset

A loss-of-clock reset occurs when the FMPLL detects a failure in either the reference signal or FMPLL
output, and the loss-of-clock reset enable (LOCRE) bit in the FMPLL_SYNCR is set. The internal reset
signal is asserted (as indicated by assertion of RSTOUT). Starting at the assertion of the internal reset
signal (as indicated by assertion of RSTOUT), the value on the WKPCFG pin is applied; at the same time
the PLLCFG[0:1] values are applied if RSTCFG is asserted. Once the FMPLL has a clock and is locked,
the reset controller waits the predetermined clock cycles (See Section 4.2.2, “Reset Output (RSTOUT)”)
before deasserting RSTOUT. When the clock count finishes the WKPCFG and BOOTCFG[0:1] pins are
sampled (BOOTCFG[0:1] pins are only sampled if RSTCFG is asserted). The reset controller then waits
4 clock cycles before the deasserting RSTOUT, and the associated bits/fields are updated in the SIU_RSR.
In addition, the LCRS bit is set, and all other reset status bits in the SIU_RSR are cleared. See
Section 11.4.2.6, “Loss-of-Clock Detection,” for more information on loss-of-clock.

208 Package: BOOTCFG[0] is not available due to pin limitations and is internally asserted
(driven to 0).

Reset

MPC5534 Microcontroller Reference Manual, Rev. 2

4-10 Freescale Semiconductor

4.4.2.3.5 Watchdog Timer/Debug Reset

The WDRS bit in the reset status register (SIU_RSR) is set when the watchdog timer or a debug request
reset occurs.

A watchdog timer reset occurs and the WDRS bit is set when all the following conditions occur:

• e200z3 core watchdog timer is enabled with the enable next watchdog timer (EWT)

• Watchdog timer interrupt status (WIS) bits are set in the timer status register (TSR)

• Watchdog reset control (WRC) field in the timer control register (TCR) is configured to reset

• Time-out occurs

The debug tool can issue a debug reset command by writing 2’b10 to the RST bit {DBCR0[2:3]} register
in the e200z3 core, which sets the WDRS bit in the reset status register of the systems integration unit
(SIU_RSR).

To determine if WDRS was set by a watchdog timer or debug reset, check the WRS field in the e200z3
core TSR.

The effect of a watchdog timer or debug reset request is the same on the reset controller.

The debug tool can also reset the device using one of the following methods:

• Debug tool asserts the RESET signal on the RESET_b pin

• Debug tool sets the software system reset (SSR) bit in the system reset control register
(SIU_SRCR)

The debug tool writes a one to the software external reset (SER) bit in the system reset control register
(SIU_SRCR) to generate an external software reset.

The device comes out of reset using the following sequence:

1. Starting when the internal reset signal asserts, as indicated by RSTOUT asserting, the value on the
WKPCFG pin is applied. At the same time, the PLLCFG[0:1] values are applied only if RSTCFG
is asserted.

2. After the FMPLL is locked, the reset controller waits the predetermined number of clock cycles
before negating RSTOUT. When the clock count finishes, WKPCFG and BOOTCFG[0:1] are
sampled. BOOTCFG[0:1] is only sampled if RSTCFG asserts.

3. The reset controller then waits four clock cycles before the deasserting RSTOUT, and then updates
the SIU_RSR. The WTRS bit is set and all other reset status bits in the SIU_RSR are cleared.

See the e200z3 Core Guide for more information on the watchdog timer and debug operation.

See Section 4.2.2, “Reset Output (RSTOUT).”

208 Package: BOOTCFG[0] is not available due to pin limitations and is internally asserted
(driven to 0).

Reset

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 4-11

4.4.2.3.6 Checkstop Reset

When the e200z3 core enters a checkstop state, and the checkstop reset is enabled (the CRE bit in the
system reset control register (SIU_SRCR) is set), a checkstop reset occurs. Starting at the assertion of the
internal reset signal (as indicated by assertion of RSTOUT), the value on the WKPCFG pin is applied; at
the same time the PLLCFG[0:1] values are applied if RSTCFG is asserted. Once the FMPLL is locked,
the reset controller waits a predetermined number of clock cycles (see Section 4.2.2, “Reset Output
(RSTOUT)”) before deasserting RSTOUT.When the clock count finishes the WKPCFG and
BOOTCFG[0:1] pins are sampled (the BOOTCFG[0:1] pins are only sampled if RSTCFG is asserted).
The reset controller then waits four clock cycles before the deasserting RSTOUT, and the associated
bits/fields are updated in the SIU_RSR. In addition, the CRS bit is set, and all other reset status bits in the
SIU_RSR are cleared. See e200z3 Core Guide for more information.

208 Package: BOOTCFG[0] is not available due to pin limitations and is internally asserted
(driven to 0).

4.4.2.3.7 JTAG Reset

A system reset occurs when JTAG is enabled and either the EXTEST, CLAMP, or HIGHZ instructions are
executed by the JTAG controller. When the internal reset signal asserts (indicated by RSTOUT asserting),
the value on the WKPCFG pin is applied, and at the same time, the PLLCFG[0:1] values are applied (as
long as RSTCFG is asserted).

When the JTAG reset request deasserts and the FMPLL is locked, the reset controller waits a
predetermined number of clock cycles before deasserting RSTOUT. When the clock count completes, the
WKPCFG and BOOTCFG[0:1] pins are sampled (BOOTCFG[0:1] is sampled only if RSTCFG is
asserted), and the fields in the SIU_RSR are updated. The reset source status bits in the SIU_RSR are
unaffected.

See Section 4.2.2, “Reset Output (RSTOUT) and Chapter 23, “IEEE 1149.1 Test Access Port Controller
(JTAGC),” for more information.

208 Package: BOOTCFG[0] is not available due to pin limitations and is internally asserted
(driven to 0).

4.4.2.3.8 Software System Reset

A software system reset is caused by a write to the SSR bit in the system reset control register
(SIU_SRCR). A write of 1 to the SSR bit causes an internal reset of the MCU. The value on the WKPCFG
pin is applied when the internal reset signal asserts (indicated by RSTOUT asserting), and at the same time
the PLLCFG[0:1] values are applied (as long as RSTCFG is asserted).

Once the FMPLL locks, the reset controller waits a predetermined number of clock cycles before
deasserting RSTOUT. When the clock count completes, the WKPCFG and BOOTCFG[0:1] pins are
sampled (BOOTCFG[0:1] is sampled only if RSTCFG is asserted). The reset controller then waits four
clock cycles before deasserting RSTOUT, and updates the fields in the SIU_RSR. In addition, the SSRS
bit is set, and all other reset status bits in the SIU_RSR are cleared.

See Section 4.2.2, “Reset Output (RSTOUT) for more information.

Reset

MPC5534 Microcontroller Reference Manual, Rev. 2

4-12 Freescale Semiconductor

208 Package: BOOTCFG[0] is not available due to pin limitations and is internally asserted
(driven to 0).

4.4.2.3.9 Software External Reset

A write of 1 to the SER bit in the SIU_SRCR causes the external RSTOUT pin to be asserted for a
predetermined number of clocks (See Section 4.2.2, “Reset Output (RSTOUT)”). The SER bit
automatically clears after the clock cycle expires. A software external reset does not cause a reset of the
MCU, the BAM program is not executed, the PLLCFG[0:1], BOOTCFG[0:1], and WKPCFG pins are not
sampled. The SERF bit in the SIU_RSR is set, but no other status bits are affected. The SERF bit in the
SIU_RSR is not automatically cleared after the clock count expires, and remains set until cleared by
software or another reset besides the software external reset occurs.

For a software external reset, the e200z3 core continues to execute instructions, timers that are enabled
continue to operate, and interrupt requests continue to be processed. It is the responsibility of the
application to ensure devices connected to RSTOUT are not accessed during a software external reset, and
to determine how to manage MCU resources.

208 Package: BOOTCFG[0] is not available due to pin limitations and is internally asserted
(driven to 0).

4.4.3 Reset Configuration and Configuration Pins

The microcontroller and the BAM perform a reset configuration that allows certain functions of the MCU
to be controlled and configured at reset. This reset configuration is defined by:

• Configuration pins

• A reset configuration half word (RCHW), if present

• Serial port, if a serial boot is used

The following sections describe these configuration pins and the RCHW.

4.4.3.1 RSTCFG Pin

Table 4-5 shows the RSTCFG pin settings for configuring the MCU to use a default or a custom
configuration. See Chapter 2, “Signals” for more information about the RSTCFG pin.

Table 4-5. RSTCFG Settings

RSTCFG Description

1 Use default configuration of:
– booting from internal flash
– clock source is a crystal on FMPLL

0 Get configuration information from:
– BOOTCFG[0:1]
– PLLCFG[0:1]

Reset

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 4-13

208 Package: BOOTCFG[0] and RSTCFG are not available due to pin limitations, and are internally
asserted (driven to 0). Therefore, BOOTCFG[1] and PLLCFG[0:1] are always
sampled.

4.4.3.2 WKPCFG Pin (Reset Weak Pullup/Pulldown Configuration)

As shown in Table 4-6, the signal on the WKPCFG pin determines whether specific eTPU and eMIOS pins
are connected to weak pullup or weak pulldown devices during and after reset (see Chapter 2, “Signals,”
for the eTPU and eMIOS pins that are affected by WKPCFG). For all reset sources except the software
external reset, the WKPCFG pin is applied starting at the assertion of the internal reset signal (as indicated
by the assertion of RSTOUT). If the WKPCFG signal is logic high at this time, pullup devices are enabled
on the eTPU and eMIOS pins. If the WKPCFG signal is logic low at the assertion of the internal reset
signal, pulldown devices are enabled on those pins. The value on WKPCFG must be held constant during
reset to avoid oscillations on the eTPU and eMIOS pins caused by switching pullup and pulldown states.
The final value of WKPCFG is latched four clock cycles before the deassertion of RSTOUT. After reset,
software can modify the weak pullup and pulldown selections for all I/O pins through the PCRs in the SIU.

Also see Chapter 2, “Signals” for information about the WKPCFG pin.

4.4.3.3 BOOTCFG[0:1] Pins (MCU Configuration)

In addition to specifying the RCHW location, the values latched on the BOOTCFG[0:1] pins at reset are
used to initialize the internal flash memory enabled/disabled state, and whether no arbitration or external
arbitration of the external bus interface is selected. Additionally, the RCHW can determine either directly
or indirectly how the MMU is configured, how the external bus is configured, CAN or eSCI module and
pin configuration, Nexus enabling, and password selection.

Also see Chapter 2, “Signals” for information about the BOOTCFG pins.

208 Package: BOOTCFG[0] is not available due to pin limitations and is internally asserted
(driven to 0).

4.4.3.3.1 BOOTCFG[0:1] Configuration in the 208 Package

In the 208 BGA package, the BOOTCFG[0] pin is unavailable and BOOTCFG[1] has a constant value
based on PLLCFG[0]. The device configuration is mapped based on Table 4-7.

Table 4-6. WKPCFG Settings

WKPCFG Description

0 Weak pull down applied to eTPU and eMIOS
pins at reset

1 Weak pull up applied to eTPU and eMIOS
pins at reset

Reset

MPC5534 Microcontroller Reference Manual, Rev. 2

4-14 Freescale Semiconductor

4.4.3.4 PLLCFG[0:1] Pins

The role of PLLCFG pins in PLL configuration is explained in Section 11.1.4, “FMPLL Modes of
Operation.” Also see Chapter 2, “Signals” for information about the PLLCFG pins.

4.4.3.5 Reset Configuration Half Word (RCHW)

4.4.3.5.1 Reset Configuration Half Word (RCHW) Definition

The RCHW is read from either external memory or internal flash memory. If a valid RCHW is not found,
a CAN/SCI boot is initiated. The RCHW is a collection of control bits that specify a minimum MCU
configuration after reset and define the boot mode for the BAM program. At reset the RCHW provides a
means to locate the boot code, determines if flash memory is programmed or erased, enables or disables
the watchdog timer, configures the MMU to boot as either classic PowerPC Book E code or as Freescale
VLE code, and if booting externally, sets the bus size. See the register indicated by the RCHW bit
descriptions for a detailed description of each control bit.

NOTE
Do not configure the RCHW to a 32-bit bus size because the 324 package
has a 16-bit data bus. The 208 package does not have an external bus.

Table 4-7. Boot Configuration in the 208 BGA

PLLCFG0 BOOTCFG1
Boot Identifier

Field
(RCHW)

Boot Mode Configuration Word Source

0

0
Valid Internal

The lowest address of one of the six low address spaces
(LAS) in internal flash memory.

Invalid Serial Not applicable

1 — Serial Not applicable

1
0

Valid
Reserved

The lowest address (0x2000_0000) of an external memory
device, enabled by chip select CS[0] using 16-bit data bus.

Invalid Reserved Not applicable

1
Valid

Reserved
The lowest address (0x2000_0000) of an external memory
device, enabled by chip select CS[0] using 16-bit data bus.

Invalid Serial boot Not applicable

Table 4-8. PLLCFG[0:1] and RSTCFG in Configuration

RSTCFG PLLCFG[0] PLLCFG[1] Clock Mode MODE PLLSEL PLLREF

1 PLLCFG pins ignored Crystal reference (default) 1 1 1

0 0 0 Bypass mode 0 0 0

0 0 1 External reference 1 1 0

0 1 0 Crystal reference 1 1 1

0 1 1 Dual controller (1:1) mode 1 0 0

Reset

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 4-15

If booting from internal flash or external memory, you must ensure that the RCHW is configured for the
correct value and memory address. The boot ID of the RCHW must be read as 0x005A.
BOOT_BLOCK_ADDRESS is explained in Section 15.3.2.3.4, “Read the Reset Configuration
Halfword.”

The fields of the RCHW are shown in Figure 4-3.

Figure 4-3. RCHW Fields

4.4.3.5.2 Invalid Reset Configuration Half Word (RCHW)

If the device is configured to boot from internal flash, a valid boot ID must be read at the lowest address
of one of the six LAS blocks in internal flash memory. If the device is configured to boot from external

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

WTE PS[0] VLE 0 1 0 1 1 0 1 0

Boot Identifier = 0x005A

BOOT_BLOCK_ADDRESS + 0x0000_0000

Table 4-9. Internal Boot RCHW Field Descriptions

Field Description

0–4 Reserved: These bit values are ignored when the halfword is read. Write to 0 for future compatibility.

5
WTE

Watchdog timer enable. This is used to enable or disable the e200z3 watchdog timer through the BAM
program. The configuration of the watchdog timer function is managed through the timer control register
(TCR).
0 BAM does not write the e200z3 timebase registers (TBU and TBL) nor enable the e200z3 core watchdog

timer.
1 BAM writes the e200z3 timebase registers (TBU and TBL) to 0x0000_0000_0000_0000 and enables the

e200z3 core watchdog timer with a time-out period of 3 x 217 system clock cycles.
(Example: For 8 MHz crystal −> 12MHz system clock−> 32.7mS time-out.
For 20 MHz crystal −> 30 MHz system clock −> 13.1mS time-out)

6
PS
[0]

Port size. Defines the width of the data bus connected to the memory on CS[0]. After system reset, CS[0]
is changed to a 16-bit port by the BAM which fetches the RCHW from either 16- or 32-bit external memories.
Then the BAM reconfigures the EBI either as a 16-bit bus or a 32-bit bus, according to the settings of this bit.
0 Invalid value
1 16-bit CS[0] port size
Note: Used only in external boot mode. Do not set the port to 32-bits because the 324 package only has a

16-bit data bus.

7
VLE

VLE Code Indicator. This bit is used to configure the MMU for the boot block to execute as either Classic
PowerPC Book E code or as Freescale VLE code.
0 = Boot code executes as Classic PowerPC Book E code
1 = Boot code executes as Freescale VLE code

8–15
BOOTID

[0:7]

Boot identifier. This field indicates which block in flash memory contains the boot program and
identifies whether the flash memory is programmed or invalid. A valid boot identifier is 0x005A
(0b01011010). The BAM program checks the first half word of each flash memory block starting at block 0
until a valid boot identifier is found. If all blocks in the low address space of the internal flash are checked
and no valid boot identifier is found, boot code is initiated from a FlexCAN or eSCI port.

324 Package Only: For an external boot, only block 0 is checked for a valid boot identifier, and if not found,
boot code is initiated from a FlexCAN or eSCI port.

Reset

MPC5534 Microcontroller Reference Manual, Rev. 2

4-16 Freescale Semiconductor

memory, a valid boot ID must be read at 0x00_0000 of CS[0]. See Chapter 15, “Boot Assist Module
(BAM)” for more information.

If a valid RCHW is not found, a serial boot is initiated which does not use a RCHW. The watchdog timer
is enabled. For serial boot entered from a failed external boot, the port size remains configured as 16 bits
wide. For serial boot entered from a failed internal boot, the external bus is never configured and remains
in the reset state of GPIO inputs.

4.4.3.5.3 Reset Configuration Half Word (RCHW) Source

The reset configuration half word (RCHW) specifies a minimal MCU configuration after reset. The
RCHW also contains bits that control the BAM program flow. See Section 15.3.2.2.1, “Finding the Reset
Configuration Halfword” for information on the BAM using the RCHW. The RCHW is read and applied
each time the BAM program executes, which is for every power-on, external, or internal reset event. The
only exception to this is the software external reset. See Section 4.4.3.5, “Reset Configuration Half Word
(RCHW),” for detailed descriptions of the bits in the RCHW. The RCHW is read from one of the following
locations:

• The lowest address (0x0000_0000) of an external memory device, enabled by chip select CS[0]
using a 16-bit data bus

• The lowest address of one of the six low address space (LAS) blocks in the internal flash memory.
(2 x 16 KB; 2 x 48 KB; 2 x 64 KB)

At the deassertion of the RSTOUT pin, the BOOTCFG field in the RSR has been updated. If
BOOTCFG[0] is asserted, then the BAM program reads the RCHW from address 0x0000_0000 in the
external memory connected to CS[0] (the BAM first configures the MMU and CS[0] such that address
0x0000_0000 is translated to 0x2000_0000 and then directed to CS[0]). When BOOTCFG[0] is asserted,
BOOTCFG[1] determines whether external arbitration must be enabled to fetch the RCHW.

If BOOTCFG[0] and BOOTCFG[1] are deasserted at the deassertion of the RSTOUT pin, then the BAM
program attempts to read the RCHW from the first address of each of the six blocks in the low address
space (LAS) of internal flash. Table 4-10 shows the LAS addresses.

If the RCHW stored in either internal or external flash is invalid (boot identifier field of RCHW is not
0x005A), or if BOOTCFG[0] is deasserted and BOOTCFG[1] is asserted at the deassertion of the
RSTOUT pin, then RCHW is not applicable, and serial boot mode is performed. Table 4-11 summarizes
the RCHW location options.

Table 4-10. LAS Block Memory Addresses

Block Address

0 0x0000_0000

1 0x0000_4000

2 0x0001_0000

3 0x0001_C000

4 0x0002_0000

5 0x0003_0000

Reset

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 4-17

208 Package: BOOTCFG[0] is not available due to pin limitations and is internally asserted
(driven to 0).

4.4.4 Reset Configuration Timing

The timing diagram in Figure 4-4 shows the sampling of the BOOTCFG[0:1], WKPCFG, and
PLLCFG[0:1] pins for a power-on reset. The timing diagram is also valid for internal/external resets
assuming that VDD, VDDSYN, and VDDEH6 are within valid operating ranges. The values of the
PLLCFG[0:1] pins are latched at the deassertion of the RSTOUT pin, if the RSTCFG pin is asserted at the
deassertion of RSTOUT. The value of the WKPCFG signal is applied at the assertion of the internal reset
signal (as indicated by the assertion of RSTOUT). The values of the WKPCFG and BOOTCFG[0:1] pins
are latched four clock cycles before the deassertion of RSTOUT and stored in the reset status register
(SIU_RSR). BOOTCFG[0:1] are latched only if RSTCFG is asserted. WKPCFG is not dependent on
RSTCFG.

208 Package: BOOTCFG[0] is not available due to pin limitations and is internally asserted
(driven to 0).

Table 4-11. Reset Configuration Half Word Sources

RSTCFG BOOTCFG[0] BOOTCFG[1]
Boot Identifier
Field (RCHW)

Boot Mode Configuration Word Source

1 — —
Valid Internal

The lowest address of one of the six low address
spaces (LAS) in internal flash memory.

Invalid Serial Not applicable

0 0 0
Valid Internal

The lowest address of one of the six low address
spaces (LAS) in internal flash memory.

Invalid Serial Not applicable

0 0 1 — Serial Not applicable

0 1 0
Valid

External Boot,
No Arbitration

The lowest address (0x00_0000) of an external
memory device, enabled by chip select CS[0]
using either 16- or 32-bit data bus

Invalid Serial Not applicable

0 1 1 External Arbitration Not Supported

Reset

MPC5534 Microcontroller Reference Manual, Rev. 2

4-18 Freescale Semiconductor

Figure 4-4. Reset Configuration Timing

RSTOUT

RESET

Internal
Reset

VDD

POR

PLL

PLL Locks

RSTCFG

Crystal powering up or acquiring lock

WKPCFG and BOOTCFG
are latched. PLLCFG and

User drives
config pins relative

to RSTOUT

PLLCFG and RSTCFG are

(4 clock cycles)

PLL Locked

 24001 clock cycles

‘Don’t Care’ and WKPCFG is
treated as ‘1’ during POR assertion.

PLLCFG, RSTCFG and WKPCFG
are applied, but not latched. RSTCFG still applied

1 This clock count is dependent on the configuration of the FMPLL (See Section 4.2.2, “RSTOUT”). If the FMPLL is configured
for 1:1 (dual controller) operation or for bypass mode, this clock count is 16000.

All reset signals
deasserted (2404 cycles)

PLLCFG is latched.
RSTCFG is no longer
used.

but not latched.

Reset

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 4-19

4.4.5 Reset Flow

Figure 4-5. External Reset Flow Diagram

False

True

RESET
Asserted

?

Wait 2
Clock Cycles

False

True

RESET
Asserted

?

Set Latch,
Wait 8

False

True

RESET
Asserted

?

Set RGF Bit

A To Entry Point in
Internal Reset Flow

Clock Cycles

Reset

MPC5534 Microcontroller Reference Manual, Rev. 2

4-20 Freescale Semiconductor

Figure 4-6. Internal Reset Flow Diagram

False

True

False False

Assert
RSTOUT

Wait 24001

Clock Cycles

True True

Software
System Reset

Asserted
?

Internal
Reset

Asserted
?

Software
External Reset

Asserted
?

Assert Internal
Resets &
RSTOUT

AApply
WKPCFG Pin

True

False

RSTCFG
Asserted

?

Loss
of Lock

Deasserted

Default PLL
Configuration

Applied,
Not Latched

False

True

Wait 24001

Clock Cycles

Latch
WKPCFG Pin

RSTCFG
Asserted

?

Latch BOOTCFG
Values

Wait 4
Clock Cycles

Update Reset
Status Register

Deassert Internal
Resets &
RSTOUT

Latch Default
Boot Configuration

False

True

Entry Point from
External Reset
Flow & POR

The clock count is dependent on the configuration of the FMPLL (see Section 5.3.1.2, ‘RSTOUT’).
If the FMPLL is configured in 1:1 (dual controller) or bypass mode, this clock count is 16000.

1

False

True

Wait 4
Clock Cycles

Latch PLLCFG
Values

Latch Default
PLL Configuration

?

PLLCFG Pins
Applied,

Not Latched

NOTES:

Reset
Request

Deasserted
?

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 5-1

Chapter 5
Peripheral Bridge

5.1 Introduction

5.1.1 Block Diagram

The PBRIDGE is the interface between the system bus and on-chip peripherals as shown in Figure 5-1.

Figure 5-1. PBRIDGE Interface

5.1.2 Overview

There are two peripheral bridges, PBRIDGE_A and PBRIDGE_B, which act as interfaces between the
system bus and lower bandwidth peripherals. In this manual, PBRIDGE refers to either of these bridges,
as their functionality is identical. The only difference is the peripherals to which they connect. Accesses
that fall within the address space of the PBRIDGE are decoded to provide individual module selects for
peripheral devices on the slave bus interface.

5.1.2.1 Access Protections

The PBRIDGE provides programmable access protections for masters. It allows the privilege level of a
master to be overridden, forcing it to user mode privilege, and allows masters to be designated as trusted
or untrusted. More information on access protection can be found in Section 13.3.2.9, “Flash Bus Interface
Unit Access Protection Register FLASH_BIUAPR.”

O
ff-

pl
at

fo
rm

 S
la

ve

Peripheral O
n-

pl
at

fo
rm

 S
la

ve

Peripheral
Bridge A

(PBRIDGE_B)(PBRIDGE_A)

Bridge B

O
ff-

pl
at

fo
rm

 S
la

ve S
ys

te
m

 B
us

S
ys

te
m

 B
us

System Bus Crossbar Switch (XBAR)
O

n-
pl

at
fo

rm
 S

la
ve

Peripheral Bridge

MPC5534 Microcontroller Reference Manual, Rev. 2

5-2 Freescale Semiconductor

5.1.3 Features

The following list summarizes the key features of the PBRIDGE:

• Supports the slave interface signals, which is meant for slave peripherals only

• Supports 32-bit slave peripherals
(byte, halfword, and word reads and writes are supported to each)

• Supports a pair of slave accesses for 64-bit instruction fetches

• Provides configurable per-master access protections

5.1.4 Modes of Operation

The PBRIDGE has only one operating mode.

5.2 External Signal Description
The PBRIDGE has no external signals.

5.3 Memory Map and Register Definition
The memory map for the program-visible PBRIDGE A and PBRIDGE B registers is shown in Table 5-1.

5.3.1 Register Descriptions

All registers are 32-bit registers and can only be accessed in supervisor mode by trusted bus masters.
Additionally, these registers must only be read from or written to by a 32-bit aligned access. PBRIDGE
registers are mapped into the PBRIDGE_A and PBRIDGE_B address spaces. The protection and access
fields of the MPCR are 4 bits in width.

Table 5-1. PBRIDGE A and B Memory Map

Address Register Name Register Description Bits

Base1 + 0x0000

1 PBRIDGE_A base is 0xC3F0_0000. PBRIDGE_B base is 0xFFF0_0000.

PBRIDGE_x_MPCR Master privilege control register 32

Peripheral Bridge

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 5-3

5.3.1.1 Master Privilege Control Register (PBRIDGE_x_MPCR)

Each master privilege control register (PBRIDGE_x_MPCR) specifies 4-bit access fields defining the
access privilege level associated with a bus master in the platform, as well as specifying whether the write
accesses from this master are buffered. The registers provide one field per bus master.

Address: Base + 0x0000 Access: User R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R MBW
0

MTR
0

MTW
0

MPL
0

MBW
1

MTR
1

MTW
1

MPL
1

MBW
2

MTR
2

MTW
2

MPL
2

MBW
3

MTR
3

MTW
3

MPL
3W

Reset 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 5-2. Master Privilege Control Registers (PBRIDGE_x_MPCR)

Table 5-2. PBRIDGE_x_MPCR Field Descriptions

Field Description

0
MBW0

Master buffer writes. Determines whether the PBRIDGE is enabled to buffer writes from the CPU. Writes not
able to be buffered by default.
0 Write accesses from the CPU cannot be buffered
1 Write accesses from the CPU can be buffered

1
MTR0

Master trusted for reads. Determines whether the CPU is trusted for read accesses. Trusted by default.
0 The CPU is not trusted for read accesses.
1 The CPU is trusted for read accesses.

2
MTW0

Master trusted for writes. Determines whether the master is trusted for write accesses. Trusted by default.
0 The CPU is not trusted for write accesses.
1 The CPU is trusted for write accesses.

3
MPL0

Master privilege level. Determines how the privilege level of the CPU is determined. Accesses not forced to
user mode by default.
0 Accesses from the CPU are forced to user mode.
1 Accesses from the CPU are not forced to user mode.

4
MBW1

Master buffer writes. Determines whether the PBRIDGE is enabled to buffer writes from the Nexus. Writes not
able to be buffered by default.
0 Write accesses from the Nexus cannot be buffered
1 Write accesses from the Nexus can be buffered

5
MTR1

Master trusted for reads. Determines whether the Nexus is trusted for read accesses. Trusted by default.
0 The Nexus is not trusted for read accesses.
1 The Nexus is trusted for read accesses.

Access Field 0 Access Field 1 Access Field 2 Access Field 3

Access Field 4 Access Field 5 Access Field 6 Access Field 7

Peripheral Bridge

MPC5534 Microcontroller Reference Manual, Rev. 2

5-4 Freescale Semiconductor

6
MTW1

Master trusted for writes. Determines whether the master is trusted for write accesses. Trusted by default.
0 The Nexus is not trusted for write accesses.
1 The Nexus is trusted for write accesses.

7
MPL1

Master privilege level. Determines how the privilege level of the Nexus is determined. Accesses not forced to
user mode by default.
0 Accesses from the Nexus are forced to user mode.
1 Accesses from the Nexus are not forced to user mode.

8
MBW2

Master buffer writes. Determines whether the PBRIDGE is enabled to buffer writes from the eDMA. Writes not
able to be buffered by default.
0 Write accesses from the eDMA cannot be buffered
1 Write accesses from the eDMA can be buffered

9
MTR2

Master trusted for reads. Determines whether the eDMA is trusted for read accesses. Trusted by default.
0 The eDMA is not trusted for read accesses.
1 The eDMA is trusted for read accesses.

10
MTW2

Master trusted for writes. Determines whether the master is trusted for write accesses. Trusted by default.
0 The eDMA is not trusted for write accesses.
1 The eDMA is trusted for write accesses.

11
MPL2

Master privilege level. Determines how the privilege level of the eDMA is determined. Accesses not forced to
user mode by default.
0 Accesses from the eDMA are forced to user mode.
1 Accesses from the eDMA are not forced to user mode.

12
MBW3

Master buffer writes. Determines whether the PBRIDGE is enabled to buffer writes from the EBI. Writes not
able to be buffered by default.
0 Write accesses from the EBI cannot be buffered
1 Write accesses from the EBI can be buffered

13
MTR3

Master trusted for reads. Determines whether the EBI is trusted for read accesses. Trusted by default.
0 The EBI is not trusted for read accesses.
1 The EBI is trusted for read accesses.

14
MTW3

Master trusted for writes. Determines whether the master is trusted for write accesses. Trusted by default.
0 The EBI is not trusted for write accesses.
1 The EBI is trusted for write accesses.

15
MPL3

Master privilege level. Determines how the privilege level of the EBI is determined. Accesses not forced to
user mode by default.
0 Accesses from the EBI are forced to user mode.
1 Accesses from the EBI are not forced to user mode.

16–31 Reserved

Table 5-2. PBRIDGE_x_MPCR Field Descriptions (continued)

Field Description

Peripheral Bridge

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 5-5

5.4 Functional Description
The PBRIDGE serves as an interface between a system bus and the peripheral (slave) bus. It functions as
a protocol translator. Support is provided for generating a pair of 32-bit peripheral instruction accesses (not
data accesses) when targeted by a 64-bit system bus access. No other bus-sizing access support is provided.

Accesses that fall within the address space of the PBRIDGE are decoded to provide individual module
selects for peripheral devices on the slave bus interface.

5.4.1 Access Support

Aligned 64-bit accesses, aligned word and halfword accesses, as well as byte accesses are supported for
32-bit peripherals. Peripheral registers must not be misaligned, although no explicit checking is performed
by the PBRIDGE.

NOTE
Data accesses that cross a 32-bit boundary are not supported.

5.4.2 Peripheral Write Buffering

NOTE
MPC5534 only supports write buffering on a per-master basis, not on a
per-peripheral basis.

The PBRIDGE provides programmable write buffering capability to allow certain write accesses to be
buffered in the PBRIDGE for later completion, while terminating the system bus access early. This
provides improved performance in systems where frequent writes to a slow peripheral are performed.
Enable write buffering for masters only if:

• the slave bus does not generate termination errors

• it is safe to ignore termination errors

The PBRIDGE controller ignores the error signal on the termination of the buffered writes.

When write buffering is enabled, all accesses through the PBRIDGE occur in-order; no bypassing of
buffered writes is supported.

Write buffering is controllable on a per-master basis.

5.4.2.1 Read Cycles

Two-clock read accesses are possible with the PBRIDGE when the requested access size is 32-bits or
smaller, and is not misaligned across a 32-bit boundary. If the requested instruction access size is 64-bits,
or it is misaligned across a 32-bit boundary (not supported), then a minimum of three clocks are required
to complete the access. Misaligned read accesses are not supported. 64-bit data reads (not instruction) are
not supported.

Peripheral Bridge

MPC5534 Microcontroller Reference Manual, Rev. 2

5-6 Freescale Semiconductor

5.4.2.2 Write Cycles

Three clock write accesses are possible with the PBRIDGE when the requested access size is 32-bits or
smaller. Misaligned writes that cross a 32-bit boundary are not supported. 64-bit data writes (not
instruction) are not supported.

5.4.2.3 Buffered Write Cycles

Single clock write responses to the system bus are possible with the PBRIDGE when the requested write
access is bufferable. If the requested access does not violate the permissions check, and if the master is
enabled for buffering writes, the PBRIDGE internally buffers the write cycle. The write cycle is terminated
early with zero system bus wait states. The access proceeds normally on the slave interface, but error
responses are ignored.

All accesses are initiated and completed in order on the slave interface, regardless of buffering. If the
buffer is full, the following write cycle waits until it can either be buffered (if bufferable) or can be
initiated. If the buffer has valid entries, the following read cycle waits until the buffer is emptied and the
read cycle completes.

5.4.3 General Operation

NOTE
This device supports write buffering on a per-master basis only—not on a
per-peripheral basis.

Slave peripherals are modules that contain readable/writable control and status registers. The system bus
master reads and writes these registers through the PBRIDGE. The PBRIDGE generates module enables,
the module address, transfer attributes, byte enables, and write data as inputs to the slave peripherals. The
PBRIDGE captures read data from the slave interface and drives it on the system bus.

Separate interface ports are provided for on-platform and off-platform peripherals. The distinction
between on-platform and off-platform is made to allow platform-based designs incorporating the
PBRIDGE to separate the interface ports to allow for ease of timing closure. In addition, module selects
and control register storage for on-platform peripherals are allocated at synthesis time, allowing only
needed resources to be implemented. Off-platform module selects and control register storage do not have
the same degree of configurability.

The modules that are on-platform and those that are off-platform are detailed in Table 5-3.

Table 5-3. On-Platform and Off-Platform Peripherals

On-Platform Off-Platform

Enhanced Direct Memory Access (eDMA) Deserial Serial Peripheral Interface (DSPI)

PBridge A and B Enhanced Queued Analog-to-Digital Converter (eQADC)

Interrupt Controller (INTC) Enhanced Serial Communication Interface (eSCI)

Error Correction Status Module (ECSM) FlexCAN Controller Area Network

System Bus Crossbar Switch (XBAR) Boot Assist Module (BAM)

Peripheral Bridge

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 5-7

The PBRIDGE occupies a 64 MB portion of the address space. A 0.5 MB portion of this space is allocated
to on-platform peripherals. The remaining 63.5 MBs are available for off-platform devices. The register
maps of the slave peripherals are located on 16-KB boundaries. Each slave peripheral is allocated one
16-KB block of the memory map, and is activated by one of the module enables from the PBRIDGE. Up
to thirty-two 16-KB external slave peripherals can be implemented, occupying contiguous blocks of
16 KBs. Two global external slave module enables are available for the remaining 63 MBs of address
space to allow for customization and expansion of addressed peripheral devices. In addition, a single
non-global module enable is also asserted whenever any of the 32 non-global module enables is asserted.

The PBRIDGE is responsible for indicating to slave peripherals if an access is in supervisor or user mode.
The PBRIDGE also supports the notion of trusted masters for security purposes. Masters can be
individually designated as trusted for reads, trusted for writes, or trusted for both reads and writes, as well
as being forced to look as though all accesses from a master are in user mode privilege level.

The PBRIDGE also supports buffered writes, allowing write accesses to be terminated on the system bus
in a single clock cycle, and then subsequently performed on the slave interface. Write buffering is
controllable on a per-peripheral basis. The PBRIDGE implements a two-entry 32-bit write buffer.

System Integration Unit (SIU)

Enhanced Modular Input/Output Subsystem (eMIOS)

Frequency Modulated Phase Locked Loop (FMPLL)

Enhanced Time Processing Unit (eTPU)

External Bus Interface (EBI)

Flash Bus Interface Unit (FBIU)

Table 5-3. On-Platform and Off-Platform Peripherals (continued)

On-Platform Off-Platform

Peripheral Bridge

MPC5534 Microcontroller Reference Manual, Rev. 2

5-8 Freescale Semiconductor

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 6-1

Chapter 6
System Integration Unit (SIU)

6.1 Introduction
This chapter describes the device system integration unit (SIU) that configures and initializes the following
controls:

• MCU reset configuration

• System reset operation

• Pad configuration

• External interrupts (324 package only)

• General-purpose I/O (GPIO)

• Internal peripheral multiplexing

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

6-2 Freescale Semiconductor

6.2 Block Diagram
Figure 6-1 is a block diagram of the SIU. The signals shown on the right side of the diagram are external
pins on the device. The SIU registers are accessed through the crossbar switch.

Figure 6-1. SIU Block Diagram

NOTE
The power-on reset detection module, pad interface/pad ring module, and
peripheral I/O channels shown shaded in Figure 6-1 are external to the SIU.

Reset

RESET

Configuration

SIU
Registers

Reset
Controller

Pad
Interface/

Pad
Ring

Pad Configuration

RSTOUT

Power-on
Reset

Detection

External
IRQ/
Edge

Detects

GPIO

Peripheral
I/O Channels

IMUXIRQ Inputs,
DSPI Signals, and

eQADC Triggers

IRQ[0:5, 7:15]1

BOOTCFG[0:1]_GPIO[211:212] 2

WKPCFG_GPIO[213]

CS[0:3]_GPIO[0:3] 3

BOOTCFG[0] and RSTCFG are
2

PLLCFG[0:1]_GPIO[208:209]

IRQ[6] is not available in this device.
1

RSTCFG

..

...
.

..

. ..
.

.. .

2

not available in the 208 package.
These signals are internally asserted
(driven to 0) in the 208 package.

IRQ[2] is not available on the 208
package.

3
CS[1:3] are not available due
to pin limitations on the 208 package.

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 6-3

6.2.1 Overview

The system integration unit (SIU) is accessed by the e200z3 core through the system bus crossbar switch
(XBAR) and the peripheral bridge A (PBRIDGE_A). Table 6-1 lists the features the SIU configures:

:

6.2.2 Modes of Operation

The MPC5500 family of devices has several operating modes for configuring and testing the device:

Table 6-1. SIU Features

Feature Description

MCU reset operations Controls the external pin boot logic

System reset operations Monitors internal and external reset sources, and drives the RSTOUT signal
 • Power-on reset support
 • Reset status register providing last reset source to software
 • Glitch detection on reset input
 • Software controlled reset assertion

Pad configuration registers Enables the configuration and initialization of the I/O pin electrical characteristics using
software to select the following:
 • Active function from the set of multiplexed functions
 • Pullup and pulldown characteristics of the pin
 • Slew rate for slow and medium pads
 • Open drain mode for output pins
 • Hysteresis for input pins
 • Drive strength of bus signals for fast pads

External interrupt operations • 15 interrupt requests
 • Rising- or falling-edge event detection
 • Programmable digital filter for glitch rejection

General-purpose I/O (GPIO) Provides uniform and discrete I/O control of 150 MCU general-purpose I/O pins, where
each GPIO signal has an input register and an output register. The number of GPIO pins
varies depending on the package.

Internal peripheral multiplexing Provides flexibility to customize signal/pin assignments for application development that
allows you to assign IRQs between external pins and the DSPI.

Table 6-2. SIU Operating Modes

Operating Mode Description

Normal In normal mode, the SIU provides the register interface and logic that controls the device and
system configuration, the reset controller, and GPIO. The SIU continues operation with no
changes in stop mode.

Debug SIU operation in debug mode is identical to operation in normal mode.

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

6-4 Freescale Semiconductor

6.3 External Signal Description
Table 6-3 lists the external pins used by the SIU.

Table 6-3. SIU Signal Properties

Name Function
I/O

Type
Pad
Type

Pull
Up/Down1

1 Internal weak pull up/down. The reset weak pull up/down state is given by the pull up/down state for the primary pin
function. For example, the reset weak pull up/down state of the BOOTCFG[1]_GPIO[212] pin is weak pullup enabled.

Resets

RESET Reset Input Input — Up

RSTCFG 2

2 RSTCFG and BOOTCFG[0] pins are not available on the 208 package. These signals are internally asserted (driven to 0)
in the 208 package.

Reset Configuration Input — Up

RSTOUT Reset Output Output Slow —

System Configuration

GPIO[0:210] General-Purpose I/O I/O Slow Up/Down

BOOTCFG[0]_ 2

GPIO[211]
Boot Configuration Input
General-Purpose I/O

Input
I/O

Slow Down
Up/Down

BOOTCFG[1]_
GPIO[212]

Boot Configuration Input
General-Purpose I/O

Input
I/O

Slow Down
Up/Down

WKPCFG
GPIO[213]

Weak Pull Configuration Pin
General-Purpose I/O

Input
I/O

Slow Up
Up/Down

PLLCFG[0]_
GPIO[208]

Boot Configuration Input
General-Purpose I/O

Input
I/O

Slow Down
Up/Down

PLLCFG[1]_
GPIO[209]

Boot Configuration Input
General-Purpose I/O

Input
I/O

Slow Down
Up/Down

External Interrupt (324 package only)

IRQ[0:5, 7:15]3

3 The GPIO and IRQ pins are multiplexed with other functions on the chip. The IRQ[6] function is not available in this device.
Not all GPIO pins are available on all packages. See Chapter 2, “Signals” for a list of available IRQ and GPIO signals.

External Interrupt Request Input Input Slow —4

4 The weak pull up/down state at reset for the IRQ[0:5, 7:15] depends on the primary signals with which they are muxed.
The weak pull up/down state for these pins is as follows: IRQ[0, 1, 4, 5, 7, 12, 13, 14]: Up,
IRQ[2, 3, 15]: Down, IRQ[8:11]: WKPCFG. IRQ[2] is not available on the 208 package.

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 6-5

6.3.1 Detailed Signal Descriptions

6.3.1.1 Reset Input (RESET)

RESET is an active-low input signal asserted by an external device during a power-on reset (POR) or
external reset. If RESET asserts for ten clock cycles only, the internal reset signal asserts. Asserting the
RESET signal while the device is processing a reset restarts the reset process at the beginning.

RESET has a glitch detector logic that senses electrical fluctuations on the VDDEH input pins that drop
below the switch point value for more than two clock cycles. The switch point value is between the
maximum VIL and minimum VIH specifications for the VDDEH input pins.

6.3.1.2 Reset Output (RSTOUT)

RSTOUT is an active-low output signal that uses a push/pull configuration. It is driven to the low state by
the MCU for all internal and external reset sources. After the RESET input signal deasserts, RSTOUT
asserts for:

• 16000 clock cycles for devices configured in bypass mode

• 16004 clock cycles for devices configured for FMPLL dual-controller mode (1:1)

• 2400 clock cycles for all other FMPLL modes

To invoke an external software reset, write a 1 to the system external reset (SER) bit in the system reset
control register (SIU_SRCR). This asserts RSTOUT for 2400 clock cycles. An external software reset
does not execute the BAM module or sample BOOTCFG[0:1].

208 Package: BOOTCFG[0] is not available due to pin limitations and is internally asserted
(driven to 0) in the 208 package.

6.3.1.3 General-Purpose I/O Pins (GPIO[0:213])

208 Package: Not all GPIO pins are available on all packages. See Chapter 2, “Signals” for more
information on the GPIO pins available on this device.

The GPIO pins provide general-purpose input and output function. The GPIO pins are generally
multiplexed with other I/O pin functions. Each GPIO input and output is separately controlled by an
eight-bit input (SIU_GPDI) or output (SIU_GPDO) register.

NOTE
Not all GPIO pins are available on all packages. See Chapter 2, “Signals”
for a listing of available GPIO pins.

For more information, see the following sections:

Section 6.4.1.13, “GPIO Pin Data Output Registers 0–213 (SIU_GPDOn)”

Section 6.4.1.14, “GPIO Pin Data Input Registers 0–213 (SIU_GPDIn)”

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

6-6 Freescale Semiconductor

6.3.1.4 Boot Configuration Pins (BOOTCFG[0:1])

208 Package: BOOTCFG[0] and RSTCFG are not available due to pin limitations and are internally
asserted (driven to 0) in the 208 package.

The BOOTCFG value specifies the location and boot mode used by the boot assist module (BAM). All
reset sources can read the boot configuration field, BOOTCFG[0:1], except a debug port reset and a
software external reset.

The BOOTCFG values are read only if RSTCFG asserts while RSTOUT is asserted. The BOOTCFG
signal asserts after RSTCFG to get the boot input information. BOOTCFG[0:1] is sampled four clock
cycles before RSTOUT negates, and the latched boot values are stored in the reset status register
(SIU_RSR).

If RSTCFG asserts while processing a reset, BOOTCFG[0:1] is sampled. Otherwise, if RSTCFG negates
while processing a reset, the following occurs:

1. BOOTCFG[0:1] is not sampled

2. BAM module boots from internal flash (default = 0b00)

3. Boot value from internal flash is written to BOOTCFG[0:1] field in the reset status register
(SIU_RSR)

4. BOOTCFG[0:1] values are latched and driven as output signals from the SIU

The BOOTCFG values are used only if RSTCFG asserts while RSTOUT is asserted. Otherwise, the
default values for BOOTCFG (0b00) in the reset status register (SIU_RSR) is used, as shown in Table 6-4.

6.3.1.5 I/O Pin Weak Pull Up Reset Configuration Pin (WKPCFG)

The WKPCFG signal is applied when the internal reset signal asserts (indicated by RSTOUT asserting),
and is sampled four clock cycles before RSTOUT negates. The WKPCFG value configures the internal
weak pullup or weak pulldown pin characteristics after a reset occurs in the eMIOS or eTPU modules.

The value of WKPCFG is latched at reset, stored in the reset status register (SIU_RSR), and updated for
all reset sources except the debug port reset and software external reset. The WKPCFG value must be valid
and not change until RSTOUT negates.

Table 6-4. BOOTCFG[0:1] Configuration

Value Meaning

0b00 Boot from internal flash memory (default)

0b01 FlexCAN / eSCI boot

0b10 Boot from external memory (324 package only)

0b11 Invalid value

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 6-7

6.3.1.6 External Interrupt Request Input Pins (IRQ[0:5, 7:15])

IRQ[0:5, 7:15] are the external interrupt request (IRQ) inputs connect to the SIU IRQ inputs. The external
trigger IRQ select register 1 (SIU_ETISR) specifies the IRQ[0:5, 7:15] signals that are input to the SIU
IRQs.

NOTE
IRQ[6] is not available in this device.

208 Package: IRQ[2] is not available in the 208 package due to pin limitations.

External interrupt requests are triggered by rising- and/or falling-edge events that are enabled by setting a
bit in:

• IRQ rising-edge event enable register (SIU_IREER)

• IRQ falling-edge event enable register (SIU_IFEER)

If the bit is set in both registers, both rising- and falling-edge events trigger an interrupt request. Each IRQ
has a counter that tracks the number of system clock cycles that occur between the rising- and falling-edge
events. An IRQ counter exists for each IRQ rising- or falling-edge event enable bit.

The digital filter length field in the IRQ digital filter register (SIU_IDFR) specifies the minimum number
of system clocks that the IRQ signal must hold a logic value to qualify the edge-triggered event as a valid
state change. When the number of system clocks in the IRQ counter equals the value in the digital filter
length field, the IRQ state latches and the IRQ counter is cleared.

If the previous filtered state of the IRQ does not match the current state, and the rising- or falling-edge
event is enabled, the IRQ flag bit is set to 1. For example, the IRQ flag bit is set if a rising-edge event
occurs under the following conditions:

• Previous filtered IRQ state was a logic 0

• Current latched IRQ state is a logic 1

• Rising-edge event is enabled for the IRQ

When the counter for an IRQ is not enabled, the state of the IRQ is held in the current and previous state
latches. The IRQ counter operates independently of the IRQ or overrun flag bit. Clearing the IRQ flag or
overrun flag bits does not clear or reload the counter.

See the following sections for more information:

Section 6.4.1.4, “External Interrupt Status Register (SIU_EISR)”

Section 6.4.1.9, “IRQ Rising-Edge Event Enable Register (SIU_IREER)”

Section 6.4.1.10, “IRQ Falling-Edge Event Enable Register (SIU_IFEER)”

Section 6.4.1.11, “IRQ Digital Filter Register (SIU_IDFR)”

Rising- or falling-edge events are enabled by setting the bits in SIU_IREER or SIU_IFEER. If the same
bit location is set in both registers, both rising- and falling-edge events set the IRQ FLAG bit in
Section 6.4.1.4, “External Interrupt Status Register (SIU_EISR).”

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

6-8 Freescale Semiconductor

6.3.1.6.1 External Interrupts

NOTE
IRQ[6] is not available in this device.

208 Package: IRQ[2] is not available in the 208 package due to pin limitations.

The IRQ signals map to 15 independent interrupt requests output from the SIU. The IRQ flag bit is set
when a rising-edge and/or falling-edge event occurs for the IRQ. An external IRQ signal is asserted when
all of the following occur:

• Enable bit is set in the IRQ rising- and/or falling-edge event registers (SIU_IREER, SIU_IFEER)

• IRQ flag bit is set in the external interrupt status register (SIU_EISR)

• Enable bit is cleared in the DMA/Interrupt request enable register (SIU_DIRER)

• Select bit is cleared in the DMA/Interrupt select register (SIU_DIRSR)

See the following sections for more information:

Section 6.4.1.5, “DMA/Interrupt Request Enable Register (SIU_DIRER)”

Section 6.4.1.6, “DMA/Interrupt Request Select Register (SIU_DIRSR)”

6.3.1.6.2 DMA Transfers

DMA IRQ signals (IRQ[0] through IRQ[3]) map to four independent DMA transfer or interrupt request
outputs configured in the SIU. A DMA transfer or interrupt request asserts when all of the following occur:

• IRQ flag bit is set in the external interrupt status register (SIU_EISR)

• Enable bit is set in the DMA transfer or interrupt request enable register (SIU_DIRER)

• Select bit is set in the DMA transfer or interrupt request select register (SIU_DIRSR)

The SIU receives a ‘DMA transfer done’ signal for each DMA or interrupt request transmitted.
When the ‘DMA done’ signal asserts, the IRQ flag bit is cleared.

208 Package: IRQ[2] is not available in the 208 package due to pin limitations.

See the following sections for more information:

Section 6.4.1.5, “DMA/Interrupt Request Enable Register (SIU_DIRER)”

Section 6.4.1.6, “DMA/Interrupt Request Select Register (SIU_DIRSR)”

6.3.1.6.3 Overruns

An overrun IRQ exists for each overrun flag bit in the overrun status register (SIU_OSR).
An overrun IRQ asserts when all of the following occur:

• Enable bit is set in the IRQ rising- and/or falling-edge event registers (SIU_IREER, SIU_IFEER)

• IRQ flag bit is set in the external interrupt status register (SIU_EISR)

• Bit is set in the overrun request enable and overrun status registers (SIU_ORER, SIU_OSR)

• Rising- or falling-edge event triggers an interrupt request

The SIU outputs one overrun IRQ bit that is the logical OR of all of the IRQ overrun bits.

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 6-9

NOTE
IRQ[6] is not available in this device.

208 Package: IRQ[2] is not available in the 208 package due to pin limitations.

See the following sections for more information:

Section 6.4.1.4, “External Interrupt Status Register (SIU_EISR)”

Section 6.4.1.7, “Overrun Status Register (SIU_OSR)”

Section 6.4.1.8, “Overrun Request Enable Register (SIU_ORER)”

6.3.1.6.4 Edge Detects

An IRQ asserts when an:

• Edge-detect event is enabled

• Edge-detect event occurs

To assert an IRQ when an edge-detect event occurs:

1. Set the enable bit in the IRQ rising- and falling-edge event enable registers
(SIU_IREER, SIU_IFEER)

2. Clear the enable bits for the DMA/Interrupt request enable register (SIU_DIRER)

The IRQ bit is set in the external IRQ status register (SIU_EISR) when an edge-detect event occurs for
that IRQ.

NOTE
IRQ[6] is not available in this device.

208 Package: IRQ[2] is not available in the 208 package due to pin limitations.

See the following sections for more information:

Section 6.4.1.4, “External Interrupt Status Register (SIU_EISR)”

Section 6.4.1.9, “IRQ Rising-Edge Event Enable Register (SIU_IREER)”

Section 6.4.1.10, “IRQ Falling-Edge Event Enable Register (SIU_IFEER)”

6.4 Memory Map and Register Definition
Table 6-5 is the address map for the SIU registers. All register addresses are given as an offset of the SIU
base address.

Table 6-5. SIU Address Map

Address Register Name Register Description Bits

Base (0xC3F9_0000) — Reserved —

Base + 0x0004 SIU_MIDR MCU ID register 32

Base + 0x0008 — Reserved —

Base + 0x000C SIU_RSR Reset status register 32

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

6-10 Freescale Semiconductor

Base + 0x0010 SIU_SRCR System reset control register 32

Base + 0x0014 SIU_EISR SIU external interrupt status register 32

Base + 0x0018 SIU_DIRER DMA/interrupt request enable register 32

Base + 0x001C SIU_DIRSR DMA/interrupt request select register 32

Base + 0x0020 SIU_OSR Overrun status register 32

Base + 0x0024 SIU_ORER Overrun request enable register 32

Base + 0x0028 SIU_IREER IRQ rising-edge event enable register 32

Base + 0x002C SIU_IFEER IRQ falling-edge event enable register 32

Base + 0x0030 SIU_IDFR IRQ digital filter register 32

Base + (0x0034–0x003F) — Reserved —

Base + (0x0040–0x02EC) SIU_PCR0–
SIU_PCR342

Pad configuration registers 0–342 1 16

Base + (0x02F0–0x005F) — Reserved —

Base + (0x0600–0x06D4) SIU_GPDO0–
SIU_GPDO213

GPIO pin data output registers 0–2132 8

Base + (0x06D8–0x07FF) — Reserved —

Base + (0x0800–0x08D4) SIU_GPDI0–
SIU_GPDI213

GPIO pin data input registers 0–2132 8

Base + (0x08D8–0x08FF) — Reserved —

Base + 0x0900 SIU_ETISR eQADC trigger input select register 32

Base + 0x0904 SIU_EISR External IRQ input select register 32

Base + 0x0908 SIU_DISR DSPI input select register 32

Base + (0x090C–0x097) — Reserved —

Base + 0x0980 SIU_CCR Chip configuration register 32

Base + 0x0984 SIU_ECCR External clock control register 32

Base + 0x0988 SIU_CARH Compare A high register 32

Base + 0x098C SIU_CARL Compare A low register 32

Base + 0x0990 SIU_CBRH Compare B high register 32

Base + 0x0994 SIU_CBRL Compare B low register 32

Base + (0x0998–0x09FF) — Reserved —

1 Gaps exist in the pad configuration where I/O pins are not available in this package.
2 Gaps exist in this memory space where I/O pins are not available in this package.

Table 6-5. SIU Address Map (continued)

Address Register Name Register Description Bits

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 6-11

6.4.1 Register Descriptions

The register figures use the following notational conventions in this section:

6.4.1.1 MCU ID Register (SIU_MIDR)

The SIU_MIDR contains the part identification number and mask revision number specific to the device.
The part number is a read-only field that is mask programmed with the part number of the device. The part
number is changed if a new module is added to the device or a memory size is changed, for example. It is
not changed for bug fixes or process changes.

The mask number is a read-only field that is mask programmed with the specific mask revision level of
the device.

The MCU ID register is 32-bits. Figure 6-2 shows the MCU ID register values.

w1c Write 1 to clear the bit to 0.

— Not applicable.

Reserved or unimplemented bit.

U Bit value is uninitialized upon reset.

u Bit value is unchanged upon reset.

Address: Base + 0x0004 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R PARTNUM

W

Reset 0 1 0 1 0 1 0 1 0 0 1 1 0 1 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 MASKNUM_MAJOR MASKNUM_MINOR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-2. MCU ID Register (SIU_MIDR)

Table 6-6. SIU_MIDR Field Descriptions

Field Description

0–15
PARTNUM

[0:15]

MCU part number. Read-only, mask programmed part identification number of the MCU.
Reads 0x5534 for the MPC5534.

16–23 Reserved

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

6-12 Freescale Semiconductor

6.4.1.2 Reset Status Register (SIU_RSR)

The SIU_RSR reflects the most recent source, or sources of reset, and the state of configuration pins at
reset. This register contains one bit for each reset source, indicating that the last reset was power-on reset
(POR), external, software system, software external reset, watchdog, loss of PLL lock, loss of clock or
checkstop reset. A reset status bit set to logic one indicates the type of reset that occurred. Once set, the
reset source status bits in the SIU_RSR remain set until another reset occurs. In the following cases more
than one reset bit is set:

• If a power-on reset request has negated and the device is still in the resulting reset, and then an
external reset is requested, both the power-on and external reset status bits are set. In this case, the
device started the reset sequence due to a power-on reset request, but it ended the reset sequence
after an external reset request.

• If a software external reset is requested, the SERF flag bit is set, but no previously set bits in the
SIU_RSR are cleared. The SERF bit is cleared by writing a 1 to the bit location or when another
reset source is asserted.

• If any of the loss of clock, loss of lock, watchdog or checkstop reset requests occur on the same
clock cycle, and no other higher priority reset source is requesting reset (see Table 6-7), the reset
status bits for all of the requesting resets are set.

Simultaneous reset requests are prioritized. When reset requests of different priorities occur on the same
clock cycle, the lower priority reset request is ignored. Only the highest priority reset request's status bit is
set. Except for a power-on reset request and condition above, all reset requests of any priority are ignored
until the device exits reset.

The WKPCFG bit contains the value of the signal on the WKPCFG pin at the last reset. The BOOTCFG
field contains the values on the BOOTCFG[0:1] pins at the last reset.

24–27
MASKNUM_MAJOR

[0:3]

Major revision number of MCU mask. Read-only, mask programmed mask number of the
MCU. Reads 0x0000 for the initial mask set, and changes sequentially for each mask set.

28–31
MASKNUM_MINOR

[0:3]

Minor revision number of MCU mask. Read-only, mask programmed mask number of the
MCU. Reads 0x0000 for the initial mask set, and changes sequentially for each mask set.

Table 6-7. Reset Source Priorities

Reset Source Priority

Power on reset (POR) and external reset (Group 0) Highest

Software system reset (Group1) Lowest-high

Loss of clock, loss of lock, watchdog, checkstop (Group2) Highest-low

Software external reset (Group 3) Lowest

Table 6-6. SIU_MIDR Field Descriptions (continued)

Field Description

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 6-13

Address: Base + 0x000C Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R PORS ERS LLRS LCRS WDRS CRS 0 0 0 0 0 0 0 0 SSRS SERF

W W1c

Reset1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R WKP
CFG2 0 0 0 0 0 0 0 0 0 0 0 0 BOOTCFG RGF

W W1c

Reset1 U2 U3 0

1 The reset status register receives its reset values during power-on reset.
2 The reset value of the WKPCFG bit is determined by the value on the WKPCFG pin at reset.
3 The reset value of the BOOTCFG field is determined by the values on the BOOTCFG[0:1] pins at reset.

BOOTCFG[0] is not available due to pin limitations, and is internally asserted (driven to 0) in the 208 package.

Figure 6-3. Reset Status Register (SIU_RSR)

Table 6-8. SIU_RSR Field Descriptions

Field Description

0
PORS

Power-on reset status.
0 Another reset source has been acknowledged by the reset controller since the last assertion of the power-on

reset input.
1 The power-on reset input to the reset controller has been asserted and no other reset source has been

acknowledged since that assertion of the power-on reset input except an external reset.

1
ERS

External reset status.
0 The last reset source acknowledged by the reset controller was not a valid assertion of the RESET pin.
1 The last reset source acknowledged by the reset controller was a valid assertion of the RESET pin.

2
LLRS

Loss of lock reset status.
0 The last reset source acknowledged by the reset controller was not a loss of PLL lock reset.
1 The last reset source acknowledged by the reset controller was a loss of PLL lock reset.

3
LCRS

Loss of clock reset status.
0 The last reset source acknowledged by the reset controller was not a loss of clock reset.
1 The last reset source acknowledged by the reset controller was a loss of clock reset.

4
WDRS

Watchdog timer/debug reset status.
0 The last reset source acknowledged by the reset controller was not a watchdog timer or debug reset.
1 The last reset source acknowledged by the reset controller was a watchdog timer or debug reset.

5
CRS

Checkstop reset status.
0 The last reset source acknowledged by the reset controller was not an enabled checkstop reset.
1 The last reset source acknowledged by the reset controller was an enabled checkstop reset.

6–13 Reserved

14
SSRS

Software system reset status.
0 The last reset source acknowledged by the reset controller was not a software system reset.
1 The last reset source acknowledged by the reset controller was a software system reset.

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

6-14 Freescale Semiconductor

6.4.1.3 System Reset Control Register (SIU_SRCR)

The system reset control register allows software to generate either a system or external reset. The software
system reset causes an internal reset, while the software external reset only causes the external RSTOUT
pin to be asserted. When written to 1, the SER bit automatically clears.

15
SERF

Software external reset flag.
0 This bit has been cleared from a 1 to a 0 by a write of 1 to it when it was a 1 or the software external reset input

to the reset controller has not been asserted.
1 The software external reset input to the reset controller has been asserted while this bit was a 0.

16
WKPCFG

Weak pull configuration pin status
0 The WKPCFG pin latched during the last reset was a logical 0 and weak pull down is the default setting
1 The WKPCFG pin latched during the last reset was a logical 1 and weak pullup is the default setting

17–28 Reserved

29–30
BOOTCFG

Reset configuration pin status. Holds the value of the BOOTCFG pins that were latched on the last negation of the
RSTOUT pin, if the RSTCFG pin was asserted. If the RSTCFG pin was not asserted at the last negation of
RSTOUT, and the lower half or least significant half word of the censorship control word equals 0xFFFF or 0x0000,
the BOOTCFG field is set to the value 0b10. Otherwise, if the RSTCFG pin was negated at the last negation of
RSTOUT and the lower half of the censorship control word does not equal 0xFFFF or 0x0000, then the BOOTCFG
field is set to the value 0b00. The BOOTCFG field is used by the BAM program to determine the location of the
reset configuration half word. See Table 4-11 for a translation of the reset configuration half word location from the
BOOTCFG field value.
NOTE: BOOTCFG[0] is not available due to pin limitations and is internally asserted (drive to 0) in the 208 package.

31
RGF

Reset glitch flag. Set by the reset controller when a glitch is detected on the RESET pin. This bit is cleared by the
assertion of the power-on reset input to the reset controller, or a write of 1 to the RGF bit. See Section 6.5.2.1,
“RESET Pin Glitch Detect,” for more information on glitch detection.
0 No glitch has been detected on the RESET pin.
1 A glitch has been detected on the RESET pin.

Address: Base + 0x0010 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 SER 1

1 Write 1 to the SER bit to generate a software external reset. A write of 0 to this bit has no effect. When the reset completes,
the SER bit is cleared to 0.

0 0 0 0 0 0 0 0 0 0 0 0 0 0

W SSR 2

2 The SSR bit always reads 0. A write of 0 to this bit has no effect.

w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CRE

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-4. System Reset Control Register (SIU_SRCR)

Table 6-8. SIU_RSR Field Descriptions (continued)

Field Description

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 6-15

6.4.1.4 External Interrupt Status Register (SIU_EISR)

The external interrupt status register is used to record edge triggered events on the IRQ[0:5, 7:15] inputs
to the SIU. When an edge triggered event is enabled in the SIU_IREER or SIU_IFEER for an IRQ[n] input
and then sensed, the corresponding SIU_EISR flag bit is set. The IRQ flag bit is set regardless of the state
of the corresponding DMA/interrupt request enable bit in SIU_DIRER. The IRQ flag bit remains set until
cleared by software or through the servicing of a DMA request. The IRQ flag bits are cleared by writing
a 1 to the bits. A write of 0 has no effect.

NOTE
IRQ[6] is not available in this device.

208 Package: IRQ[2] is not available in the 208 package due to pin limitations.

3 The CRE bit is set to 1 by POR. Other reset sources cannot set the CRE bit.

Table 6-9. SIU_SRCR Field Descriptions

Field Description

0
SSR

Software system reset. Used to generate a software system reset. Writing a 1 to this bit causes an internal reset.
The software system reset is processed as a synchronous reset. The bit is automatically cleared on the assertion of
any other reset source except a software external reset.
0 Do not generate a software system reset.
1 Generate a software system reset.

1
SER

Software external reset. Used to generate a software external reset. Writing a 1 to this bit causes the RSTOUT pin
to be asserted for 2400 clocks, but the internal reset is not asserted. The bit is automatically cleared when the
software external reset completes or any other reset source is asserted. Once a software external reset has been
initiated, the RSTOUT pin is negated if this bit is cleared before the 2400 clock period expires.
0 Do not generate a software external reset.
1 Generate a software external reset.
Note: If the PLL is configured for dual controller mode writing a 1 to SER causes the RSTOUT pin to be asserted for

16000 clocks. See Section 4.2.2, “Reset Output (RSTOUT).”

2–15 Reserved

16
CRE

Checkstop reset enable. Writing a 1 to this bit enables a reset when the checkstop reset request input is asserted.
The checkstop reset request input is a synchronous internal reset source. The CRE bit defaults to checkstop reset
enabled at POR. If this bit is cleared, it remains cleared until the next POR.
0 No reset occurs when the checkstop reset input to the reset controller is asserted.
1 A reset occurs when the checkstop reset input to the reset controller is asserted.

17–31 Reserved

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

6-16 Freescale Semiconductor

6.4.1.5 DMA/Interrupt Request Enable Register (SIU_DIRER)

The SIU_DIRER allows the assertion of a DMA or interrupt request if the corresponding flag bit is set in
the SIU_EISR. The external interrupt request enable bits enable the interrupt or DMA request. There is
only one interrupt request from the SIU to the interrupt controller. The EIRE bits determine which external
interrupt request flag bits assert the interrupt request signal.

NOTE
IRQ[6] is not available in this device.

208 Package: IRQ[2] is not available in the 208 package due to pin limitations.

Address: Base + 0x0014 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R EIF15 EIF14 EIF13 EIF12 EIF11 EIF10 EIF9 EIF8 EIF7 EIF6 EIF5 EIF4 EIF3 EIF2 EIF1 EIF0

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-5. SIU External Interrupt Status Register (SIU_EISR)

Table 6-10. SIU_EISR Field Descriptions

Field Description

0–15 Reserved

16–31
EIFn

External interrupt request flag n. This bit is set when an edge triggered event occurs on the corresponding IRQn
input.
0 No edge triggered event has occurred on the corresponding IRQ[n] input.
1 An edge triggered event has occurred on the corresponding IRQ[n] input.

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 6-17

6.4.1.6 DMA/Interrupt Request Select Register (SIU_DIRSR)

The SIU_DIRSR allows selection between a DMA or interrupt request for events on the IRQ[0:3] inputs.
The SIU_DIRSR selects between DMA and interrupt requests. If the corresponding bits are set in
SIU_EISR and the SIU_DIRER, then the DMA/interrupt request select bit determines whether a DMA or
interrupt request is asserted.

208 Package: IRQ[2] is not available in the 208 package due to pin limitations.

Address: Base + 0x0018 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R EIRE
15

EIRE
14

EIRE
13

EIRE
12

EIRE
11

EIRE
10

EIRE
9

EIRE
8

EIRE
7

EIRE
6

EIRE
5

EIRE
4

EIRE
3

EIRE
2

EIRE
1

EIRE
0W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-6. SIU DMA/Interrupt Request Enable Register (SIU_DIRER)

Table 6-11. SIU_DIRER Field Descriptions

Field Description

0–15 Reserved

16–31
EIREn

External interrupt request enable n. Enables the assertion of the interrupt request from the SIU to the interrupt
controller when an edge triggered event occurs on the IRQn pin.
0 External interrupt request is disabled.
1 External interrupt request is enabled.

Address: Base + 0x001C Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 DIRS
3

DIRS
2

DIRS
1

DIRS
0W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-7. DMA/Interrupt Request Select Register (SIU_DIRSR)

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

6-18 Freescale Semiconductor

6.4.1.7 Overrun Status Register (SIU_OSR)

The SIU_OSR contains flag bits that record an overrun.

NOTE
IRQ[6] is not available in this device.

208 Package: IRQ[2] is not available in the 208 package due to pin limitations.

Table 6-12. SIU_DIRER Field Descriptions

Field Description

0–27 Reserved

28–31
DIRSn

DMA/interrupt request select n. Selects between a DMA or interrupt request when an edge triggered event occurs
on the corresponding IRQn pin.
0 Interrupt request is selected.
1 DMA request is selected.

Address: Base + 0x0020 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R OVF
15

OVF
14

OVF
13

OVF
12

OVF
11

OVF
10

OVF
9

OVF
8

OVF
7

OVF
6

OVF
5

OVF
4

OVF
3

OVF
2

OVF
1

OVF
0W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-8. Overrun Status Register (SIU_OSR)

Table 6-13. SIU_OSR Field Descriptions

Field Function

0–15 Reserved

16–31
OVFn

Overrun flag n. This bit is set when an overrun occurs on the corresponding IRQn pin.
0 No overrun has occurred on the corresponding IRQn pin.
1 An overrun has occurred on the corresponding IRQn pin.

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 6-19

6.4.1.8 Overrun Request Enable Register (SIU_ORER)

The SIU_ORER contains bits to enable an overrun if the corresponding flag bit is set in the SIU_OSR. If
any overrun request enable bit and the corresponding flag bit are set, the single combined overrun request
from the SIU to the interrupt controller is asserted.

NOTE
IRQ[6] is not available in this device.

208 Package: IRQ[2] is not available in the 208 package due to pin limitations.

Address: Base + 0x0024 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R ORE
15

ORE
14

ORE
13

ORE
12

ORE
11

ORE
10

ORE
9

ORE
8

ORE
7

ORE
6

ORE
5

ORE
4

ORE
3

ORE
2

ORE
1

ORE
0W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-9. Overrun Request Enable Register (SIU_ORER)

Table 6-14. SIU_ORER Field Descriptions

Field Function

0–15 Reserved

16–31
OREn

Overrun request enable n. Enables the overrun request when an overrun occurs on the IRQ[n] pin. Bit 31 (ORE0) is
the enable overrun flag for IRQ[0]; bit 16 (ORE15) is overrun flag for IRQ[15].
0 Overrun request is disabled.
1 Overrun request is enabled.

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

6-20 Freescale Semiconductor

6.4.1.9 IRQ Rising-Edge Event Enable Register (SIU_IREER)

The SIU_IREER allows rising edge triggered events to be enabled on the corresponding IRQ[n] pins.
Rising and falling edge events can be enabled by setting the corresponding bits in both the SIU_IREER
and SIU_IFEER.

NOTE
IRQ[6] is not available in this device.

208 Package: IRQ[2] is not available in the 208 package due to pin limitations.

Address: Base + 0x0002 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R IREE
15

IREE
14

IREE
13

IREE
12

IREE
11

IREE
10

IREE
9

IREE
8

IREE
7

IREE
6

IREE
5

IREE
4

IREE
3

IREE
2

IREE
1

IREE
0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-10. IRQ Rising-Edge Event Enable Register (SIU_IREER)

Table 6-15. SIU_IREER Field Descriptions

Field Function

0–15 Reserved

16–31
IREEn

IRQ rising-edge event enable n. Enables rising-edge triggered events on the corresponding IRQn pin.
0 Rising edge event is disabled.
1 Rising edge event is enabled.

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 6-21

6.4.1.10 IRQ Falling-Edge Event Enable Register (SIU_IFEER)

The SIU_IFEER allows falling edge triggered events to be enabled on the corresponding IRQ[n] pins.
Rising and falling edge events can be enabled by setting the corresponding bits in both the SIU_IREER
and SIU_IFEER.

NOTE
IRQ[6] is not available in this device.

208 Package: IRQ[2] is not available in the 208 package due to pin limitations.

The following table describes the fields in the IRQ falling-edge event enable register:

6.4.1.11 IRQ Digital Filter Register (SIU_IDFR)

The SIU_IDFR specifies the amount of digital filtering on the IRQ[0:5, 7:15] pins. The digital filter length
field specifies the number of system clocks that define the period of the digital filter and the minimum time
a signal must be held in the active state on the IRQ pins to be recognized as an edge triggered event.

NOTE
IRQ[6] is not available in this device.

208 Package: IRQ[2] is not available in the 208 package due to pin limitations.

Address: Base + 0x002C Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R IFEE
15

IFEE
14

IFEE
13

IFEE
12

IFEE
11

IFEE
10

IFEE
9

IFEE
8

IFEE
7

IFEE
6

IFEE
5

IFEE
4

IFEE
3

IFEE
2

IFEE
1

IFEE
0W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-11. IRQ Falling-Edge Event Enable Register (SIU_IFEER)

Table 6-16. SIU_IFEER Field Descriptions

Field Function

0–15 Reserved

16–31
IFEEn

IRQ falling-edge event enable n. Enables falling-edge triggered events on the corresponding IRQ[n] pin.
0 Falling edge event is disabled.
1 Falling edge event is enabled.

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

6-22 Freescale Semiconductor

6.4.1.12 Pad Configuration Registers (SIU_PCR)

The following subsections define the SIU_PCRs for all device pins that allow configuration of the pin
function, direction, and static electrical attributes. The information presented pertains to which bits and
fields are active for a given pin or group of pins, and the reset state of the register. The reset state of
SIU_PCRs given in the following sections is that prior to execution of the BAM program. The BAM
program can change certain SIU_PCRs based on the reset configuration. See the BAM section of the
manual for more detail.

For all PCRs, if the pin is configured as an input, the ODE, SRC, and DSC bits do not apply. If the pin is
configured as an output, the HYS bit does not apply. When a pin is configured as an output, the weak
internal pull up/down is disabled regardless of the WPE or WPS settings in the PCR.

The IBE and OBE bit definitions are specific for each PCR. In cases where an I/O function is input or
output only the IBE and OBE bits do not need to be set to enable the input or output. In cases where an I/O
function can be either an input and output, the IBE and OBE bits must be set accordingly (IBE = 1 for
input, and OBE = 1 for output). For I/O functions that change direction dynamically, such as the external
data bus, switching between input and output is handled internally and the IBE and OBE bits have no
effect.

Address: Base + 0x0030 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0
DFL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-12. External IRQ Digital Filter Register (SIU_IDFR)

Table 6-17. SIU_IDFR Field Descriptions

Field Function

0–27 Reserved

28–31
DFL

Digital filter length. Defines the digital filter period on the IRQn inputs according to the following equation:

For a 82-MHz system clock, this gives a range of 24ns to 400μs. The minimum time of three clocks accounts for
synchronization of the IRQ input pins with the system clock.

Filter Period SystemClockPeriod 2
DFL

×() 1 S(ystemClockPeriod)+=

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 6-23

For all PCRs where a GPIO function is available on the pin, if the pin is configured as an output and the
IBE bit is set, the value of the pin is shown in its GPDIx_x register. Negating the IBE bit when the pin is
configured as an output reduces noise and power consumption.

The SIU_PCRs are 16-bit registers that can be read or written as 16-bit values aligned on 16-bit
boundaries, or as 32-bit values aligned on 32-bit address boundaries. Table 6-18 describes the SIU_PCR
fields.

NOTE
Not all of the fields occur in all SIU_PCRs, depending on the type of pad it
controls. See the specific SIU_PCR definition.

All pin names begin with the primary function, followed by the alternate function, and then GPIO. The
primary function is not available on all MPC5500 devices.

In some cases, the third function can be a secondary alternate, which supersedes the GPIO. Those
exceptions are noted in the documentation. For example, SIU_PCR85 configures the
CNTXB_PCSC[3]_GPIO[85] muxed signal, where CNTXB is the primary function, PCSC[3] is the
alternate function.

Figure 6-13 shows a sample PCR register with all bit fields displayed:

Figure 6-13. Sample PCR Register Description

For identification of the source module for primary and alternate functions, and the description of these
signals, refer to Chapter 2, “Signals” of this manual. Refer to the chapter for the module that uses the signal
for an additional signal description.

Address: Base + 0x0014 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0
PA1

1 Do not configure the PA fields in PCR0–3 and PCR4–7 simultaneously as input. Configure only one set of pins as the
address input.

OBE IBE DSC ODE HYS2

2 If external master operation is enabled, clear the HYS bit to 0.

0 0
WPE WPS

W

RESET: 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1

SIU register address

Read values

Write values

Reset values

AccessField Bit
number nameFootnotes

Register bit
range [3:5]

Field bit
range [0:2] Permissions

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

6-24 Freescale Semiconductor

Table 6-18. SIU_PCR Field Descriptions

Field Description

0–2 Reserved

3–5
PA[0:2]

Pin assignment. Selects the function of a multiplexed pad. A separate port enable output signal from the SIU is
asserted for each value of this register. The size of the field can be from 1 to 3 bits, depending on the amount of
multiplexing on the pad.

6
OBE

Output buffer enable. Enables the pad as an output and drives the output buffer enable signal.
0 Output buffer for the pad is disabled.
1 Output buffer for the pad is enabled.

7
IBE

Input buffer enable. Enables the pad as an input and drives the input buffer enable signal.
0 Input buffer for the pad is disabled.
1 Input buffer for the pad is enabled.

8–9
DSC[0:1]

Drive strength control. Controls the pad drive strength. Drive strength control pertains to pins with the fast I/O pad
type.
00 10 pF Drive Strength
01 20 pF Drive Strength
10 30 pF Drive Strength
11 50 pF Drive Strength

10
ODE

Open drain output enable. Controls output driver configuration for the pads. Either open drain or push/pull driver
configurations can be selected. This feature applies to output pins only.
0 Open drain is disabled for the pad (push/pull driver enabled).
1 Open drain is enabled for the pad.

11
HYS

Input hysteresis. Controls whether hysteresis is enabled for the pad.
0 Hysteresis is disabled for the pad.
1 Hysteresis is enabled for the pad.

PA Bit Field

Pin Function1

1 For all SIU_PCRs that do not comply with these rules, the PA definition is
given explicitly with the SIU_PCR definition.

1-bit2

(2 Functions)

2 For future software compatibility, it is recommended that all PA fields be
treated as 3-bit fields, with the unused bits written as 0.

2-bit2

(4 Functions)
3-bit

(5 Functions)

0 0 0 0 0 0 0 0 0 GPIO

0 0 1 0 0 1 0 0 1 Primary function

0 1 0 0 1 0 Alternate function 1

0 1 1 0 1 1 Main primary function 3

3 The main primary function is used when the primary function is not available
on the package or is used for a different purpose.

The shaded columns indicate
invalid bits in 1- and 2-bit PA
fields; the shaded rows indicate
invalid values for 3-bit PA fields.

1 0 0 Alternate function 2

1 0 1 Invalid value

1 1 0 Invalid value

1 1 1 Invalid value

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 6-25

6.4.1.12.1 Pad Configuration Registers 0–3 (SIU_PCR0–SIU_PCR3)

The SIU_PCR0–SIU_PCR3 registers control the pin function, direction, and static electrical attributes of
the CS[0:3]_ADDR[8:11]_GPIO[0:3] pins.

208 Package: CS[1:3]_ADDR[9:11]_GPIO[1:3] are not available due to pin limitations in the 208
package.

12–13
SRC[0:1]

Slew rate control. Controls slew rate for the pad. Slew rate control pertains to pins with slow or medium I/O pad types,
and the output signals are driven according to the value of this field. Actual slew rate is dependent on the pad type
and load. See the electrical specification for this information
00 Minimum slew rate (slowest)
01 Medium slew rate
10 Invalid value
11 Maximum slew rate (fastest)

14
WPE

Weak pull up/down enable. Controls whether the weak pull up/down devices are enabled/disabled for the pad. Pull
up/down devices are enabled by default.
0 Weak pull device is disabled for the pad.
1 Weak pull device is enabled for the pad.

15
WPS

Weak pull up/down select. Controls whether weak pull up or weak pull down devices are used for the pad when weak
pull up/down devices are enabled. The WKPCFG pin determines whether pull up or pull down devices are enabled
at reset. The WPS bit determines whether weak pull up or pull down devices are used after reset, or for pads in which
the WKPCFG pin does not determine the reset weak pull up/down state.
0 The pull down value is enabled for the pad.
1 The pull up value is enabled for the pad.

Address: SIU_BASE + (0x0040–0x0046) Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
PA OBE1 IBE2 DSC ODE3 HYS

0 0
WPE4 WPS4

W

Reset 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1

1 When configured as CS[0:3], the OBE bit has no effect. When configured as GPO, set the OBE bit to one.
2 When configured as CS[0:3] or GPI, set the IBE bit to one to reflect the pin state in the GPDI register. When configured

as GPI, set the IBE bit to one.
3 When configured as CS[0:3], set the ODE bit to zero.
4 See the EBI section for weak pull up settings when configured as CS[0:3].

Figure 6-14. CS[0:3]_ADDR[8:11]_GPIO[0:3] Pad Configuration Registers
(SIU_PCR0–SIU_PCR3)

Table 6-18. SIU_PCR Field Descriptions (continued)

Field Description

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

6-26 Freescale Semiconductor

See Table 6-18 for bit field definitions. Table 6-19 lists the PA values for
CS[1:3]_ADDR[9:11]_GPIO[1:3].

6.4.1.12.2 Pad Configuration Registers 8–27 (SIU_PCR8–SIU_PCR27)

The SIU_PCR8–SIU_PCR27 registers control the pin function, direction, and static electrical attributes of
the ADDR[12:31]_GPIO[8:27] pins.

208 Package: ADDR[12:31]_GPIO[8:27] pins are not available due to pin limitations.

See Table 6-18 for bit field definitions.

6.4.1.12.3 Pad Configuration Registers 28–43 (SIU_PCR28–SIU_PCR43)

The SIU_PCR28–SIU_PCR43 registers control the pin function, direction, and static electrical attributes
of the DATA[0:15]_GPIO[28:43] pins.

208 Package: DATA[1:15] pins are not available in the 208 package due to pin limitations.

Table 6-19. PCR0–PCR3 PA Field Descriptions

PA Field Pin Function

0b00 GPIO[0:3]

0b01 CS[0:3]

0b10 ADDR[8:11]

0b11 CS[0:3]

Address: SIU_BASE + (0x0048–0x0076) Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0
PA OBE1 IBE2 DSC ODE3 HYS

0 0
WPE4 WPS4

W

Reset 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1

1 When configured as ADDR[12:31], the OBE bit has no effect. When configured as GPO, set the OBE bit to one.
2 When configured as ADDR[12:31] or GPO, set the IBE bit to one to reflect the pin state in the GPDI register. When

configured as GPI, set the IBE bit to one.
3 When configured as ADDR[12:31], set the ODE bit to zero.
4 See the EBI section for weak pull up settings when configured as ADDR[12:31]

Figure 6-15. Pad Configuration Registers 8–27 (SIU_PCR8–SIU_PCR27)

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 6-27

See Table 6-18 for bit field definitions.

6.4.1.12.4 Pad Configuration Register 62 (SIU_PCR62)

The SIU_PCR62 register controls the pin function, direction, and static electrical attributes of the
RD_WR_GPIO[62] pin.

208 Package: RD_WR_GPIO[62] pin is not available in the 208 package due to pin limitations.

See Table 6-18 for bit field definitions.

6.4.1.12.5 Pad Configuration Register 63 (SIU_PCR63)

The SIU PCR63 register controls the pin function, direction, and static electrical attributes of the
BDIP_GPIO[63] pin.

208 Package: BDIP_GPIO[63] pin is not available in the 208 package due to pin limitations.

Address: SIU_BASE + (0x0078–0x0096) (16) Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0
PA OBE1 IBE2 DSC ODE3 HYS

0 0
WPE4 WPS4

W

Reset 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1

1 When configured as DATA[0:15], the OBE bit has no effect. When configured as GPO, set the OBE bit to one.
2 When configured as DATA[0:15] or GPO, set the IBE bit to one to reflect the pin state in the GPDI register. When

configured as GPI, set the IBE bit to one.
3 When configured as DATA[0:15], set the ODE bit to zero.
4 See the EBI section for weak pull up settings when configured as DATA[0:15].

Figure 6-16. DATA[0:15]_GPIO[28:43] Pad Configuration Registers (SIU_PCR28–SIU_PCR43)

Address: SIU_BASE + 0x00BC Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0
PA OBE1 IBE2 DSC ODE3 HYS

0 0
WPE4 WPS4

W

Reset 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1

1 When configured as RD_WR, the OBE bit has no effect. When configured as GPO, set the OBE bit to one.
2 When configured as RD_WR or GPO, set the IBE bit to one to reflect the pin state in the GPDI register. When

configured as GPI, set the IBE bit to one.
3 When configured as RD_WR, set the ODE bit to zero.
4 See the EBI section for weak pull up settings when configured as RD_WR.

Figure 6-17. RD_WR_GPIO[62] Pad Configuration Register (SIU_PCR62)

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

6-28 Freescale Semiconductor

See Table 6-18 for bit field definitions.

6.4.1.12.6 Pad Configuration Registers 64–65 (SIU_PCR64–SIU_PCR65)

The SIU_PCR64–SIU_PCR65 registers control the pin function, direction, and static electrical attributes
of the WE/BE[0:1]_GPIO[64:65] pins. The PA bit in the PCR64–65 registers selects between the write
enable/byte enable and GPIO functions. The WEBS bit in the EBI base registers selects between the write
enable and byte enable function.

208 Package: WE/BE[0:1]_GPIO[64:65] pins are not available in the 208 package due to pin
limitations.

See Table 6-18 for bit field definitions.

Address: SIU_BASE+0x00BE Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0
PA OBE1 IBE2 DSC ODE3 HYS

0 0
WPE4 WPS4

W

Reset 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1

1 When configured as BDIP, the OBE bit has no effect. When configured as GPO, set the OBE bit to one.
2 When configured as BDIP or GPO, set the IBE bit to one to reflect the pin state in the GPDI register. When configured

as GPI, set the IBE bit to one.
3 When configured as BDIP, set the ODE bit to zero.
4 See the EBI section for weak pull up settings when configured as BDIP.

Figure 6-18. BDIP_GPIO[63] Pad Configuration Register (SIU_PCR63)

Address: SIU_BASE + (0x00C0–0x00C6) Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0
PA OBE1 IBE2 DSC ODE3 HYS

0 0
WPE4 WPS4

W

Reset 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1

1 When configured as WE[0:1] or BE[0:1], the OBE bit has no effect. When configured as GPO, set the OBE bit to one.
2 When configured as WE[0:1] or BE[0:1] or GPO, set the IBE bit to one to reflect the pin state in the GPDI register.

When configured as GPI, set the IBE bit to one.
3 When configured as WE[0:1] or BE[0:1], set the ODE bit to zero.
4 See the EBI section for weak pull up settings when configured as WE[0:1] or BE[0:1].

Figure 6-19. WE/BE[0:1]_GPIO[64:65] Pad Configuration Registers (SIU_PCR64–SIU_PCR65)

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 6-29

6.4.1.12.7 Pad Configuration Register 68 (SIU_PCR68)

The SIU_PCR68 register controls the pin function, direction, and static electrical attributes of the
OE_GPIO[68] pin.

Figure 6-20. OE_GPIO[68] Pad Configuration Register (SIU_PCR68)

See Table 6-18 for bit field definitions.

6.4.1.12.8 Pad Configuration Register 69 (SIU_PCR69)

The SIU_PCR69 register controls the pin function, direction, and static electrical attributes of the
TS_GPIO[69] pin.

208 Package: TS_GPIO[69] pin is not available in the 208 package due to pin limitations.

Figure 6-21. TS_GPIO[69] Pad Configuration Register (SIU_PCR69)

See Table 6-18 for bit field definitions.

Address: SIU_BASE + 0x00C8 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0
PA OBE1

1 When configured as OE, the OBE bit has no effect. When configured as GPO, set the OBE bit to one.

IBE2

2 When configured as OE or GPO, set the IBE bit to one to reflect the pin state in the GPDI register. When configured as GPI, set
the IBE bit to one.

DSC ODE3

3 When configured as OE, set the ODE bit to zero.

HYS
0 0

WPE4

4 See the EBI section for weak pull up settings when configured as OE.

WPS4

W

RESET: 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1

Address: SIU_BASE + 0x00CA Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0
PA OBE1

1 When configured as TS, the OBE bit has no effect. When configured as GPO, set the OBE bit to one.

IBE2

2 When configured as TS or GPO, set the IBE bit to one to reflect the pin state in the GPDI register. When configured as GPI, set
the IBE bit to one.

DSC ODE3

3 When configured as TS, set the ODE bit to zero.

HYS
0 0

WPE4

4 See the EBI section for weak pull up settings when configured as TS.

WPS4

W

RESET: 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

6-30 Freescale Semiconductor

6.4.1.12.9 Pad Configuration Register 70 (SIU_PCR70)

The SIU_PCR70 register controls the pin function, direction, and static electrical attributes of the
TA_GPIO[70] pin.

208 Package: TA_GPIO[70] pin is not available in the 208 package due to pin limitations.

Figure 6-22. TA_GPIO[70] Pad Configuration Register (SIU_PCR70)

See Table 6-18 for bit field definitions.

6.4.1.12.10 Pad Configuration Register 82–75 (SIU_PCR82–SIU_PCR75)

The SIU_PCR82–SIU_PCR75 registers control the pin function, direction, and static electrical attributes
of the MDO[11:4]_GPIO[82:75] pins. GPIO is the default function at reset for these pins. The full port
mode (FPM) bit in the Nexus port controller (NPC) port configuration register controls whether the pins
function as MDO[11:4]_GPIO[82:75]. The pad interface port enable for these pins is driven by the NPC
block. When the FPM bit is set, the NPC enables the MDO port enable, and disables GPIO. When the FPM
bit is cleared, the NPC disables the MDO port enable, and enables GPIO.

208 Package: MDO[11:4]_GPIO[82:75] pins are not available in the 208 package.

Figure 6-23. MDO[11:4]_GPIO[82:75] Pad Configuration Register (SIU_PCR82–SIU_PCR75)

See Table 6-18 for bit field definitions.

Address: SIU_BASE + 0x00CC Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0
PA OBE1

1 When configured as TA, the OBE bit has no effect. When configured as GPO, set the OBE bit to one.

IBE2

2 When configured as TA, or GPIO, set the IBE bit to one to reflect the pin state in the GPDI register. When configured as GPI,
set the IBE bit to one.

DSC ODE3

3 When configured as TA and external master operation is enabled, set the ODE bit to zero.

HYS
0 0

WPE4

4 See the EBI section for weak pull up settings when configured as TA.

WPS4

W

RESET: 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1

Address: SIU_BASE + (0x00E4–0x00D6) Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0
OBE1

1 This bit applies only to GPIO operation.

IBE1 DSC ODE2

2 Set the ODE bit to zero for MDO operation.

HYS3

3 The HYS bit has no effect on MDO operation.

0 0
WPE4

4 Set the WPE bit to zero for MDO operation.

WPS
W

RESET: 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 6-31

6.4.1.12.11 Pad Configuration Register 83 (SIU_PCR83)

The SIU_PCR83 register controls the pin function, direction, and static electrical attributes of the
CNTXA_GPIO[83] pin.

Figure 6-24. CNTXA_GPIO[83] Pad Configuration Register (SIU_PCR83)

See Table 6-18 for bit field definitions.

6.4.1.12.12 Pad Configuration Register 84 (SIU_PCR84)

The SIU_PCR84 register controls the pin function, direction, and static electrical attributes of the
CNRXA_GPIO[84] pin.

Figure 6-25. CNRXA_GPIO[84] Pad Configuration Register (SIU_PCR84)

See Table 6-18 for bit field definitions.

Address: SIU_BASE + 0x00E6 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0
PA OBE1

1 When configured as CNTXA, the OBE bit has no effect. When configured as GPO, set the OBE bit to one.

IBE2

2 When configured as CNTXA or GPO, set the IBE bit to reflect the pin state in the GPDI register. When configured as GPI, set
the IBE bit to one.

0 0
ODE HYS SRC WPE WPS

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

Address: SIU_BASE + 0x00E8 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0
PA OBE1

1 When configured as CNRXA, the OBE bit has no effect. When configured as GPO, set the OBE bit to one.

IBE2

2 When configured as CNRXA or GPO, set the IBE bit to one to reflect the pin state in the GPDI register. When configured as
GPI, set the IBE bit to one.

0 0
ODE HYS SRC WPE WPS

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

6-32 Freescale Semiconductor

6.4.1.12.13 Pad Configuration Register 85 (SIU_PCR85)

The SIU_PCR85 register controls the pin function, direction, and static electrical attributes of the
CNTXB_PCSC[3]_GPIO[85] pin. CNTXB is the primary function and is not available in this device. This
register allows you to select the PCSC[3] or GPIO[85] function.

Figure 6-26. PCSC[3]_GPIO[85] Pad Configuration Register (SIU_PCR85)

See Table 6-18 for bit field definitions.

6.4.1.12.14 Pad Configuration Register 86 (SIU_PCR86)

The SIU_PCR86 register controls the pin function, direction, and static electrical attributes of the
CNRXB_PCSC[4]_GPIO[86] pin. CNRXB is the primary function and is not available in this device. This
register allows you to select the PCSC[4] or GPIO[86] function.

Figure 6-27. PCSC[4]_GPIO[86] Pad Configuration Register (SIU_PCR86)

See Table 6-18 for bit field definitions.

Address: SIU_BASE + 0x00EA Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
PA1

1 The primary function is not available on this device. Do not select 0b01 or 0b11 for the PA field. Valid values are 0b00 for
GPIO[85] and 0b10 for PCSC[3].

OBE2

2 When configured as PCSC, the OBE bit has no effect. When configured as GPO, set the OBE bit to one.

IBE3

3 When configured as PCSC or GPO, you can set the IBE bit to one to reflect the pin state in the GPDI register. When configured
as GPI, set the IBE bit to one.

0 0
ODE HYS SRC WPE WPS

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

Address: SIU_BASE + 0x00EC Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
PA1

1 The primary function is not available on this device. Do not select 0b01 or 0b11 for the PA field. Valid values are 0b00 for
GPIO[86] and 0b10 for PCSC[4].

OBE2

2 When configured as PCSC, the OBE bit has no effect. When configured as GPO, set the OBE bit to one.

IBE3

3 When configured as PCSC or GPO, you can set the IBE bit to one to reflect the pin state in the GPDI register. When configured
as GPI, set the IBE bit to one.

0 0
ODE HYS SRC WPE WPS

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 6-33

6.4.1.12.15 Pad Configuration Register 87 (SIU_PCR87)

The SIU_PCR87 register controls the pin function, direction, and static electrical attributes of the
CNTXC_PCSD[3]_GPIO[87] pin.

Figure 6-28. CNTXC_PCSD[3]_GPIO[87] Pad Configuration Register (SIU_PCR87)

See Table 6-18 for bit field definitions.

6.4.1.12.16 Pad Configuration Register 88 (SIU_PCR88)

The SIU_PCR88 register controls the pin function, direction, and static electrical attributes of the
CNRXC_PCSD[4]_GPIO[88] pin.

Figure 6-29. CNRXC_PCSD[4]_GPIO[88] Pad Configuration Register (SIU_PCR88)

See Table 6-18 for bit field definitions.

Address: SIU_BASE + 0x00EE Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
PA OBE1

1 When configured as CNTXC or PCSD, the OBE bit has no effect. When configured as GPO, set the OBE bit to one.

IBE2

2 When configured as CNTXC or PCSD or GPO, you can set the IBE bit to one to reflect the pin state in the GPDI register. When
configured as GPI, set the IBE bit to one.

0 0
ODE HYS SRC WPE WPS

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

Address: SIU_BASE + 0x00F0 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
PA OBE1

1 When configured as CNRXC or PCSD, the OBE bit has no effect. When configured as GPO, set the OBE bit to one.

IBE2

2 When configured as CNRXC or PCSD or GPO, you can set the IBE bit to one to reflect the pin state in the GPDI register. When
configured as GPI, set the IBE bit to one.

0 0
ODE HYS SRC WPE WPS

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

6-34 Freescale Semiconductor

6.4.1.12.17 Pad Configuration Register 89 (SIU_PCR89)

The SIU_PCR89 register controls the pin function, direction, and static electrical attributes of the
TXDA_GPIO[89] pin.

Figure 6-30. TXDA_GPIO[89] Pad Configuration Register (SIU_PCR89)

See Table 6-18 for bit field definitions.

6.4.1.12.18 Pad Configuration Register 90 (SIU_PCR90)

The SIU_PCR90 register controls the pin function, direction, and static electrical attributes of the
RXDA_GPIO[90] pin.

Figure 6-31. RXDA_GPIO[90] Pad Configuration Register (SIU_PCR90)

See Table 6-18 for bit field definitions.

Address: SIU_BASE + 0x00F2 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0
PA OBE1

1 When configured as TXDA, the OBE bit has no effect. When configured as GPO, set the OBE bit to one.

IBE2

2 When configured as TXDA or GPO, you can set the IBE bit to one to reflect the pin state in the GPDI register. For SCI loop
back operation, set the IBE bit to one. When configured as GPI, set the IBE bit to one.

0 0
ODE HYS SRC WPE WPS

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

Address: SIU_BASE + 0x00F4 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0
PA OBE1

1 When configured as RXDA, the OBE bit has no effect. When configured as GPO, set the OBE bit to one.

IBE2

2 When configured as RXDA or GPO, you can set the IBE bit to one to reflect the pin state in the GPDI register. When configured
as GPI, set the IBE bit to one.

0 0
ODE HYS SRC WPE WPS

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 6-35

6.4.1.12.19 Pad Configuration Register 91 (SIU_PCR91)

The SIU_PCR91 register controls the pin function, direction, and static electrical attributes of the
TXDB_PCSD[1]_GPIO[91] pin.

Figure 6-32. TXDB_PCSD[1]_GPIO[91] Pad Configuration Register (SIU_PCR91)

See Table 6-18 for bit field definitions.

6.4.1.12.20 Pad Configuration Register 92 (SIU_PCR92)

The SIU_PCR92 register controls the pin function, direction, and static electrical attributes of the
RXDB_PCSD[5]_GPIO[92] pin.

Figure 6-33. RXDB_PCSD[5]_GPIO[92] Pad Configuration Register (SIU_PCR92)

See Table 6-18 for bit field definitions.

Address: SIU_BASE + 0x00F6 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
PA1

1

OBE2

2 When configured as TXDB or PCSD, the OBE bit has no effect. When configured as GPO, set the OBE bit to one.

IBE3

3 When configured as TXDB or PCSD or GPO, you can set the IBE bit to one to reflect the pin state in the GPDI register. For
SCI loop back operation, set the IBE bit to one. When configured as GPI, set the IBE bit to one.

0 0
ODE HYS SRC WPE WPS

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

Address: SIU_BASE + 0x00F8 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
PA OBE1

1 When configured as RXDB or PCSD, the OBE bit has no effect. When configured as GPO, set the OBE bit to one.

IBE2

2 When configured as RXDB or PCSD or GPO, you can set the IBE bit to one to reflect the pin state in the GPDI register. When
configured as GPI, set the IBE bit to one.

0 0
ODE HYS SRC WPE WPS

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

6-36 Freescale Semiconductor

6.4.1.12.21 Pad Configuration Register 93 (SIU_PCR93)

The SIU_PCR93 register controls the pin function, direction, and static electrical attributes of the
SCKA_PCSC[1]_GPIO[93] pin. The SCKA signal is the primary function and is not available in this
device. This register allows you to select the PCSC[1] or GPIO[93] function.

Figure 6-34. PCSC[1]_GPIO[93] Pad Configuration Register (SIU_PCR93)

See Table 6-18 for bit field definitions.

6.4.1.12.22 Pad Configuration Register 94 (SIU_PCR94)

The SIU_PCR94 register controls the pin function, direction, and static electrical attributes of the
SINA_PCSC[2]_GPIO[94] pin. SINA is the primary function is not available in this device. This register
allows you to select of the PCSC[2] or GPIO[94] function.

Figure 6-35. PCSC[2]_GPIO[94] Pad Configuration Register (SIU_PCR94)

See Table 6-18 for bit field definitions.

Address: SIU_BASE + 0x00FA Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
PA1

1 The primary function is not available on this device. Do not select 0b01 or 0b11 for the PA field. Valid values are 0b10 for
PCSC[1] and 0b00 for GPIO[93].

OBE2

2 When configured as PCSC, the OBE bit has no effect. When configured as GPO, set the OBE bit to one.

IBE3

3 When configured as PCSC or GPO, set the IBE bit to one to reflect the pin state in the GPDI register. When configured as GPI,
set the IBE bit to one.

0 0
ODE HYS SRC WPE WPS

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

Address: SIU_BASE + 0x00FC Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
PA1

1 The primary function is not available on this device. Do not select 0b01 or 0b11 for the PA field. Valid values are 0b10 for
PCSC[2] and 0b00 for GPIO[94].

OBE2

2 When configured as PCSC, the OBE bit has no effect. When configured as GPO, set the OBE bit to one.

IBE3

3 When configured as PCSC or GPO, set the IBE bit to one to reflect the pin state in the GPDI register. When configured as GPI,
set the IBE bit to one.

0 0
ODE HYS SRC WPE WPS

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 6-37

6.4.1.12.23 Pad Configuration Register 95 (SIU_PCR95)

The SIU_PCR95 register controls the pin function, direction, and static electrical attributes of the
SOUTA_PCSC[5]_GPIO[95] pin. SOUTA is the primary function and is not available in the device. This
register allows you to select the PCSC[5] or GPIO[95] function.

Figure 6-36. PCSC[5]_GPIO[95] Pad Configuration Register (SIU_PCR95)

See Table 6-18 for bit field definitions.

6.4.1.12.24 Pad Configuration Registers 96 (SIU_PCR96)

The SIU_PCR96 registers control the pin function, direction, and static electrical attributes of the
PCSA[0]_PCSD[2]_GPIO[96] pin. PCSA[0] is the primary function and is not available in this device.
This register allows you to select the PCSD[2] or GPIO[96] function.

Figure 6-37. PCSD[2]_GPIO[96] Pad Configuration Register (SIU_PCR96)

See Table 6-18 for bit field definitions.

Address: SIU_BASE + 0x00FE Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
PA1

1 The primary function is not available on this device. Do not select 0b01 or 0b11 for the PA field. Valid values are 0b10 for
PCSC[5] and 0b00 for GPIO[95].

OBE2

2 When configured as PCSC, the OBE bit has no effect. When configured as GPO, set the OBE bit to one.

IBE3

3 When configured as PCSC or GPO, set the IBE bit to one to reflect the pin state in the GPDI register. When configured as GPI,
set the IBE bit to one.

0 0
ODE HYS SRC WPE WPS

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

Address: SIU_BASE + 0x0100 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
PA1

1 The primary function is not available on this device. Do not select 0b01 or 0b11 for the PA field. Valid values are 0b10 for
PCSD[2] and 0b00 for GPIO[96].

OBE2

2 When configured as PCSD[2], the OBE bit has no effect. When configured as GPO, set the OBE bit to one.

IBE3

3 When configured as PCSD[2] or GPO, set the IBE bit to one to reflect the pin state in the GPDI register. When configured as
GPI, set the IBE bit to one.

0 0
ODE HYS SRC WPE WPS

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

6-38 Freescale Semiconductor

6.4.1.12.25 Pad Configuration Registers 97 (SIU_PCR97)

The SIU_PCR97 registers control the pin function, direction, and static electrical attributes of the
PCSA[1]_PCSB[2]_GPIO[97] pin. PCSA[1] is the primary function and is not available in this device.
This register allows you to select the PCSB[2] or GPIO[97] function.

Figure 6-38. PCSB[2]_GPIO[97] Pad Configuration Register (SIU_PCR97)

See Table 6-18 for bit field definitions.

6.4.1.12.26 Pad Configuration Register 98 (SIU_PCR98)

The SIU_PCR98 register controls the pin function, direction, and static electrical attributes of the
PCSA[2]_SCKD_GPIO[98] pin. PCSA[2] is the primary function and is not available in this device. This
register allows you to select the SCKD or GPIO[98] function.

Figure 6-39. SCKD_GPIO[98] Pad Configuration Register (SIU_PCR98)

See Table 6-18 for bit field definitions.

Address: SIU_BASE + 0x0102 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
PA1

1 The primary function is not available on this device. Do not select 0b01 or 0b11 for the PA field. Valid values are 0b10 for
PCSB[2] and 0b00 for GPIO[97].

OBE2

2 When configured as PCSB[2], the OBE bit has no effect. When configured as GPO, set the OBE bit to one.

IBE3

3 When configured as PCSB[2] or GPO, set the IBE bit to one to reflect the pin state in the GPDI register. When configured as
GPI, set the IBE bit to one.

0 0
ODE HYS SRC WPE WPS

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

Address: SIU_BASE + 0x0104 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
PA1

1 The primary function is not available on this device. Do not select 0b001 or 0b011 for the PA field. Valid values are 0b10 for
SCKD and 0b00 for GPIO[98].

OBE2

2 When configured as SCKD, set the OBE bit to one for master operation, or set to zero for slave operation. When configured
as GPO, set the OBE bit to one.

IBE3

3 When configured as SCKD in slave operation, set the IBE bit to one. When configured as SCKD in master operation or GPO,
set the IBE bit to one to reflect the pin state in the GPDI register. When configured as GPI, set the IBE bit to one.

0 0
ODE HYS SRC WPE WPS

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 6-39

6.4.1.12.27 Pad Configuration Register 99 (SIU_PCR99)

The SIU_PCR99 register controls the pin function, direction, and static electrical attributes of the
PCSA[3]_SIND_GPIO[99] pin. PCSA[3] is the primary function and is not available in this device. This
register allows you to select the SIND or GPIO[99] function.

Figure 6-40. SIND_GPIO[99] Pad Configuration Register (SIU_PCR99)

See Table 6-18 for bit field definitions.

6.4.1.12.28 Pad Configuration Register 100 (SIU_PCR100)

The SIU_PCR100 register controls the pin function, direction, and static electrical attributes of the
PCSA[4]_SOUTD_GPIO[100] pin. PCSA[4] is the primary function is not available in this device. This
register allows you to select the SOUTD or GPIO[100] function.

Figure 6-41. SOUTD_GPIO[100] Pad Configuration Register (SIU_PCR100)

See Table 6-18 for bit field definitions.

Address: SIU_BASE + 0x0106 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
PA1

1 The primary function is not available on this device. Do not select 0b01 or 0b11 for the PA field. Valid values are 0b10 for SIND
and 0b00 for GPIO[99].

OBE2

2 When configured as GPO, set the OBE bit to one.

IBE3

3 When configured as SIND or GPO, set the IBE bit to one to reflect the pin state in the GPDI register. When configured as GPI,
set the IBE bit to one.

0 0
ODE HYS SRC WPE WPS

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

Address: SIU_BASE + 0x0108 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
PA1

1 The primary function is not available on this device. Do not select 0b01 or 0b11 for the PA field. Valid values are 0b10 for
SOUTD and 0b00 for GPIO[100].

OBE2

2 When configured as SOUTD, the OBE bit has no effect. When configured as GPO, set the OBE bit to one.

IBE3

3 When configured as SOUTD or GPO, set the IBE bit to one to reflect the pin state in the GPDI register. When configured as
GPI, set the IBE bit to one.

0 0
ODE HYS SRC WPE WPS

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

6-40 Freescale Semiconductor

6.4.1.12.29 Pad Configuration Registers 101 (SIU_PCR101)

The SIU_PCR101 register controls the pin function, direction, and static electrical attributes of the
PCSA[5]_PCSB[3]_GPIO[101] pin. PCSA[5] is the primary function is not available in this device.
PCSB[3] is not available in this device. This register allows you to select the PCSB[3] or GPIO[101]
function.

Figure 6-42. PCSB[3]_GPIO[101] Pad Configuration Register (SIU_PCR101)

See Table 6-18 for bit field definitions.

6.4.1.12.30 Pad Configuration Register 102 (SIU_PCR102)

The SIU_PCR102 register controls the pin function, direction, and static electrical attributes of the
SCKB_PCSC[1]_GPIO[102] pin.

Figure 6-43. SCKB_PCSC[1]_GPIO[102] Pad Configuration Register (SIU_PCR102)

See Table 6-18 for bit field definitions.

Address: SIU_BASE + 0x010A Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
PA1

1 The primary function is not available on this device. Do not select 0b01 or 0b11 for the PA field. Valid values are 0b10 for
PCSB[3] and 0b00 for GPIO[101].

OBE2

2 When configured as PCSB[3], the OBE bit has no effect. When configured as GPO, set the OBE bit to one.

IBE3

3 When configured as PCSB[3] or GPO, set the IBE bit to one to reflect the pin state in the GPDI register. When configured as
GPI, set the IBE bit to one.

0 0
ODE HYS SRC WPE WPS

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

Address: SIU_BASE + 0x010C Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
PA OBE1

1 When configured as SCKB, set the OBE bit to one for master operation, and set to zero for slave operation. When configured
as GPO, set the OBE bit to one.

IBE2

2 When configured as SCKB in slave operation, set the IBE bit to one. When configured as SCKB in master operation or PCSC
or GPO, set the IBE bit to one to reflect the pin state in the GPDI register. When configured as GPI, set the IBE bit to one.

0 0
ODE HYS SRC WPE WPS

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 6-41

6.4.1.12.31 Pad Configuration Register 103 (SIU_PCR103)

The SIU_PCR103 register controls the pin function, direction, and static electrical attributes of the
SINB_PCSC[2]_GPIO[103] pin.

Figure 6-44. SINB_PCSC[2]_GPIO[103] Pad Configuration Register (SIU_PCR103)

See Table 6-18 for bit field definitions.

6.4.1.12.32 Pad Configuration Register 104 (SIU_PCR104)

The SIU_PCR104 register controls the pin function, direction, and static electrical attributes of the
SOUTB_PCSC[5]_GPIO[104] pin.

Figure 6-45. SOUTB_PCSC[5]_GPIO[104] Pad Configuration Register (SIU_PCR104)

See Table 6-18 for bit field definitions.

Address: SIU_BASE + 0x010E Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
PA OBE1

1 When configured as SINB, set the OBE bit to zero. When configured as PCSC, set the OBE bit to one.

IBE2

2 When configured as SINB or PCSC, set the IBE bit to one to reflect the pin state in the GPDI register. When configured as GPI,
set the IBE bit to one.

0 0
ODE HYS SRC WPE WPS

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

Address: SIU_BASE + 0x0110 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
PA OBE1

1 When configured as SOUTB or PCSC, the OBE bit has no effect. When configured as GPO, set the OBE bit to one.

IBE2

2 When configured as SOUTB or PCSC or GPO, set the IBE bit to one to reflect the pin state in the GPDI register. When
configured as GPI, set the IBE bit to one.

0 0
ODE HYS SRC WPE WPS

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

6-42 Freescale Semiconductor

6.4.1.12.33 Pad Configuration Register 105 (SIU_PCR105)

The SIU_PCR105 register controls the pin function, direction, and static electrical attributes of the
PCSB[0]_PCSD[2]_GPIO[105] pin.

Figure 6-46. PCSB[0]_PCSD[2]_GPIO[105] Pad Configuration Register (SIU_PCR105)

See Table 6-18 for bit field definitions.

6.4.1.12.34 Pad Configuration Register 106 (SIU_PCR106)

The SIU_PCR106 register controls the pin function, direction, and static electrical attributes of the
PCSB[1]_PCSD[0]_GPIO[106] pin.

Figure 6-47. PCSB[1]_PCSD[0]_GPIO[106] Pad Configuration Register (SIU_PCR106)

See Table 6-18 for bit field definitions.

Address: SIU_BASE + 0x0112 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
PA OBE1

1 When configured as PCSB[0], the OBE bit has no effect. When configured as PCSD[2], set the OBE bit to one for master
operation, and set to zero for slave operation. When configured as GPO, set the OBE bit to one.

IBE2

2 When configured as PCS or GPO, set the IBE bit to one to reflect the pin state in the GPDI register. When configured as GPI,
set the IBE bit to one.

0 0
ODE HYS SRC WPE WPS

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

Address: SIU_BASE + 0x0114 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
PA OBE1

1 When configured as PCSB[1], the OBE bit has no effect. When configured as PCSD[0], set the OBE bit to one for master
operation, and set to zero for slave operation. When configured as GPO, set the OBE bit to one.

IBE2

2 When configured as PCSD[0] in slave operation, set the IBE bit to one. When configured as PCS in master operation or GPO,
set the IBE bit to one to reflect the pin state in the GPDI register. When configured as GPI, set the IBE bit to one.

0 0
ODE HYS SRC WPE WPS

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 6-43

6.4.1.12.35 Pad Configuration Register 107 (SIU_PCR107)

The SIU_PCR107 register controls the pin function, direction, and static electrical attributes of the
PCSB[2]_SOUTC_GPIO[107] pin.

Figure 6-48. PCSB[2]_SOUTC_GPIO[107] Pad Configuration Register (SIU_PCR107)

See Table 6-18 for bit field definitions.

6.4.1.12.36 Pad Configuration Register 108 (SIU_PCR108)

The SIU_PCR108 register controls the pin function, direction, and static electrical attributes of the
PCSB[3]_SINC_GPIO[108] pin.

Figure 6-49. PCSB[3]_SINC_GPIO[108] Pad Configuration Register (SIU_PCR108)

See Table 6-18 for bit field definitions.

Address: SIU_BASE + 0x0116 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
PA OBE1

1 When configured as PCSB or SOUTC, the OBE bit has no effect. When configured as GPO, set the OBE bit to one.

IBE2

2 When configured as PCSB or SOUTC or GPO, set the IBE bit to one to reflect the pin state in the GPDI register. When
configured as GPI, set the IBE bit to one.

0 0
ODE HYS SRC WPE WPS

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

Address: SIU_BASE + 0x0118 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
PA OBE1

1 When configured as PCSB or SINC, the OBE bit has no effect. When configured as GPO, set the OBE bit to one.

IBE2

2 When configured as PCSB or SINC or GPO, you can set the IBE bit to one to reflect the pin state in the GPDI register. When
configured as GPI, set the IBE bit to one.

0 0
ODE HYS SRC WPE WPS

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

6-44 Freescale Semiconductor

6.4.1.12.37 Pad Configuration Register 109 (SIU_PCR109)

The SIU_PCR109 register controls the pin function, direction, and static electrical attributes of the
PCSB[4]_SCKC_GPIO[109] pin.

Figure 6-50. PCSB[4]_SCKC_GPIO[109] Pad Configuration Register (SIU_PCR109)

See Table 6-18 for bit field definitions.

6.4.1.12.38 Pad Configuration Register 110 (SIU_PCR110)

The SIU_PCR110 register controls the pin function, direction, and static electrical attributes of the
PCSB[5]_PCSC[0]_GPIO[110] pin.

Figure 6-51. PCSB[5]_PCSC[0]_GPIO[110] Pad Configuration Register (SIU_PCR110)

See Table 6-18 for bit field definitions.

Address: SIU_BASE + 0x011A Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
PA OBE1

1 When configured as PCSB, the OBE bit has no effect. When configured as SCKC, set the OBE bit to one for master operation,
and set to zero for slave operation. When configured as GPO, set the OBE bit to one.

IBE2

2 When configured as SCKC in slave operation, set the IBE bit to one. When configured as PCSB or SCKC in master operation
or GPO, set the IBE bit to one to reflect the pin state in the GPDI register. When configured as GPI, set the IBE bit to one.

0 0
ODE HYS SRC WPE WPS

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

Address: SIU_BASE + 0x011C Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
PA OBE1

1 When configured as PCSB[5], the OBE bit has no effect. When configured as PCSC[0], set the OBE bit to one for master
operation, and set to zero for slave operation. When configured as GPO, set the OBE bit to one.

IBE2

2 When configured as PCSC[0] in slave operation, set the IBE bit to one. When configured as PCSB[5] or PCSC in master
operation or GPO, set the IBE bit to one to reflect the pin state in the GPDI register. When configured as GPI, set the IBE bit
to one.

0 0
ODE HYS SRC WPE WPS

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 6-45

6.4.1.12.39 Pad Configuration Register 113 (SIU_PCR113)

The SIU_PCR113 register controls the pin function, direction, and static electrical attributes of the
TCRCLKA_IRQ[7]_GPIO[113] pin.

Figure 6-52. TCRCLKA_IRQ[7]_GPIO[113] Pad Configuration Register (SIU_PCR113)

See Table 6-18 for bit field definitions.

6.4.1.12.40 Pad Configuration Register 114–125 (SIU_PCR114–SIU_PCR125)

The SIU_PCR114–SIU_PCR125 registers control the pin function, direction, and static electrical
attributes of the ETPUA[0:11]_ETPUA[12:23]_GPIO[114:125] pins. Only the output channels of
ETPUA[12:23] are connected to pins. Both the input and output channels of ETPUA[0:11] are connected
to pins.

Figure 6-53. ETPUA[0:11]_ETPUA[12:23]_GPIO[114:125]
Pad Configuration Register (SIU_PCR114–SIU_PCR125)

See Table 6-18 for bit field definitions.

Address: SIU_BASE + 0x0122 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
PA OBE1

1 When configured as TCRCLKA or IRQ, the OBE bit has no effect. When configured as GPO, set the OBE bit to one.

IBE2

2 When configured as TCRCLKA or IRQ or GPO, set the IBE bit to one to reflect the pin state in the GPDI register. When
configured as GPI, set the IBE bit to one.

0 0
ODE HYS SRC WPE WPS

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

Address: SIU_BASE + (0x0124–0x013A) Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
PA OBE1

1 The OBE bit must be set to one for both ETPUA[0:11] and GPIO[114:125] when configured as outputs. When configured as
ETPUA[12:23], the OBE bit has no effect.

IBE2

2 The IBE bit must be set to one for both ETPUA[0:11] and GPIO[114:125] when configured as inputs. When configured as
ETPUA[12:23] or when ETPUA[0:11] or GPIO[114:125] are configured as outputs, you can set the IBE bit to one to reflect the
pin state in the GPDI register.

0 0
ODE HYS SRC WPE WPS

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 U3

3 The weak pull up/down selection at reset for the ETPUA[0:11] pins is determined by the WKPCFG pin.

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

6-46 Freescale Semiconductor

6.4.1.12.41 Pad Configuration Register 126 (SIU_PCR126)

The SIU_PCR126 register controls the pin function, direction, and static electrical attributes of the
ETPUA[12]_PCSB[1]_GPIO[126] pin.

Figure 6-54. ETPUA[12]_PCSB[1]_GPIO[126] Pad Configuration Register (SIU_PCR126)

See Table 6-18 for bit field definitions.

6.4.1.12.42 Pad Configuration Register 127 (SIU_PCR127)

The SIU_PCR127 register controls the pin function, direction, and static electrical attributes of the
ETPUA[13]_PCSB[3]_GPIO[127] pin.

Figure 6-55. ETPUA[13]_PCSB[3]_GPIO[127] Pad Configuration Register (SIU_PCR127)

See Table 6-18 for bit field definitions.

Address: SIU_BASE + 0x013C Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
PA OBE1

1 When configured as PCSB, the OBE bit has no effect. The OBE bit must be set to one for both ETPUA and GPIO when
configured as outputs.

IBE2

2 The IBE bit must be set to one for both ETPUA and GPIO when configured as inputs. When configured as PCSB, or ETPUA
or GPO outputs, set the IBE bit to one to reflect the pin state in the GPDI register.

0 0
ODE HYS SRC WPE WPS

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 U3

3 The weak pull up/down selection at reset for the ETPUA[12] pin is determined by the WKPCFG pin.

Address: SIU_BASE + 0x013E Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
PA OBE1

1 When configured as PCSB, the OBE bit has no effect. The OBE bit must be set to one for both ETPUA and GPIO when
configured as outputs.

IBE2

2 The IBE bit must be set to one for both ETPUA and GPIO when configured as inputs. When configured as PCSB, or ETPUA
or GPO outputs, set the IBE bit to one to reflect the pin state in the GPDI register.

0 0
ODE HYS SRC WPE WPS

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 U3

3 The weak pull up/down selection at reset for the ETPUA[13] pin is determined by the WKPCFG pin.

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 6-47

6.4.1.12.43 Pad Configuration Register 128 (SIU_PCR128)

The SIU_PCR128 register controls the pin function, direction, and static electrical attributes of the
ETPUA[14]_PCSB[4]_GPIO[128] pin.

Figure 6-56. ETPUA[14]_PCSB[4]_GPIO[128] Pad Configuration Register (SIU_PCR128)

See Table 6-18 for bit field definitions.

6.4.1.12.44 Pad Configuration Register 129 (SIU_PCR129)

The SIU_PCR129 register controls the pin function, direction, and static electrical attributes of the
ETPUA[15]_PCSB[5]_GPIO[129] pin.

Figure 6-57. ETPUA[15]_PCSB[5]_GPIO[129] Pad Configuration Register (SIU_PCR129)

See Table 6-18 for bit field definitions.

Address: SIU_BASE + 0x0140 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
PA OBE1

1 When configured as PCSB, the OBE bit has no effect. The OBE bit must be set to one for both ETPUA and GPIO when
configured as outputs.

IBE2

2 The IBE bit must be set to one for both ETPUA and GPIO when configured as inputs. When configured as PCSB, or ETPUA
or GPO outputs, set the IBE bit to one to reflect the pin state in the GPDI register.

0 0
ODE HYS SRC WPE WPS

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 U3

3 The weak pull up/down selection at reset for the ETPUA[14] pin is determined by the WKPCFG pin.

Address: SIU_BASE + 0x0142 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
PA OBE1

1 When configured as PCSB, the OBE bit has no effect. The OBE bit must be set to one for both ETPUA and GPIO when
configured as outputs.

IBE2

2 The IBE bit must be set to one for ETPUA or GPIO when configured as inputs. When configured as PCSB, or ETPUA or GPO
outputs, set the IBE bit to one to reflect the pin state in the GPDI register.

0 0
ODE HYS SRC WPE WPS

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 U3

3 The weak pull up/down selection at reset for the ETPUA[15] pin is determined by the WKPCFG pin.

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

6-48 Freescale Semiconductor

6.4.1.12.45 Pad Configuration Register 130 (SIU_PCR130)

The SIU_PCR130 register controls the pin function, direction, and static electrical attributes of the
ETPUA[16]_PCSD[1]_GPIO[130] pin.

Figure 6-58. ETPUA[16]_PCSD[1]_GPIO[130] Pad Configuration Register (SIU_PCR130)

See Table 6-18 for bit field definitions.

6.4.1.12.46 Pad Configuration Register 131 (SIU_PCR131)

The SIU_PCR131 register controls the pin function, direction, and static electrical attributes of the
ETPUA[17]_PCSD[2]_GPIO[131] pin.

Figure 6-59. ETPUA[17]_PCSD[2]_GPIO[131] Pad Configuration Register (SIU_PCR131)

See Table 6-18 for bit field definitions.

Address: SIU_BASE + 0x0144 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
PA OBE1

1 When configured as PCSD, the OBE bit has no effect. The OBE bit must be set to one for both ETPUA and GPIO when
configured as outputs.

IBE2

2 The IBE bit must be set to one for both ETPUA and GPIO when configured as inputs. When configured as PCSD, or ETPUA
or GPO outputs, set the IBE bit to one to reflect the pin state in the GPDI register.

0 0
ODE HYS SRC WPE WPS

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 U3

3 The weak pull up/down selection at reset for the ETPUA[16] pin is determined by the WKPCFG pin.

Address: SIU_BASE + 0x0146 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
PA OBE1

1 When configured as PCSD, the OBE bit has no effect. The OBE bit must be set to one for both ETPUA and GPIO when
configured as outputs.

IBE2

2 The IBE bit must be set to one for both ETPUA and GPIO when configured as inputs. When configured as PCSD, or ETPUA
or GPO outputs, set the IBE bit to one to reflect the pin state in the GPDI register.

0 0
ODE HYS SRC WPE WPS

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 U3

3 The weak pull up/down selection at reset for the ETPUA[17] pin is determined by the WKPCFG pin.

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 6-49

6.4.1.12.47 Pad Configuration Register 132 (SIU_PCR132)

The SIU_PCR132 register controls the pin function, direction, and static electrical attributes of the
ETPUA[18]_PCSD[3]_GPIO[132] pin.

Figure 6-60. ETPUA[18]_PCSD[3]_GPIO[132] Pad Configuration Register (SIU_PCR132)

See Table 6-18 for bit field definitions.

6.4.1.12.48 Pad Configuration Register 133 (SIU_PCR133)

The SIU_PCR133 register controls the pin function, direction, and static electrical attributes of the
ETPUA[19]_PCSD[4]_GPIO[133] pin.

Figure 6-61. ETPUA[19]_PCSD[4]_GPIO[133] Pad Configuration Register (SIU_PCR133)

See Table 6-18 for bit field definitions.

Address: SIU_BASE + 0x0148 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
PA OBE1

1 When configured as PCSD, the OBE bit has no effect. The OBE bit must be set to one for both ETPUA and GPIO when
configured as outputs.

IBE2

2 The IBE bit must be set to one for both ETPUA and GPIO when configured as inputs. When configured as PCSD, or ETPUA
or GPO outputs, you can set the IBE bit to one to reflect the pin state in the GPDI register.

0 0
ODE HYS SRC WPE WPS

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 U3

3 The weak pull up/down selection at reset for the ETPUA[18] pin is determined by the WKPCFG pin.

Address: SIU_BASE + 0x014A Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
PA OBE1

1 When configured as PCSD, the OBE bit has no effect. The OBE bit must be set to one for both ETPUA and GPIO when
configured as outputs.

IBE2

2 The IBE bit must be set to one for both ETPUA and GPIO when configured as inputs. When configured as PCSD, or ETPUA
or GPO outputs, you can set the IBE bit to one to reflect the pin state in the GPDI register.

0 0
ODE HYS SRC WPE WPS

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 U3

3 The weak pull up/down selection at reset for the ETPUA[19] pin is determined by the WKPCFG pin.

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

6-50 Freescale Semiconductor

6.4.1.12.49 Pad Configuration Register 134–141 (SIU_PCR134–SIU_PCR141)

The SIU_PCR134–SIU_PCR141 registers control the pin function, direction, and static electrical
attributes of the ETPUA[20:27]_IRQ[8:15]_GPIO[134:141] pins. Only the output channels of
ETPUA[24:27] are connected to pins. Both the input and output channels of ETPUA[20:23] are connected
to pins.

Figure 6-62. ETPUA[20:27]_IRQ[8:15]_GPIO[134:141]
Pad Configuration Register (SIU_PCR134–SIU_PCR141)

See Table 6-18 for bit field definitions.

6.4.1.12.50 Pad Configuration Register 142 (SIU_PCR142)

The SIU_PCR142 register controls the pin function, direction, and static electrical attributes of the
ETPUA[28]_PCSC[1]_GPIO[142] pin. Only the output channel of ETPUA[28] is connected to the pin.

Figure 6-63. ETPUA[28]_PCSC[1]_GPIO[142] Pad Configuration Register (SIU_PCR142)

See Table 6-18 for bit field definitions.

Address: SIU_BASE + (0x014C–0x015A) Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
PA OBE1

1 When configured as ETPUA[24:27] or IRQ, the OBE bit has no effect. The OBE bit must be set to one for both ETPUA[20:23]
and GPIO[134:141] when configured as outputs.

IBE2

2 When configured as ETPUA[24:27] or IRQ or GPO, you can set the IBE bit to one to reflect the pin state in the GPDI register.
The IBE bit must be set to one for ETPUA[20:23] or GPIO[134:141] when configured as inputs.

0 0
ODE HYS SRC WPE WPS

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 U3

3 The weak pull up/down selection at reset for the ETPUA[20:27] pins is determined by the WKPCFG pin.

Address: SIU_BASE + 0x015C Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
PA OBE1

1 When configured as ETPUA or PCSC, the OBE bit has no effect. When configured as GPO, set the OBE bit to one.

IBE2

2 When configured as ETPUA, PCSC, or GPO, you can set the IBE bit to one to reflect the pin state in the GPDI register. The
IBE bit must be set to one for GPIO when configured as input.

0 0
ODE HYS SRC WPE WPS

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 U3

3 The weak pull up/down selection at reset for the ETPUA[28] pin is determined by the WKPCFG pin

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 6-51

6.4.1.12.51 Pad Configuration Register 143 (SIU_PCR143)

The SIU_PCR143 register controls the pin function, direction, and static electrical attributes of the
ETPUA[29]_PCSC[2]_GPIO[143] pin. For ETPUA[29], only the output channel is connected to the pin.

Figure 6-64. ETPUA[29]_PCSC[2]_GPIO[143] Pad Configuration Register (SIU_PCR143)

See Table 6-18 for bit field definitions.

6.4.1.12.52 Pad Configuration Register 144 (SIU_PCR144)

The SIU_PCR144 register controls the pin function, direction, and static electrical attributes of the
ETPUA[30]_PCSC[3]_GPIO[144] pin.

Figure 6-65. ETPUA[30]_PCSC[3]_GPIO[144] Pad Configuration Register (SIU_PCR144)

See Table 6-18 for bit field definitions.

Address: SIU_BASE + 0x015E Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
PA OBE1

1 When configured as ETPUA or PCSC, the OBE bit has no effect. When configured as GPO, set the OBE bit to one.

IBE2

2 When configured as ETPUA, PCSC, or GPO, you can set the IBE bit to one to reflect the pin state in the GPDI register. The
IBE bit must be set to one for GPIO when configured as input.

0 0
ODE HYS SRC WPE WPS

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 U3

3 The weak pull up/down selection at reset for the ETPUA[29] pin is determined by the WKPCFG pin

Address: SIU_BASE + 0x0160 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
PA OBE1

1 When configured as PCSC, the OBE bit has no effect. When configured as ETPUA output or GPO, set the OBE bit to one.

IBE2

2 When configured as ETPUA output, PCSC, or GPO, you can set the IBE bit to one to reflect the pin state in the GPDI register.
The IBE bit must be set to one for ETPUA or GPIO when configured as input.

0 0
ODE HYS SRC WPE WPS

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 U3

3 The weak pull up/down selection at reset for the ETPUA[30] pin is determined by the WKPCFG pin

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

6-52 Freescale Semiconductor

6.4.1.12.53 Pad Configuration Register 145 (SIU_PCR145)

The SIU_PCR145 register controls the pin function, direction, and static electrical attributes of the
ETPUA[31]_PCSC[4]_GPIO[145] pin.

Figure 6-66. ETPUA[31]_PCSC[4]_GPIO[145] Pad Configuration Register (SIU_PCR145)

See Table 6-18 for bit field definitions.

6.4.1.12.54 Pad Configuration Register 179–188 (SIU_PCR179–SIU_PCR188)

The SIU_PCR179–SIU_PCR188 registers control the pin function, direction, and static electrical
attributes of the EMIOS[0:9]_ETPUA[0:9]_GPIO[179:188] pins. Both the input and output functions of
EMIOS[0:9] are connected to pins. For ETPUA[0:9], only the output channels are connected to pins.

Figure 6-67. EMIOS[0:9]_ETPUA[0:9]_GPIO[179:188]
Pad Configuration Register (SIU_PCR179–SIU_PCR188)

See Table 6-18 for bit field definitions.

Address: SIU_BASE + 0x0162 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
PA OBE1

1 When configured as PCSC, the OBE bit has no effect. When configured as ETPUA output or GPO, set the OBE bit to one.

IBE2

2 When configured as ETPUA output, PCSC, or GPO, you can set the IBE bit to one to reflect the pin state in the GPDI register.
The IBE bit must be set to one for ETPUA or GPIO when configured as input.

0 0
ODE HYS SRC WPE WPS

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 U3

3 The weak pull up/down selection at reset for the ETPUA[31] pin is determined by the WKPCFG pin

Address: SIU_BASE + (0x01A6–0x01B8) Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
PA OBE1

1 The OBE bit must be set to one for EMIOS[0:9] or GPIO[179:188] when configured as outputs.

IBE2

2 When configured as EMIOS, you can set the IBE bit to one to reflect the pin state in the GPDI register. The IBE bit must be set
to one for EMIOS[0:9] or GPIO[179:188] when configured as inputs.

0 0
ODE HYS SRC WPE WPS

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 U3

3 The weak pull up/down selection at reset for the EMIOS[0:9] pins is determined by the WKPCFG pin.

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 6-53

6.4.1.12.55 Pad Configuration Register 189–190 (SIU_PCR189–SIU_PCR190)

The SIU_PCR189–SIU_PCR190 registers control the pin function, direction, and static electrical
attributes of the EMIOS[10:11]_GPIO[189:190] pins. Both the input and output functions of
EMIOS[10:11] are connected to pins.

Figure 6-68. EMIOS[10:11]_GPIO[189:190] Pad Configuration Register (SIU_PCR189–SIU_PCR190)

See Table 6-18 for bit field definitions.

6.4.1.12.56 Pad Configuration Register 191 (SIU_PCR191)

The SIU_PCR191 register controls the pin function, direction, and static electrical attributes of the
EMIOS[12]_SOUTC_GPIO[191] pin. Only the output of EMIOS[12] is connected to the pin.

Figure 6-69. EMIOS[12]_SOUTC_GPIO[191] Pad Configuration Register (SIU_PCR191)

See Table 6-18 for bit field definitions.

Address: SIU_BASE + (0x01BA–0x01BC) Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0
PA OBE1

1 The OBE bit must be set to one for EMIOS[10:11] or GPIO[189:190] when configured as outputs.

IBE2

2 When configured as EMIOS or GPO, you can set the IBE bit to one to reflect the pin state in the GPDI register. The IBE bit
must be set to one for EMIOS[10:11] or GPIO[189:190] when configured as inputs.

0 0
ODE HYS SRC WPE WPS

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 U3

3 The weak pull up/down selection at reset for the EMIOS[10:11] pins is determined by the WKPCFG pin.

Address: SIU_BASE + 0x01BE Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
PA OBE1

1 The OBE bit must be set to one for GPIO[191] when configured as an output.

IBE2

2 When configured as EMIOS or GPO, you can set the IBE bit to one to reflect the pin state in the GPDI register. The IBE bit
must be set to one for GPIO[191] when configured as an input.

0 0
ODE HYS SRC WPE WPS

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 U3

3 The weak pull up/down selection at reset for the EMIOS[12] pin is determined by the WKPCFG pin.

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

6-54 Freescale Semiconductor

6.4.1.12.57 Pad Configuration Register 192 (SIU_PCR192)

The SIU_PCR191 register controls the pin function, direction, and static electrical attributes of the
EMIOS[13]_SOUTD_GPIO[192] pin. Only the output of EMIOS[13] is connected to the pin.

Figure 6-70. EMIOS[13]_SOUTD_GPIO[192] Pad Configuration Register (SIU_PCR192)

See Table 6-18 for bit field definitions.

6.4.1.12.58 Pad Configuration Register 193–194 (SIU_PCR193–SIU_PCR194)

The SIU_PCR193–SIU_PCR194 registers control the pin function, direction, and static electrical
attributes of the EMIOS[14:15]_IRQ[0:1]_GPIO[193:194] pins. Only the output functions of
EMIOS[14:15] are connected to pins.

Figure 6-71. EMIOS[14:15]_IRQ[0:1]_GPIO[193:194]
Pad Configuration Register (SIU_PCR193–SIU_PCR194)

See Table 6-18 for bit field definitions.

Address: SIU_BASE + 0x01C0 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
PA OBE1

1 The OBE bit must be set to one for GPIO[192] when configured as an output.

IBE2

2 When configured as EMIOS or GPO, you can set the IBE bit to one to reflect the pin state in the GPDI register. The IBE bit
must be set to one for GPIO[192] when configured as an input.

0 0
ODE HYS SRC WPE WPS

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 U3

3 The weak pull up/down selection at reset for the EMIOS[13] pin is determined by the WKPCFG pin.

Address: SIU_BASE + (0x01C2–0x01C4) Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
PA OBE1

1 The OBE bit must be set to one for GPIO[193:194] when configured as outputs.

IBE2

2 When configured as EMIOS or IRQ or GPO, you can set the IBE bit to one to reflect the pin state in the GPDI register. The IBE
bit must be set to one for GPIO[193:194] when configured as inputs.

0 0
ODE HYS SRC WPE WPS

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 U3

3 The weak pull up/down selection at reset for the EMIOS[14:15] pins is determined by the WKPCFG pin.

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 6-55

6.4.1.12.59 Pad Configuration Register 195–202 (SIU_PCR195–SIU_PCR202)

The SIU_PCR195–SIU_PCR202 registers control the pin function, direction, and static electrical
attributes of the EMIOS[16:23]_GPIO[195:202] pins. Both the input and output functions of
EMIOS[16:23] are connected to pins. The alternate function is not available on this device.

Figure 6-72. EMIOS[16:23]_GPIO[195:202]
Pad Configuration Register (SIU_PCR195–SIU_PCR202)

See Table 6-18 for bit field definitions.

6.4.1.12.60 Pad Configuration Register 203–204 (SIU_PCR203–SIU_PCR204)

The SIU_PCR203–SIU_PCR204 registers control the pin function, direction, and static electrical
attributes of the EMIOS[14:15]_GPIO[203:204] pins. For EMIOS[14:15], only the output functions are
connected to the pins. The BGA labels for these pins are GPIO[203:204] because other pins are already
labeled EMIOS[14:15].

208 Package: EMIOS[14:15]_GPIO[203:204] are not available due to pin limitations on the 208
package.

Figure 6-73. EMIOS[14:15]_GPIO[203:204] Pad Configuration Register (SIU_PCR203–SIU_PCR204)

See Table 6-18 for bit field definitions.

Address: SIU_BASE + (0x01C6–0x01D4) Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
PA1

1 The alternate function is not available on this device. Do not select 0b10. Valid values are 0b01 or 0b11 for EMIOS[16:23] and
0b00 for GPIO[195:202].

OBE2

2 The OBE bit must be set to one for EMIOS[16:23] or GPIO[195:202] when configured as outputs.

IBE3

3 When configured as EMIOS, you can set the IBE bit to one to reflect the pin state in the GPDI register. The IBE bit must be set
to one for EMIOS[16:23] or GPIO[195:202] when configured as inputs.

0 0
ODE HYS SRC WPE WPS

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 U4

4 The weak pull up/down selection at reset for the EMIOS[0:9] pins is determined by the WKPCFG pin.

Address: SIU_BASE + (0x01D6–0x01D8) Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0
PA1

1 Set the PA bit to one for EMIOS. Clear the PA bit to zero when used as GPIO.

OBE2

2 When configured as EMIOS the OBE bit has no effect. When configured as GPO, set the OBE bit to one.

IBE3

3 When configured as EMIOS or GPO, you can set the IBE bit to one to reflect the pin state in the GPDI register. When configured
as GPI, set the IBE bit to one.

0 0
ODE HYS SRC WPE WPS

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

6-56 Freescale Semiconductor

6.4.1.12.61 Pad Configuration Registers 206–207 (SIU_PCR206–SIU_PCR207)

The SIU_PCR206–SIU_PCR207 registers control the pin function, direction, and static electrical
attributes of the GPIO[206:207] pins. The PA bit is not implemented for these PCRs since GPIO is the only
pin function.

Figure 6-74. GPIO[206:207] Pad Configuration Registers (SIU_PCR206–SIU_PCR207)

See Table 6-18 for bit field definitions.

6.4.1.12.62 Pad Configuration Register 208 (SIU_PCR208)

The SIU_PCR208 register controls the pin function, direction, and static electrical attributes of the
PLLCFG[0]_IRQ[4]_GPIO[208] pin.

Figure 6-75. PLLCFG[0]_IRQ[4]_GPIO[208] Pad Configuration Register (SIU_PCR208)

See Table 6-18 for bit field definitions.

Address: SIU_BASE + (0x01DC–0x01DE) Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0
OBE1

1 When configured as GPO, set the OBE bit to one.

IBE2

2 When configured as GPO, you can set the IBE to one to reflect the pin state in the GPDI register. When configured as GPI,
set the IBE bit to one.

DSC ODE HYS
0 0

WPE WPS
W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

Address: SIU_BASE + 0x01E0 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
PA1

1 The PLLCFG function applies only during reset when the RSTCFG pin is asserted during reset. Set the PA field to 0b10 for
IRQ[4] and set to 0b00 for GPIO[208].

OBE2

2 When configured as IRQ, the OBE bit has no effect. When configured as GPO, set the OBE bit to one.

IBE3

3 When configured as IRQ or GPO, you can set the IBE bit to one to reflect the pin state in the GPDI register. When configured
as GPI, set the IBE bit to one.

0 0
ODE HYS4

4 When configured as IRQ, set the HYS bit to one.

SRC WPE WPS
W

RESET: 0 0 0 0 1 1 0 0 0 0 0 1 0 0 1 1

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 6-57

6.4.1.12.63 Pad Configuration Register 209 (SIU_PCR209)

The SIU_PCR209 register controls the pin function, direction, and static electrical attributes of the
PLLCFG[1]_IRQ[5]_SOUTD_GPIO[209] pins.

Figure 6-76. PLLCFG[1]_IRQ[5]_SOUTD_GPIO[209] Pad Configuration Register (SIU_PCR209)

See Table 6-18 for bit field definitions.

6.4.1.12.64 Pad Configuration Register 210 (SIU_PCR210)

The SIU_PCR210 register controls the pin function, direction, and static electrical attributes of the
RSTCFG_GPIO[210] pin.

208 Package: RSTCFG_GPIO[210] is not available due to pin limitations on the 208 package.

Figure 6-77. RSTCFG_GPIO[210] Pad Configuration Register (SIU_PCR210)

See Table 6-18 for bit field definitions.

Address: SIU_BASE + 0x01E2 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0
PA1

1 The PLLCFG function applies only during reset when the RSTCFG pin is asserted during reset. Set the PA field to 0b010 for
IRQ[5], 0b100 for SOUTD, or 0b000 for GPIO[209].

OBE2

2 When configured as IRQ, the OBE bit has no effect. When configured as GPO, set the OBE bit to one.

IBE3

3 When configured as IRQ or GPO, you can set the IBE bit to one to reflect the pin state in the GPDI register. When configured
as GPI, set the IBE bit to one.

0 0
ODE HYS4

4 When configured as IRQ, set the HYS bit to one.

SRC WPE WPS
W

RESET: 0 0 0 0 1 1 0 0 0 0 0 1 0 0 1 1

Address: SIU_BASE + 0x01E4 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0
PA1

1 RSTCFG function is only applicable during reset. Set the PA bit to zero for GPIO operation

OBE2

2 When configured as GPO, set the OBE bit to one.

IBE3

3 When configured as GPO, you can set the IBE bit to one to reflect the pin state in the GPDI register. When configured as GPI,
set the IBE bit to one.

0 0
ODE HYS SRC WPE WPS

W

RESET: 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

6-58 Freescale Semiconductor

6.4.1.12.65 Pad Configuration Register 211–212 (SIU_PCR211–SIU_PCR212)

The SIU_PCR211–SIU_PCR212 registers control the pin function, direction, and static electrical
attributes of the BOOTCFG[0:1]_IRQ[2:3]_GPIO[211:212] pins.

208 Package: BOOTCFG[0]_IRQ[2]_GPIO[211] is not available due to pin limitations on the 208
package.

Figure 6-78. BOOTCFG[0:1]_IRQ[2:3]_GPIO[211:212]
Pad Configuration Register (SIU_PCR211–SIU_PCR212)

See Table 6-18 for bit field definitions.

6.4.1.12.66 Pad Configuration Register 213 (SIU_PCR213)

The SIU_PCR213 register controls the pin function, direction, and static electrical attributes of the
WKPCFG_GPIO[213] pin.

Figure 6-79. WKPCFG_GPIO[213] Pad Configuration Register (SIU_PCR213)

See Table 6-18 for bit field definitions.

Address: SIU_BASE + (0x01E6–0x01E8) Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
PA1

1 The BOOTCFG function applies only during reset when the RSTCFG pin is asserted during reset. Set the PA field to 0b10 for
IRQ[2:3] and set to 0b00 for GPIO[211:212].

OBE2

2 When configured as IRQ, the OBE bit has no effect. When configured as GPO, set the OBE bit to one.

IBE3

3 When configured as IRQ or GPO, you can set the IBE bit to one to reflect the pin state in the GPDI register. When configured
as GPI, set the IBE bit to one.

0 0
ODE HYS4

4 When configured as IRQ, set the HYS bit to one.

SRC WPE WPS
W

RESET: 0 0 0 0 1 1 0 0 0 0 0 1 0 0 1 0

Address: SIU_BASE + 0x01EA Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0
PA1

1 WKPCFG function is only applicable during reset. The PA bit must be set to zero for GPIO operation

OBE2

2 When configured as GPO, set the OBE bit to one.

IBE3

3 When configured as GPO, you can set the IBE bit to one to reflect the pin state in the GPDI register. When configured as GPI,
set the IBE bit to one.

0 0
ODE HYS SRC WPE WPS

W

RESET: 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 6-59

6.4.1.12.67 Pad Configuration Register 214 (SIU_PCR214)

The SIU_PCR214 register controls the enabling/disabling and drive strength of the ENGCLK pin. The
ENGCLK pin is enabled and disabled by setting and clearing the OBE bit. The ENGCLK pin is enabled
during reset.

Figure 6-80. ENGLCK Pad Configuration Register (SIU_PCR214)

See Table 6-18 for bit field definitions.

6.4.1.12.68 Pad Configuration Register 215 (SIU_PCR215)

The SIU_PCR215 register controls the pin function, direction, and static electrical attributes of the
AN[12]_MA[0]_SDS pin.

Figure 6-81. AN[12]_MA[0]_SDS Pad Configuration Register (SIU_PCR215)

See Table 6-18 for bit field definitions. The PA field for PCR215 is given in Table 6-20.

Address: SIU_BASE + 0x01EC Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0
OBE

0
DSC

0 0 0 0 0 0

W

RESET: 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0

Address: SIU_BASE + 0x01EE Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
PA1

1 The input and output buffers are enabled/disabled based on the PA selection. Both the input and output buffers are disabled
for the AN[12] function. The output buffer only is enabled for the MA[0] and SDS functions.

0 0 0 0
ODE

0
SRC

0 0

W

RESET: 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

Table 6-20. PCR215 PA Field Definition

PA Field Pin Function

0b00 SDS

0b01 Reserved

0b10 MA[0]

0b11 AN[12]

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

6-60 Freescale Semiconductor

6.4.1.12.69 Pad Configuration Register 216 (SIU_PCR216)

The SIU_PCR216 register controls the pin function, direction, and static electrical attributes of the
AN[13]_MA[1]_SDO pin.

Figure 6-82. AN[13]_MA[1]_SDO Pad Configuration Register (SIU_PCR216)

See Table 6-18 for bit field definitions. The PA field for PCR216 is given in Table 6-21.

6.4.1.12.70 Pad Configuration Register 217 (SIU_PCR217)

The SIU_PCR217 register controls the pin function, direction, and static electrical attributes of the
AN[14]_MA[2]_SDI pin.

Figure 6-83. AN[14]_MA[2]_SDI Pad Configuration Register (SIU_PCR217)

See Table 6-18 for bit field definitions. The PA field for PCR217 is given in Table 6-22.

Address: SIU_BASE + 0x01F0 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
PA1

1 The input and output buffers are enabled/disabled based on the PA selection. Both the input and output buffers are disabled
for the AN[13] function. The output buffer only is enabled for the MA[1] and SDO functions.

0 0 0 0
ODE

0
SRC

0 0

W

RESET: 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

Table 6-21. PCR216 PA Field Definition

PA Field Pin Function

0b00 SDO

0b01 Reserved

0b10 MA[1]

0b11 AN[13]

Address: SIU_BASE + 0x01F2 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
PA1

1 The input and output buffers are enabled/disabled based on the PA selection. Both input and output buffers are disabled for
the AN[14] function. The output buffer only is enabled for the MA[2] function; the input buffer only is enabled for the SDI
function.

0 0 0 0
ODE HYS SRC WPE2

2 Set the WPE bit to zero when configured as an analog input or MA[2], and set the WPE bit to one when configured as SDI.

WPS3

3 Set the WPS bit to one when configured as SDI.

W

RESET: 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 6-61

6.4.1.12.71 Pad Configuration Register 218 (SIU_PCR218)

The SIU_PCR218 register controls the pin function, direction, and static electrical attributes of the
AN[15]_FCK pin.

Figure 6-84. AN[15]_FCK Pad Configuration Register (SIU_PCR218)

See Table 6-18 for bit field definitions. The PA field for PCR218 is given in Table 6-23.

6.4.1.12.72 Pad Configuration Register 219 (SIU_PCR219)

The SIU_PCR219 register controls the drive strength of the MCKO pin.

Figure 6-85. MCKO Pad Configuration Register (SIU_PCR219)

See Table 6-18 for bit field definitions.

Table 6-22. PCR217 PA Field Definition

PA Field Pin Function

0b00 SDI

0b01 Reserved

0b10 MA[2]

0b11 AN[14]

Address: SIU_BASE + 0x01F4 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0
PA1

1 The input and output buffers are enabled/disabled based on the PA selection. Both the input and output buffers are disabled
for the AN[15] function. The output buffer only is enabled for the FCK function.

0 0 0 0
ODE

0
SRC

0 0

W

RESET: 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

Table 6-23. PCR218 PA Field Definition

PA Field Pin Function

0b0 FCK

0b1 AN[15]

Address: SIU_BASE + 0x01F6 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0
DSC

0 0 0 0 0 0

W

RESET: 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

6-62 Freescale Semiconductor

6.4.1.12.73 Pad Configuration Register 223–220 (SIU_PCR223–SIU_PCR220)

The SIU_PCR223–SIU_PCR220 registers control the drive strength of the MDO[3:0] pins.

Figure 6-86. MDO[3:0] Pad Configuration Register (SIU_PCR223–SIU_PCR220)

See Table 6-18 for bit field definitions.

6.4.1.12.74 Pad Configuration Register 225–224 (SIU_PCR225–SIU_PCR224)

The SIU_PCR225–SIU_PCR224 registers control the drive strength of the MSEO[1:0] pins.

Figure 6-87. MSEO[1:0] Pad Configuration Register (SIU_PCR225–SIU_PCR224)

See Table 6-18 for bit field definitions.

6.4.1.12.75 Pad Configuration Register 226 (SIU_PCR226)

The SIU_PCR226 register controls the drive strength of the RDY pin.

208 Package: RDY is not available due to pin limitations on the 208 package.

Figure 6-88. RDY Pad Configuration Register (SIU_PCR226)

See Table 6-18 for bit field definitions.

Address: SIU_BASE + (0x01FE–0x01F8) Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0
DSC

0 0 0 0 0 0

W

RESET: 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

Address: SIU_BASE + (0x0202–0x0200) Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0
DSC

0 0 0 0 0 0

W

RESET: 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

Address: SIU_BASE + 0x0204 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0
DSC

0 0 0 0 0 0

W

RESET: 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 6-63

6.4.1.12.76 Pad Configuration Register 227 (SIU_PCR227)

The SIU_PCR227 register controls the drive strength of the EVTO pin.

Figure 6-89. EVTO Pad Configuration Register (SIU_PCR227)

See Table 6-18 for bit field definitions.

6.4.1.12.77 Pad Configuration Register 228 (SIU_PCR228)

The SIU_PCR228 register controls the drive strength of the TDO pin.

Figure 6-90. TDO Pad Configuration Register (SIU_PCR228)

See Table 6-18 for bit field definitions.

6.4.1.12.78 Pad Configuration Register 229 (SIU_PCR229)

The SIU_PCR229 register controls the enabling/disabling and drive strength of the CLKOUT pin. The
CLKOUT pin is enabled and disabled by setting and clearing the OBE bit. The CLKOUT pin is enabled
during reset.

208 Package: CLKOUT is not available due to pin limitations in the 208 package.

Figure 6-91. CLKOUT Pad Configuration Register (SIU_PCR229)

See Table 6-18 for bit field definitions.

Address: SIU_BASE + 0x0206 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0
DSC

0 0 0 0 0 0

W

RESET: 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

Address: SIU_BASE + 0x0208 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0
DSC

0 0 0 0 0 0

W

RESET: 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

Address: SIU_BASE + 0x020A Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0
OBE

0
DSC

0 0 0 0 0 0

W

RESET: 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

6-64 Freescale Semiconductor

6.4.1.12.79 Pad Configuration Register 230 (SIU_PCR230)

The SIU_PCR230 register controls the slew rate of the RSTOUT pin.

Figure 6-92. RSTOUT Pad Configuration Register (SIU_PCR230)

See Table 6-18 for bit field definitions.

6.4.1.12.80 Pad Configuration Register 336 (SIU_PCR336)

The SIU_PCR336 register controls the drive strength of the CAL_CS[0] pin.

208 Package: Calibration signals are not available due to pin limitations.

Figure 6-93. CAL_CS[0] Pad Configuration Register (SIU_PCR336)

6.4.1.12.81 Pad Configuration Registers 338–339 (SIU_PCR338–SIU_PCR339)

The SIU_PCR338–SIU_PCR339 registers control the pin function and drive strength of the
CAL_CS[2:3]_CAL_ADDR[10:11] pins.

208 Package: Calibration signals are not available due to pin limitations.

Figure 6-94. CAL_CS[2:3]_CAL_ADDR[10:11] Pad Configuration Registers (SIU_PCR338–SIU_PCR339)

Address: SIU_BASE + 0x020C Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0
SRC

0 0

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

Address: SIU_BASE + 0x02E0 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0
DSC

0 0 0 0 0 0

W

RESET: 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

Address: SIU_BASE + (0x02E4–0x02E6) Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0
PA

0 0
DSC

0 0 0 0 0 0

W

RESET: 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 6-65

6.4.1.12.82 Pad Configuration Register 340 (SIU_PCR340)

The SIU_PCR340 register controls the drive strength of the CAL_ADDR[12:30] pins. Multiple pins are
controlled by this one PCR.

208 Package: Calibration signals are not available due to pin limitations.

Figure 6-95. CAL_ADDR[12:30] Pad Configuration Register (SIU_PCR340)

6.4.1.12.83 Pad Configuration Register 341 (SIU_PCR341)

The SIU_PCR341 register controls the drive strength of the CAL_DATA[0:15] pins. Multiple pins are
controlled by this one PCR.

208 Package: Calibration signals are not available due to pin limitations.

Figure 6-96. CAL_DATA[0:15] Pad Configuration Register (SIU_PCR341)

6.4.1.12.84 Pad Configuration Register 342 (SIU_PCR342)

The SIU_PCR342 register controls the drive strength of the CAL_RD_WR, CAL_WE/BE[0:1],
CAL_OE, and CAL_TS pins. Multiple pins are controlled by this one PCR. The WEBS bit in the EBI Base
Registers selects between the write enable and byte enable functions.

208 Package: Calibration signals are not available due to pin limitations.

Figure 6-97. CAL_RD_WR, CAL_WE/BE[0:1], CAL_OE, and
CAL_TS Pad Configuration Register (SIU_PCR342)

Address: SIU_BASE + 0x02E8 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0
DSC

0 0 0 0 0 0

W

RESET: 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

Address: SIU_BASE + 0x02EA Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0
DSC

0 0 0 0 0 0

W

RESET: 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

Address: SIU_BASE + 0x02EC Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0
DSC

0 0 0 0 0 0

W

RESET: 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

6-66 Freescale Semiconductor

6.4.1.13 GPIO Pin Data Output Registers 0–213 (SIU_GPDOn)

The definition of the 8-bit SIU_GPDOn registers, with each register specifying the drive data for a single
GPIO pin, is given in Figure 6-98. The n notation in the name of the SIU_GPDOn registers corresponds
to the pins with the same GPIO pin numbers. For example, PDO[213] is the pin data output bit for the
WKPCFG_GPIO[213] pin, and you select it in SIU_GPDO213. The GPDO address for a pin is the
SIU_BASE + 0x0600 plus the GPIO pin number.

The SIU_GPDOn registers are written to by software to drive data out on the external GPIO pin. Each
register drives a single external GPIO pin, which allows the state of the pin to be controlled independently
from other GPIO pins. Writes to the SIU_GPDOn registers have no effect on pin states if the pins are
configured as inputs by the associated Pad Configuration Registers. The SIU_GPDOn register values are
automatically driven to the GPIO pins without software update if the direction of the GPIO pins is changed
from input to output.

When the pins are configured for the primary function, writes to the SIU_GPDOn registers have no effect
on the state of these pins.

6.4.1.14 GPIO Pin Data Input Registers 0–213 (SIU_GPDIn)

The definition of the 8-bit SIU_GPDIn registers, with each register specifying the drive data for a single
GPIO pin, is given in Figure 6-99. The n notation in the name of the 155 SIU_GPDIn registers corresponds
to the pins with the same GPIO pin numbers. For example, PDI0 is the pin data input bit for the
CS[0]_GPIO[0] pin and is found in SIU_GPDI0, and PDI213 is the pin data input bit for the
WKPCFG_GPIO213 pin and is found in SIU_GPDI213. The GPDI address for a pin is the SIU_BASE +
0x0800 plus the GPIO pin number. Gaps exist in the memory addresses for pins that are not available in
the 208 or 324 packages.

The SIU_GPDIn registers are read-only registers that allow software to read the input state of an external
GPIO pin. Each register represents the input state of a single external GPIO pin. If the GPIO pin is
configured as an output, and the input buffer enable (IBE) bit is set in the pad configuration register (PCR),
the SIU_GPDIn register reflects the actual state of the output pin.

Address: SIU_BASE + (0x0600 + n) Access: R/W

0 1 2 3 4 5 6 7

R 0 0 0 0 0 0 0 0

W PDOn

Reset 0 0 0 0 0 0 0 0

Figure 6-98. GPIO Pin Data Output Register 0–213 (SIU_GPDOn)

Table 6-24. SIU_GPDOn Field Descriptions

Name Description

PDOn Pin data out. Stores the data to be driven out on the external GPIO pin associated
with the register. If the register is read, it returns the value written.
0 VOL is driven on the external GPIO pin when the pin is configured as an output.
1 VOH is driven on the external GPIO pin when the pin is configured as an output.

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 6-67

6.4.1.15 eQADC Trigger Input Select Register (SIU_ETISR)

The SIU_ETISR selects the source for the eQADC trigger inputs. The eQADC trigger numbers 0–5
specified by TSEL(0–5) correspond to CFIFO numbers 0–5. To calculate the CFIFO number that each
trigger is connected to, divide the DMA channel number by 2. So, for example, eQADC CFIFO 1
(connected to DMA channel 2) can be triggered by eTPUA[31] or eMIOS[11]. To select a trigger, the
TSEL must be initialized.

When an eQADC trigger is connected, the timer output is connected to the eQADC CFIFO trigger input.
To trigger the eQADC, the eTPU output must change to the state that the eQADC recognizes as a trigger.
There are rising- or falling-edges, and low- or high-gated trigger types, so it is possible to trigger the
eQADC immediately if desired.

Address: SIU_BASE + (0x0800 + n) Access: R/O

0 1 2 3 4 5 6 7

R 0 0 0 0 0 0 0 PDIn

W

Reset 0 0 0 0 0 0 0 0

Figure 6-99. GPIO Pin Data Input Register 0–213 (SIU_GPDIn)

Table 6-25. SIU_GPDIn Field Description

Name Description

PDIn Pin data in. This bit reflects the input state on the external GPIO pin
associated with the register.
If PCRn[IBE] = 1, then:
0 Signal on pin is less than or equal to VIL.
1 Signal on pin is greater than or equal to VIH.

Table 6-26. Trigger Interconnections

TSEL Field
(Trigger
Number)

eQADC CFIFO
EQADC DMA

Channel
eTPUA

Channel
eMIOS

Channel

0 0 0 eTPUA30 eMIOS10

1 1 2 eTPUA31 eMIOS11

2 2 4 eTPUA29 eMIOS15

3 3 6 eTPUA28 eMIOS14

4 4 8 eTPUA27 eMIOS13

5 5 10 eTPUA26 eMIOS12

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

6-68 Freescale Semiconductor

Address: SIU_BASE + 0x0900 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
TSEL5 TSEL4 TSEL3 TSEL2 TSEL1 TSEL0

0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-100. eQADC Trigger Input Select Register (SIU_ETISR)

Table 6-27. SIU_ETISR Field Descriptions

Bits Name Description

0–1 TSEL5
[0:1]

eQADC trigger input select 5. Specifies the input for eQADC trigger 5.
00 GPIO[207]
01 ETPUA[26] channel
10 EMIOS[12] channel
11 Invalid value

2–3 TSEL4
[0:1]

eQADC trigger input select 4. Specifies the input for eQADC trigger 4.
00 GPIO[206]
01 ETPUA[27] channel
10 EMIOS[13] channel
11 Invalid value

4–5 TSEL3
[0:1]

eQADC trigger input select 3. Specifies the input for eQADC trigger 3.
00 GPIO[207]
01 ETPUA[28] channel
10 EMIOS[14] channel
11 Invalid value

6–7 TSEL2
[0:1]

eQADC trigger input select 2. Specifies the input for eQADC trigger 2
00 GPIO[206]
01 ETPUA[29] channel
10 EMIOS[15] channel
11 Invalid value

8–9 TSEL1
[0:1]

eQADC trigger input select 1. Specifies the input for eQADC trigger 1
00 GPIO[207]
01 ETPUA[31] channel
10 EMIOS[11] channel
11 Invalid value

10–11 TSEL0
[0:1]

eQADC trigger input select 0. Specifies the input for eQADC trigger 0
00 GPIO[206]
01 ETPUA[30] channel
10 EMIOS[10] channel
11 Invalid value

12–31 — Reserved

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 6-69

6.4.1.16 External IRQ Input Select Register (SIU_EIISR)

The SIU_EIISR selects the source for the external interrupt/DMA inputs.

Address: SIU_BASE + 0x0904 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
ESEL15 ESEL14 ESEL13 ESEL12 ESEL11 ESEL10 ESEL9 ESEL8

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
ESEL7

0 0
ESEL5 ESEL4 ESEL3 ESEL2 ESEL1 ESEL0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-101. External IRQ Input Select Register 1 (SIU_EIISR)

Table 6-28. SIU_EIISR Field Descriptions

Bits Name Description

0–1 ESEL15
[0:1]

External IRQ input select 15. Specifies the input for IRQ [15].
00 IRQ[15] pin
01 PCSB[15] serialized input (EMIOS[12] pin)
10 PCSC[0] serialized input (ETPUA[12] pin)
11 PCSD[1] serialized input (ETPUA[20] pin)

2–3 ESEL14
[0:1]

External IRQ input select 14. Specifies the input for IRQ[14].
00 IRQ[14] pin
01 PCSB[14] serialized input (EMIOS[13] pin)
10 PCSC[15] serialized input (ETPUA[11] pin)
11 PCSD[0] serialized input (ETPUA[21] pin)

4–5 ESEL13
[0:1]

External IRQ input select 13. Specifies the input for IRQ[13].
00 IRQ[13] pin
01 PCSB[13] serialized input (ETPUA[24] pin)
10 PCSC[14] serialized input (ETPUA[10] pin)
11 PCSD[15] serialized input (ETPUA[24] pin)

6–7 ESEL12
[0:1]

External IRQ input select 12. Specifies the input for IRQ12].
00 IRQ[12] pin
01 PCSB[12] serialized input (ETPUA[25] pin)
10 PCSC[13] serialized input (ETPUA[9] pin)
11 PCSD[14] serialized input (ETPUA[25] pin)

8–9 ESEL11
[0:1]

External IRQ input select 11. Specifies the input for IRQ[11].
00 IRQ[11] pin
01 PCSB[11] serialized input (ETPUA[26] pin)
10 PCSC[12] serialized input (ETPUA[8] pin)
11 PCSD[13] serialized input (ETPUA[26] pin)

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

6-70 Freescale Semiconductor

10–11 ESEL10
[0:1]

External IRQ input select 10. Specifies the input for IRQ[10].
00 IRQ[10] pin
01 PCSB[10] serialized input (ETPUA[27] pin)
10 PCSC[11] serialized input (ETPUA[7] pin)
11 PCSD[12] serialized input (ETPUA[27] pin)

12–13 ESEL9
[0:1]

External IRQ input select 9. Specifies the input for IRQ[9].
00 IRQ[9] pin
01 PCSB[9] serialized input (ETPUA[28] pin)
10 PCSC[10] serialized input (ETPUA[6] pin)
11 PCSD[11] serialized input (ETPUA[28] pin)

14–15 ESEL8
[0:1]

External IRQ input select 8. Specifies the input for IRQ[8].
00 IRQ[8] pin
01 PCSB[8] serialized input (ETPUA[29] pin)
10 PCSC[9] serialized input (ETPUA[5] pin)
11 PCSD[10] serialized input (ETPUA[29] pin)

16–17 ESEL7
[0:1]

External IRQ input select 7. Specifies the input for IRQ[7].
00 IRQ[7] pin
01 PCSB[7] serialized input (ETPUA[16] pin)
10 PCSC[8] serialized input (ETPUA[4] pin)
11 PCSD[9] serialized input (EMIOS[12] pin)

18–19 ESEL6
[0:1]

Although the IRQ[6] pin is not available, ESEL6 selects other inputs for the internal
IRQ[6] signal.
00 Invalid value
01 PCSB[6] serialized input (ETPUA[17] pin)
10 PCSC[7] serialized input (ETPUA[3] pin)
11 PCSD[8] serialized input (EMIOS[13] pin)

20–21 ESEL5
[0:1]

External IRQ input select 5. Specifies the input for IRQ[5].
00 IRQ[5]
01 PCSB[5] serialized input (ETPUA[18] pin)
10 PCSC[6] serialized input (ETPUA[2] pin)
11 PCSD[7] serialized input (EMIOS[10] pin)

22–23 ESEL4
[0:1]

External IRQ input select 4. Specifies the input for IRQ[4].
00 IRQ[4] pin
01 PCSB[4] serialized input (ETPUA[19] pin)
10 PCSC[5] serialized input (ETPUA[1] pin)
11 PCSD[6] serialized input (EMIOS[11] pin)

24–25 ESEL3
[0:1]

External IRQ input select 3. Specifies the input for IRQ[3].
00 IRQ[3] pin
01 PCSB[3] serialized input (ETPUA[20] pin)
10 PCSC[4] serialized input (ETPUA[0] pin)
11 PCSD[5] serialized input (ETPUA[16] pin)

26–27 ESEL2
[0:1]

External IRQ input select 2. Specifies the input for IRQ[2].
00 IRQ[2] pin
01 PCSB[2] serialized input (ETPUA[21] pin)
10 PCSC[3] serialized input (ETPUA[15] pin)
11 PCSD[4] serialized input (ETPUA[17] pin)

Table 6-28. SIU_EIISR Field Descriptions (continued)

Bits Name Description

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 6-71

6.4.1.17 DSPI Input Select Register (SIU_DISR)

The SIU_DISR specifies the source of each DSPI data input, slave select, clock input, and trigger input to
allow serial and parallel chaining of the DSPI modules.

28–29 ESEL1
[0:1]

External IRQ input select 1. Specifies the input for IRQ[1].
00 IRQ[1] pin
01 PCSB[1] serialized input (EMIOS[10] pin)
10 PCSC[2] serialized input (ETPUA[14] pin)
11 EMIOS[15] pin

30–31 ESEL0
[0:1]

External IRQ input select 0. Specifies the input for IRQ[0].
00 IRQ[0] pin
01 PCSB[0] serialized input (EMIOS[11] pin)
10 PCSC[1] serialized input (ETPUA[5] pin)
11 EMIOS[14] pin

Address: SIU_BASE + 0x0908 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0
SINSELB SSSELB SCKSELB TRIGSELB

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
SINSELC SSSELC SCKSELC TRIGSELC SINSELD SSSELD SCKSELD TRIGSELD

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-102. DSPI Input Select Register (SIU_DISR)

Table 6-29. SIU_DISR Field Descriptions

Bits Name Description

0–7 0 Reserved

8–9 SINSELB
[0:1]

PCSB data input select. Specifies the source of PCSB data input.
00 SINB_PCSC[2]_GPIO[103] pin
01 Invalid value
10 SOUTC
11 SOUTD

10–11 SSSELB
[0:1]

PCSB slave select input select. Specifies the source of the PCSB slave select
input.
00 PCSB[0]_PCSD[2]_GPIO[105] pin
01 Invalid value
10 PCSC[0] (Master)
11 PCSD[0] (Master)

Table 6-28. SIU_EIISR Field Descriptions (continued)

Bits Name Description

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

6-72 Freescale Semiconductor

12–13 SCKSELB
[0:1]

PCSB clock input select. Specifies the source of the PCSB clock input.
00 SCKB_PCSC[1]_GPIO[102] pin
01 Invalid value
10 SCKC (Master)
11 SCKD (Master)

14–15 TRIGSELB
[0:1]

PCSB trigger input select. Specifies the source of the PCSB trigger input for
master or slave mode.
00 Invalid value
01 Invalid value
10 PCSC[4]
11 PCSD[4]

16–17 SINSELC
[0:1]

SINC data input select. Specifies the source of the SINC data input.
00 PCSB[2]_SINC_GPIO[108] pin01Invalid value
10 SOUTB
11 SOUTD

18–19 SSSELC
[0:1]

PCSC slave select input select. Specifies the source of the PCSC slave select
input.
00 PCSB[5]_PCSC[0]_GPIO[110] pin
01 Invalid value
10 PCSB[0] (Master)
11 PCSD[0] (Master)

20–21 SCKSELC
[0:1]

PCSC clock input select. Specifies the source of the PCSC clock input when in
slave mode.
00 PCSB[4]_SCKC_GPIO[109] pin
01 Invalid value
10 SCKB (Master)
11 SCKD (Master)

22–23 TRIGSELC
[0:1]

PCSC trigger input select. Specifies the source of the PCSC trigger input for
master or slave mode.
00 Invalid value
01 Invalid value
10 PCSB[4]
11 PCSD[4]

24–25 SINSELD
[0:1]

SIND data input select. Specifies the source of the SIND data input.
00 SIND_GPIO[99] pin01Invalid value
10 SOUTB
11 SOUTC

26–27 SSSELD
[0:1]

PCSD slave select input select. Specifies the source of the PCSD slave select
input.
00 PCSB[1]_PCSD[0]_GPIO[106] pin
01 Invalid value
10 PCSB[0] (Master)
11 PCSC[0] (Master)

Table 6-29. SIU_DISR Field Descriptions (continued)

Bits Name Description

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 6-73

6.4.1.18 Chip Configuration Register (SIU_CCR)

28–29 SCKSELD
[0:1]

PCSD clock input select. Specifies the source of the PCSD clock input in slave
mode.
00 SCKD_GPIO[98] pin
01 Invalid value
10 SCKB (Master)
11 SCKC (Master)

30–31 TRIGSELD
[0:1]

PCSD trigger input select. Specifies the source of the PCSD trigger input for
master or slave mode.
00 Invalid value
01 Invalid value
10 PCSB[4]
11 PCSC[4]

Address: SIU_BASE + 0x0980 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 MATCH DISNEX1

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 U X1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CRSE2 TEST2

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 When system reset negates, the value in this bit depends on the censorship control word and the boot
configuration bits. In the 208 package, BOOTCFG[0] is not available due to pin limitation and internally asserted
(driven to 0).

2 This bit is reset with a power on reset.

Figure 6-103. Chip Configuration Register (SIU_CCR)

Table 6-30. SIU_CCR Field Descriptions

Bits Name Description

0–13 — Reserved

14 MATCH Compare register match. Holds the value of the match input signal to the SIU. The
match input is asserted if the values in the SIU_CARH and SIU_CARL, and
SIU_CBRH and SIU_CBRL are equal. The MATCH bit is reset by the synchronous
reset signal.
0 The content of SIU_CARH and SIU_CARL does not match the content of

SIU_CBRH and SIU_CBRL
1 The content of SIU_CARH and SIU_CARL matches the content of SIU_CBRH and

SIU_CBRL

Table 6-29. SIU_DISR Field Descriptions (continued)

Bits Name Description

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

6-74 Freescale Semiconductor

15 DISNEX Disable Nexus. Holds the value of the Nexus disable input signal to the SIU. When
system reset negates, the value in this bit depends on the censorship control word and
the boot configuration bits.
0 Nexus disable input signal is negated.
1 Nexus disable input signal is asserted.

16–29 — Reserved

30 CRSE Calibration Reflection Suppression Enable. Enables the suppression of reflections
from the EBI calibration bus onto the non-calibration bus. The EBI drives some outputs
to both the calibration and non-calibration busses. When CRSE is asserted, the values
driven on the calibration bus pins are not shown on the non-calibration bus pins. When
CRSE is negated, the values driven on the calibration bus pins are shown on the
non-calibration bus pins.

CRSE only enables reflection suppression for non-calibration bus pins which do not
have a negated state to which the pins return at the end of the access. CRSE does
not enable reflection suppression for the non-calibration bus pins which have a
negated state to which the pins return at the end of an access. Those reflections
always are suppressed. Furthermore, the suppression of reflections from the
non-calibration bus onto the calibration bus is not enabled by CRSE. Those reflections
also always are suppressed.
0 Calibration reflection suppression is disabled.
1 Calibration reflection suppression is enabled.

31 TEST Test mode enable. Allows reads or writes to undocumented registers used only for
production tests. Since these production test registers are undocumented, estimating
the impact of errant accesses to them is impossible. The application must not change
this bit from its negated state at reset.
0 Undocumented production test registers can not be read or written.
1 Undocumented production test registers can be read or written.

Table 6-30. SIU_CCR Field Descriptions

Bits Name Description

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 6-75

6.4.1.19 External Clock Control Register (SIU_ECCR)

The SIU_ECCR controls the timing relationship between the system clock and the external clocks
ENGCLK and CLKOUT. All bits and fields in the SIU_ECCR are read/write and are reset by the
synchronous reset signal.

208 Package: CLKOUT is not available due to pin limitations.

Address: SIU_BASE + 0x0984 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0
ENGDIV

0 0 0 0
EBTS

0
EBDF

W

Reset 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1

Figure 6-104. External Clock Control Register (SIU_ECCR)

Table 6-31. SIU_ECCR Field Descriptions

Bits Name Description

0–17 — Reserved

18–23 ENGDIV
[0:5]

Engineering clock division factor. Specifies the frequency ratio between the system clock
and ENGCLK. The ENGCLK frequency is divided from the system clock frequency
according to the following equation:

Note: Clearing ENGDIV to 0 is reserved. Synchronization between ENGCLK and
CLKOUT cannot be guaranteed.

24–27 — Reserved

28 EBTS External bus tap select. Changes the phase relationship between the system clock and
CLKOUT. Changing the phase relationship so that CLKOUT is advanced in relation to the
system clock increases the output hold time of the external bus signals to a non-zero value.
It also increases the output delay times, increases the input hold times to non-zero values,
and decreases the input setup times. See the Electrical Specifications for how the EBTS
bit affects the external bus timing.
0 External bus signals have zero output hold times.
1 External bus signals have non-zero output hold times.
Note: Do not modify the EBTS bit while an external bus transaction is in progress.

Engineering clock frequency System clock frequency
ENGDIV 2×

---=

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

6-76 Freescale Semiconductor

6.4.1.20 Compare A High Register (SIU_CARH)

The compare registers are not intended for general application use, but are used temporarily by the BAM
during boot and intended optionally for communication with calibration tools. After reset, calibration tools
can immediately write a non-zero value to these registers. The application code, using the registers then as
read only, can read them to determine if a calibration tool is attached and operate appropriately.

The compare registers can be used just like 128 bits of memory mapped RAM that is always zero out of
reset, or they can perform a 64 bit to 64 bit compare. The compare function is continuous (combinational
logic - not requiring a start or stop). The compare result appears in the MATCH bit in the SIU_CCR
register.

The SIU_CARH holds the 32-bit value that is compared against the value in the SIU_CBRH register. The
CMPAH field is read/write and is reset by the synchronous reset signal.

29 — Reserved

30–31 EBDF
[0:1]

External bus division factor. Specifies the frequency ratio between the system clock and
the external clock, CLKOUT. The EBDF field must not be changed during an external bus
access or while an access is pending. The CLKOUT frequency is divided from the system
clock frequency according to the descriptions below. This divider must be kept as
divide-by-2 when operating in dual controller mode.
00 Divide by 1
01 Divide by 2
10 Invalid value
11 Divide by 4
Note: The reset value of the EBDF field is divide-by-2. After reset, if EBDF is changed to

divided-by-1, no glitches occur on the CLKOUT signal. If EBDF is changed back to
divide-by-2 or divide-by-4, glitches can occur during the switch.

Note: CLKOUT is not available in the 208 package due to pin limitations.

Address: SIU_BASE + 0x0988 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
CMPAH

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CMPAH

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-105. Compare A High Register (SIU_CARH)

Table 6-31. SIU_ECCR Field Descriptions (continued)

Bits Name Description

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 6-77

6.4.1.21 Compare A Low Register (SIU_CARL)

The SIU_CARL register holds the 32-bit value that is compared against the value in the SIU_CBRL
register. The CMPAL field is read/write and is reset by the synchronous reset signal.

6.4.1.22 Compare B High Register (SIU_CBRH)

The SIU_CBRH holds the 32-bit value that is compared against the value in the SIU_CARH. The CMPBH
field is read/write and is reset by the synchronous reset signal.

Address: SIU_BASE + 0x098C Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
CMPAL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CMPAL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-106. Compare A Low Register (SIU_CARL)

Address: SIU_BASE + 0x0990 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
CMPBH

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CMPBH

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-107. Compare B High Register (SIU_CBRH)

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

6-78 Freescale Semiconductor

6.4.1.23 Compare B Low Register (SIU_CBRL)

The SIU_CBRL holds the 32-bit value that is compared against the value in the SIU_CARL. The CMPBL
field is read/write and is reset by the synchronous reset signal.

6.5 Functional Description
The following sections provide an overview of the SIU operation.

6.5.1 System Configuration

6.5.1.1 Boot Configuration

The BOOTCFG[0:1] pins are used to determine the boot mode initiated by the BAM program, and whether
external arbitration is selected for external booting. The BAM program uses the BOOTCFG field to
determine where to read the reset configuration word, and whether to initiate a FlexCAN or eSCI boot. See
Section 15.3.2.3.4, “Read the Reset Configuration Halfword” of the BAM chapter for detail on the RCHW.
Table 6-32 defines the boot modes specified by the BOOTCFG[0:1] pins. If the RSTCFG pin is asserted
during the assertion of RSTOUT, except in the case of a software external reset, the BOOTCFG pins are
latched 4 clock cycles prior to the negation of the RSTOUT pin and are used to update the SIU_RSR and
the BAM boot mode. Otherwise, if RSTCFG is negated during the assertion of RSTOUT, the BOOTCFG
pins are ignored and the device defaults to ‘boot from internal flash memory’ mode.

208 Package: BOOTCFG[0] and RSTCFG are not available due to pin limitations and are internally
asserted (driven to 0) in the 208 package.

Address: SIU_BASE + 0x0994 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
CMPBL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CMPBL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-108. Compare B Low Register (SIU_CBRL)

Table 6-32. BOOTCFG[0:1] Configuration

Value Meaning

0b00 Boot from internal flash memory

0b01 FlexCAN or eSCI boot

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 6-79

6.5.1.2 Pad Configuration

The pad configuration registers (SIU_PCR) in the SIU allow software control of the static electrical
characteristics of external pins. The pad configuration registers allow control over the following external
pin characteristics:

• Weak pull up/down enable/disable

• Weak pull up/down selection

• Slew-rate selection for outputs

• Drive strength selection for outputs

• Input buffer enable (when direction is configured for output)

• Input hysteresis enable/disable

• Open drain/push-pull output selection

• Multiplexed function selection

• Data direction selection

The pad configuration registers are provided to allow centralized control over external pins that are shared
by more than one module. Each pad configuration register controls a single pin.

6.5.2 Reset Control

The reset controller logic is located in the SIU. See Chapter 4, “Reset” for detail on reset operation.

6.5.2.1 RESET Pin Glitch Detect

The reset controller provides a glitch detect feature on the RESET pin. If the reset controller detects that
the RESET pin is asserted for more than two clock cycles, the event is latched. Once the latch is set, if the
RESET pin is negated before 10 clock cycles completes the reset controller sets the RGF bit without
affecting any of the other bits in the reset status register. The latch is cleared when the RGF bit is set or a
valid reset is recognized. The RGF bit remains set until cleared by software or the RESET pin is asserted
for 10 clock cycles. The reset controller does not respond to assertions of the RESET pin if a reset cycle
is already being processed.

6.5.3 External Interrupt

There are sixteen external interrupt inputs IRQ[0:15] to the SIU. The IRQ[n] inputs can be configured for
rising or falling edge events or both. Each IRQ[n] input has a corresponding flag bit in the external
interrupt status register (SIU_EISR). The flag bits for the IRQ[4:15] inputs are ORed together to form one
interrupt request to the interrupt controller (OR function performed in the integration glue logic). The flag

0b10 Boot from external memory (no arbitration)

0b11 Invalid value

Table 6-32. BOOTCFG[0:1] Configuration

Value Meaning

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

6-80 Freescale Semiconductor

bits for the IRQ[0:3] inputs can generate either an interrupt request to the interrupt controller or a DMA
transfer request to the DMA controller. Table 6-109 shows the DMA and interrupt request connections to
the interrupt and DMA controllers.

The SIU contains an overrun request for each IRQ and one combined overrun request which is the logical
OR of the individual overrun requests. Only the combined overrun request is used in the device, and the
individual overrun requests are not connected.

Each IRQ pin has a programmable filter for rejecting glitches on the IRQ signals. The filter length for the
IRQ pins is specified in the external IRQ digital filter register (SIU_IDFR).

NOTE
IRQ[2] signal is not available due to pin limitations and is internally
asserted (driven to 0) on the 208 package. IRQ[6] signal is not available in
this device, however the IRQ[6] signal is available internally.

Figure 6-109. SIU DMA/Interrupt Request Diagram

6.5.4 GPIO Operation

All GPIO functionality is provided by the SIU for the device. Each device pin that has GPIO functionality
has an associated pin configuration register in the SIU where the GPIO function is selected for the pin. In
addition, each device pin with GPIO functionality has an input data register (SIU_GPDIn) and an output
data register (SIU_GPDOn).

Interrupt
Controller

DMA/
Interrupt
Select

•••

••

0
1
2
3
4

15

IMUX

Interrupt
Request

DMA
Request

DMA

•••

0
1

15

SIU_OSR

SIU_EISR

Overrun
Request

EIRQ Pins
or

Internal
Source

•••
••• •••

•••

••

Interrupt
Request

SIU_DIRSR
SIU

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 6-81

6.5.5 Internal Multiplexing

The internal multiplexing select registers SIU_ETISR, SIU_EIISR, and SIU_DISR provide selection of
the source of the input for the eQADC external trigger inputs, the SIU external interrupts, and the DSPI
signals that are used in serial and parallel chaining of the DSPI modules.

Internal multiplexing allows you to select the input for multiplexed external signals. For each field of each
of the select registers, a multiplexor exists in the SIU. The inputs and outputs of the multiplexors are
external signals to and from the SIU.

A block diagram of the internal multiplexing feature is given in Figure 6-110. The figure shows the
multiplexing of four external signals to an output from the SIU. A two bit SEL field from an SIU select
register is used to select the input of the multiplexor.

Figure 6-110. Four-to-One Internal Multiplexing Block Diagram

6.5.5.1 eQADC External Trigger Input Multiplexing

The eQADC external trigger inputs can be connected to an external pin, eTPU channel, or eMIOS channel.
The input source for each eQADC external trigger is individually specified in the eQADC trigger input
select register (SIU_ETISR). An example of the multiplexing of an eQADC external trigger input is given
in Figure 6-111. As shown in the figure, the GPIO[206] input of the eQADC can be connected to the
ETPUA[30] channel or the EMIOS[10] channel. The remaining trigger inputs are multiplexed in the same
manner (see Section 6.4.1.15, “eQADC Trigger Input Select Register (SIU_ETISR)” for the
SIU_ETISR[TSEL0]–SIU_ETISR[TSEL5] bit definitions). If an external input trigger is connected to an
eTPU or eMIOS channel, the external pin used by that channel can be used by the alternate function on
that pin.

SIU_ETISR, SIU_EIISR, and SIU_DISR

To chip-level signal
external to the SIU

From chip-level signals
external to the SIU

SIU

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

6-82 Freescale Semiconductor

Figure 6-111. eQADC External Trigger Input Multiplexing

6.5.5.2 SIU External Interrupt Input Multiplexing

The sixteen SIU external interrupt inputs can be connected to either an external pin or to serialized output
signals from a DSPI module. The input source for each SIU external interrupt is individually specified in
the external IRQ input select register (SIU_EIISR). An example of the multiplexing of an SIU external
interrupt input is given in Figure 6-112. As shown in the figure, the IRQ[0] input of the SIU can be
connected to either the EMIOS[14]_IRQ[0]_GPIO[193] pin, the PCSB[0] serial input signal, the PCSC[1]
deserialized output signal, or the PCSD[2] deserialized output signal. The remaining IRQ inputs are
multiplexed in the same manner. The inputs to the IRQ from each DSPI module are offset by one so that
if more than one DSPI module is connected to the same external device type, a separate interrupt can be
generated for each device. This also applies to DSPI modules connected to external devices of different
type that have status bits in the same bit location of the deserialized information.

Figure 6-112. DSPI Serialized Input Multiplexing

6.5.5.3 Multiplexed Inputs for DSPI Multiple Transfer Operation

Each DSPI module can be combined in a serial or parallel chain (multiple transfer operation). Serial
chaining allows SPI operation with an external device that has more bits than one DSPI module. An
example of a serial chain is shown in Figure 6-113. In a serial chain, one DSPI module operates as a master,
the second, third, or fourth DSPI modules operate as slaves. The data output (SOUT) of the master is
connected to the data input (SIN) of the slave. The SOUT of a slave is connected to the SIN of subsequent
slaves until the last module in the chain, where the SOUT is connected to an external pin, which connects
to the input of an external SPI device. The slave DSPI and external SPI device use the master peripheral
chip select (PCS) and clock (SCK). The trigger input of the master allows a slave DSPI to trigger a transfer
when a data change occurs in the slave DSPI and the slave DSPI is operating in change in data mode. The
trigger input of the master is connected to MTRIG output of the slave. If more than two DSPIs are chained

SIU_ETISR[TSEL0]

EQADC Trigger

GPIO[206]

ETPUA[30] Output Channel

EMIOS[10] Output Channel

IRQ[0]

GPIO[203] 1

PCSB[0] Serialized Input

PCSC[1] Serialized Input

PCSD[2] Serialized Input

ESEL0
ESEL1

1 GPIO[203] is not available on
the 208 package.

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 6-83

in change in data mode, a chain must be connected of MTRIG outputs to trigger inputs through the slaves
with the last slave MTRIG output connected to the master trigger input.

Parallel chaining allows the PCS and SCK from one DSPI to be used by more than one external SPI device,
thus reducing pin utilization of the MCU. An example of a parallel chain is shown in Figure 6-114. In this
example, the SOUT and SIN of the two DSPIs connect to separate external SPI devices, which share a
common PCS and SCK.

To support multiple transfer operation of the DSPIs, an input multiplexor is required for the SIN, SS, SCK
IN, and trigger signals of each DSPI. The input source for the SIN input of a DSPI can be a pin or the
SOUT of any of the other three DSPIs. The input source for the SS input of a DSPI can be a pin or the
PCS0 of any of the other three DSPIs. The input source for the SCK input of a DSPI can be a pin or the
SCK output of any of the other three DSPIs. The input source for the trigger input can be the PCSS output
of any of the other three DSPIs. The input source for each DSPI SIN, SS, SCK, and trigger signal is
individually specified in the DSPI input select register (SIU_DISR).

Figure 6-113. DSPI Serial Chaining

SOUTB SOUTCSINCSINB

PCSB0 SSSCKB SCKC IN

SS SCK IN

SINSOUT
External SPI Device

MPC5534

MTRIGTrigger

S
O

U
T

C

S
C

K
B

P
C

S
B

[0
]

S
IN

B

PCSB (Master) PCSC (Slave)

System Integration Unit (SIU)

MPC5534 Microcontroller Reference Manual, Rev. 2

6-84 Freescale Semiconductor

Figure 6-114. DSPI Parallel Chaining

SOUT SOUTSINSINB

PCSB0 SSSCK SCK IN

SS SCK IN SIN

SOUT

External SPI Device

MPC5534

SIN

SCK INSSSOUT

External SPI Device

MTRIGTrigger

PCSB (Master) PCSC (Slave)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 7-1

Chapter 7
Crossbar Switch (XBAR)

7.1 Introduction
This chapter describes the multi-port crossbar switch (XBAR), which supports simultaneous connections
between four master ports and five slave ports. XBAR supports a 32-bit address bus width and a 64-bit
data bus width at all master and slave ports.

7.1.1 Block Diagram

Figure 7-1 shows a block diagram of the crossbar switch.

Figure 7-1. XBAR Block Diagram

7.1.2 Overview

The XBAR allows for concurrent transactions to occur from any master port to any slave port. It is possible
for all master ports and slave ports to be in use at the same time as a result of independent master requests.
If a slave port is simultaneously requested by more than one master port, arbitration logic selects the higher
priority master and grants it ownership of the slave port. All other masters requesting that slave port are
stalled until the higher priority master completes its transactions.

By default, requesting masters are granted access based on a fixed priority. A round-robin priority mode
also is available. In this mode, requesting masters are treated with equal priority and are granted access to
a slave port in round-robin fashion, based upon the ID of the last master to be granted access. A block
diagram of the XBAR is shown in Figure 7-1.

Master

Crossbar Switch

Slave

Master modules

Slave modules

Master Master

Slave Slave

. . . .

. . . .

Crossbar Switch (XBAR)

MPC5534 Microcontroller Reference Manual, Rev. 2

7-2 Freescale Semiconductor

The XBAR can place a slave port in a low-power park mode to avoid dissipating power, transitional
address, control, or data signals when the master port is not actively accessing the slave port. There is a
one-cycle arbitration overhead for exiting low-power park mode.

7.1.3 Features
• Four master ports:

— core: e200z3 core–CPU data
– e200z3 core–CPU instruction

— eDMA
— EBI

• Five slave ports

— Flash (see Chapter 13, “Flash Memory” for information on accessing flash memory)
— EBI
— Internal SRAM
— Peripheral bridge A
— Peripheral bridge B

• 32-bit address, 64-bit data paths

• Fully concurrent transfers between independent master and slave ports

7.1.4 Modes of Operation

The following table lists the operating modes for the crossbar switch module.

Table 7-1. XBAR Operating Modes

Operating Mode Description

Normal XBAR provides the register interface and logic that controls crossbar switch configuration.

Debug XBAR operation in debug mode is identical to operation in normal mode.

Crossbar Switch (XBAR)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 7-3

7.2 Memory Map and Register Definition
The memory map for the XBAR registers that are visible to the application is shown in Table 7-2.

NOTE
Do not read or write to the reserved memory locations in the XBAR register
memory map; accessing these areas can cause unpredictable results.

Table 7-2. XBAR Register Memory Map

Address Register Name Register Description Bits

Base = 0xFFF0_4000 XBAR_MPR0 Master priority register for slave port 0 32

Base + (0x0004–0x000F) — Reserved —

Base + 0x0010 XBAR_SGPCR0 General-purpose control register for slave port 0 32

Base + (0x0014–0x00FF) — Reserved —

Base + 0x0100 XBAR_MPR1 Master priority register for slave port 1 32

Base +(0x0104–0x010F) — Reserved —

Base + 0x0110 XBAR_SGPCR1 General-purpose control register for slave port 1 32

Base + (0x0114–0x02FF) — Reserved —

Base + 0x0300 XBAR_MPR3 Master priority register for slave port 3 32

Base + (0x0304–0x030F) — Reserved —

Base + 0x0310 XBAR_SGPCR3 General-purpose control register for slave port 3 32

Base + (0x0314–0x05FF) Reserved

Base + 0x0600 XBAR_MPR6 Master priority register for slave port 6 32

Base + (0x0604–0x060F) — Reserved —

Base + 0x0610 XBAR_SGPCR6 General-purpose control register for slave port 6 32

Base + (0x0614–0x06FF) — Reserved —

Base + 0x0700 XBAR_MPR7 Master priority register for slave port 7 32

Base + (0x0704–0x070F) — Reserved —

Base + 0x0710 XBAR_SGPCR7 General-purpose control register for slave port 7 32

(Base + 0x0714)–0x0003_FFFF — Reserved —

Crossbar Switch (XBAR)

MPC5534 Microcontroller Reference Manual, Rev. 2

7-4 Freescale Semiconductor

7.2.1 Register Descriptions

There are two registers for each slave port of the XBAR. The registers can only be accessed in Supervisor
Mode using 32-bit accesses.

The slave SGPCR also features a bit (RO), which when written with a 1, prevents all slave registers for
that port from being written to again until a reset occurs. The registers remain readable, but future write
attempts have no effect on the registers and are terminated with an error response.

Table 7-3 lists the crossbar switch master and slave identifiers for each module in the device:

• Fixed internal master ID numbers for each master port

• XBAR master and slave port ID numbers

Shown are the internal master ID numbers as they relate to the crossbar master port ID numbers:

7.2.1.1 Master Priority Registers (XBAR_MPRn)

The XBAR_MPR for a slave port sets the priority of each master port when operating in fixed priority
mode. These registers are not used in round-robin priority mode unless more than one master is assigned
as high priority by a slave.

IMPORTANT
Master ports must be assigned unique priority levels.

The master priority registers are accessible in Supervisor Mode only using 32-bit accesses. After the read
only (RO) bit is set in the slave general-purpose control register, no writes to the master priority register
are permitted; only read instructions are allowed. Attempts to write to master priority registers (MPR) have
no effect and result in an error.

NOTE
XBAR_MPR must be written with a read/modify/write for code
compatibility.

Table 7-3. XBAR Switch Ports

Module
Internal

Master ID

XBAR Port

Type Number

e200z3 core–CPU instruction 0 Master 0

Enhanced direct memory access (eDMA) 2 Master 1

External bus interface (EBI) 3 Master 2

e200z3 core–CPU data 0 Master 4

e200z3–Nexus 1 Master 4

Flash memory — Slave 0

External bus interface (EBI) — Slave 1

Internal SRAM — Slave 3

Peripheral bridge A (PBRIDGE_A) — Slave 6

Peripheral bridge B (PBRIDGE_B) — Slave 7

Crossbar Switch (XBAR)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 7-5

Address: Base + 0x0000 (XBAR_MPR0)
Base + 0x0100 (XBAR_MPR1)
Base + 0x0300 (XBAR_MPR3)
Base + 0x0700 (XBAR_MPR7)

Access: Supervisor R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0
MSTR4

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0
MSTR2

0
MSTR1

0
MSTR0

W

Reset 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0

Table 7-4. XBAR_MPRn Descriptions

Field Description

0–12 Reserved, must be cleared to 0

13–15
MSTR4

Master 4 priority. Sets the arbitration priority for the e200z3 core data and Nexus support for the core to master
port 4 on the associated slave port. The reset value of 0b011 is the lowest priority.
000This master has the highest priority when accessing the slave port.

011This master has the lowest priority when accessing the slave port.
100–111Invalid values

16–20 Reserved, must be cleared to 0

21–23
MSTR2

Master 2 priority. Sets the arbitration priority for the external bus interface (EBI) for master port 2 on the slave port.
The MSTR2 reset value of 0b010 is the third highest priority.
000 This master has the highest priority when accessing the slave port.

011 This master has the lowest priority when accessing the slave port.

100–111 Invalid values

24 Reserved, must be cleared to 0

25–27
MSTR1

Master 1 priority. Sets the arbitration priority for direct memory access (eDMA) for master port 1 on the slave port.
The MSTR1 reset value of 0b001 is the second highest priority.
000 This master has the highest priority when accessing the slave port.

011 This master has the lowest priority when accessing the slave port.

100–111 Invalid values

....
....

....

Crossbar Switch (XBAR)

MPC5534 Microcontroller Reference Manual, Rev. 2

7-6 Freescale Semiconductor

7.2.1.2 Slave General-Purpose Control Registers (XBAR_SGPCRn)

The XBAR_SGPCRn of a slave port controls several features of the slave port, including the following:

• Round-robin or fixed arbitration policy for a particular slave port

• Write protection of any slave port registers

• Parking algorithm used for a slave port

The PARK field indicates which master port this slave port parks on when no active access attempts are
being made to the slave and the parking control field is set to park on a specific master.
XBAR_SGPCRn[PARK] must only be programmed to select master ports that are actually available on
the device, otherwise undefined behavior results. The low-power park feature can result in an overall
power savings if the slave port is not saturated; however, an extra clock cycle of latency results whenever
any master tries to access a slave (not being accessed by another master) because it is not parked on any
master.

The XBAR_SGPCR can only be accessed in supervisor mode with 32-bit accesses. After the RO (read
only) bit is set in the XBAR_SGPCR, the XBAR_SGPCR and the SBAR_MPR can only be read. Attempts
to write to them have no effect and results in an error.

NOTE
Some of the unused bits in the SGPCRn registers are writeable and readable,
but they serve no function. Setting any of these bits has no effect on the
operation of this module.

28 Reserved, must be cleared.

29–31
MSTR0

Master 0 priority. Sets the arbitration priority for the e200z3 core instruction for master port 0 on the slave port.
The MSTR0 reset value of 0b000 is the highest priority.
000 This master has the highest priority when accessing the slave port.

011 This master has the lowest priority when accessing the slave port.

100–111 Invalid values

Table 7-4. XBAR_MPRn Descriptions (continued)

Field Description

....

Crossbar Switch (XBAR)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 7-7

Addess: Base + 0x0010 (XBAR_SGPCR0)
Base + 0x0110 (XBAR_SGPCR1)
Base + 0x0310 (XBAR_SGPCR3)
Base + 0x0610 (XBAR_SGPCR6)
Base + 0x0710 (XBAR_SGPCR7)

Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
RO1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0
ARB

0 0
PCTL

0
PARK

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 After this bit is set, only a hardware reset clears it.

Figure 7-2. Slave General-Purpose Control Registers (XBAR_SGPCRn)

Table 7-5. XBAR_SGPCRn Field Descriptions

Field Description

0
RO

Read only. Forces all slave port registers to read only. To clear the read only bit requires a hardware reset.
0 All this slave port’s registers can be written.
1 All this slave port’s registers are read only and cannot be written (attempted writes have no effect and result

in an error response).

1–21 Reserved, must be cleared.

22–23
ARB

Arbitration mode. Used to select the arbitration policy for the slave port. This field is initialized by hardware reset.
00 Fixed priority using MPR
01 Round-robin priority
10 Invalid value
11 Invalid value

24–25 Reserved, must be cleared.

26–27
PCTL

Parking control. Used to select the parking algorithm used by the slave port. This field is initialized by hardware
reset.
00 When no master is making a request, the arbiter parks the slave port on the master port defined by the PARK

control field.
01 POL—Park on last. When no master is making a request, the arbiter parks the slave port on the last master

to own the slave port.
10 LPP—Low-power park. When no master is making a request, the arbiter parks the slave port on no master

and drives all slave port outputs to a safe state.
11 Invalid value

Crossbar Switch (XBAR)

MPC5534 Microcontroller Reference Manual, Rev. 2

7-8 Freescale Semiconductor

7.3 Functional Description
This section describes the functionality of the XBAR in more detail.

7.3.1 Overview

The main goal of the XBAR is to increase overall system performance by allowing multiple masters to
communicate concurrently with multiple slaves. To maximize data throughput, it is essential to keep
arbitration delays to a minimum.

This section examines data throughput from the point of view of masters and slaves, detailing when the
XBAR stalls masters, or inserts bubbles on the slave side.

7.3.2 General Operation

When a master accesses the XBAR from an idle master state, the access is taken immediately by the
XBAR. If the targeted slave port of the access is available (that is, the requesting master is currently
granted ownership of the slave port), the access is immediately presented on the slave port. It is possible
to make single clock (zero wait state) accesses through the XBAR by a granted master. If the targeted slave
port of the access is busy or parked on a different master port, the requesting master receives wait states
until the targeted slave port can service the master request. The latency in servicing the request depends
on each master’s priority level and the responding slave’s access time.

Because the XBAR appears to be simply another slave to the master device, the master device has no
indication that it owns the slave port it is targeting. While the master does not have control of the slave port
it is targeting, it is wait-stated.

A master is given control of a targeted slave port only after a previous access to a different slave port has
completed, regardless of its priority on the newly targeted slave port. This prevents deadlock from
occurring when a master has the following conditions:

• Outstanding request to slave port A that has a long response time

• Pending access to a different slave port B

• Lower priority master also makes a request to the different slave port B.

28 Reserved, must be cleared.

29–31
PARK

Park. Used to determine which master port this slave port parks on when no masters are actively making
requests. PCTL must be set to 00.
000 Park on master port 0
001 Park on master port 1
010 Park on master port 2
011 Invalid value
100 Park on master port 4
101 Invalid value
110 Invalid value
111 Invalid value

Table 7-5. XBAR_SGPCRn Field Descriptions (continued)

Field Description

Crossbar Switch (XBAR)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 7-9

In this case, the lower priority master is granted bus ownership of slave port B after a cycle of arbitration,
assuming the higher priority master slave port A access is not terminated.

After a master has control of the slave port it is targeting, the master remains in control of that slave port
until it gives up the slave port by running an IDLE cycle, leaves that slave port for its next access, or loses
control of the slave port to a higher priority master with a request to the same slave port. However, because
all masters run a fixed-length burst transfer to a slave port, it retains control of the slave port until that
transfer sequence is completed. In round-robin arbitration mode, the current master is forced to hand off
bus ownership to an alternately requesting master at the end of its current transfer sequence.

When a slave bus is idled by the XBAR, it can be parked on the master port using the PARK bits in the
XBAR_SGPCR (slave general-purpose control register), or on the last master to have control of the slave
port. This can avoid the initial clock of the arbitration delay if the master must arbitrate to gain control of
the slave port. The slave port can also be put into low-power park mode to save power.

7.3.3 Master Ports

The XBAR terminates an access and it is not allowed to pass through the XBAR unless the master
currently is granted access to the slave port to which the access is targeted. A master access is taken if the
slave port to which the access decodes is either currently servicing the master or is parked on the master.
In this case, the XBAR is completely transparent and the master access is immediately transmitted on the
slave bus and no arbitration delays are incurred. A master access stalls if the access decodes to a slave port
that is busy serving another master, parked on another master or is in low-power park mode.

If the slave port is currently parked on another master or is in low-power park mode, and no other master
is requesting access to the slave port, then only one clock of arbitration is incurred. If the slave port is
currently serving another master of a lower priority and the master has a higher priority than all other
requesting masters, then the master gains control over the slave port as soon as the data phase of the current
access is completed. If the slave port is currently servicing another master of a higher priority, then the
master gains control of the slave port after the other master releases control of the slave port if no other
higher priority master is also waiting for the slave port.

A master access is responded to with an error if the access decodes to a location not occupied by a slave
port. This is the only time the XBAR directly responds with an error response. All other error responses
received by the master are the result of error responses on the slave ports being passed through the XBAR.

7.3.4 Slave Ports

The goal of the XBAR with respect to the slave ports is to keep them 100% saturated when masters are
actively making requests. To do this the XBAR must not insert any bubbles onto the slave bus unless
absolutely necessary.

There is only one instance when the XBAR forces a bubble onto the slave bus when a master is actively
making a request. This occurs when a handoff of bus ownership occurs and there are no wait states from
the slave port. A requesting master which does not own the slave port is granted access after a one clock
delay.

Crossbar Switch (XBAR)

MPC5534 Microcontroller Reference Manual, Rev. 2

7-10 Freescale Semiconductor

The only other time the XBAR has control of the slave port is when no masters are making access requests
to the slave port and the XBAR is forced to either park the slave port on a specific master, or place the
slave port into low-power park mode. In these cases, the XBAR forces IDLE for the transfer type.

7.3.5 Priority Assignment

Each master port must be assigned a unique 2-bit priority level in fixed priority mode. If multiple master
ports are assigned the same priority level within a register (XBAR_MPR) undefined behavior results.

7.3.6 Arbitration

XBAR supports two arbitration schemes; a simple fixed-priority comparison algorithm, and a round-robin
fairness algorithm. The arbitration scheme is independently programmable for each slave port.

7.3.6.1 Fixed Priority Operation

When operating in fixed-priority arbitration mode, each master is assigned a unique priority level in the
XBAR_MPR. If two masters both request access to a slave port, the master with the highest priority in the
selected priority register gains control over the slave port.

Any time a master makes a request to a slave port, the slave port checks to see if the new requesting
master’s priority level is higher than that of the master that currently has control over the slave port (if any).
The slave port does an arbitration check at every clock edge to ensure that the proper master (if any) has
control of the slave port.

If the new requesting master’s priority level is higher than that of the master that currently has control of
the slave port, the higher priority master is granted control at the termination of any currently pending
access, assuming the pending transfer is not part of a burst transfer.

A new requesting master must wait until the end of the fixed-length burst transfer, before it is granted
control of the slave port. But if the new requesting master’s priority level is lower than that of the master
that currently has control of the slave port, the new requesting master is forced to wait until the master that
currently has control of the slave port is finished accessing the current slave port.

7.3.6.2 Round-Robin Priority Operation

When operating in round-robin mode, each master is assigned a relative priority based on the master port
number. This relative priority is compared to the port number of the last master to perform a transfer on
the slave bus. The highest priority requesting master becomes the owner of the slave bus at the next transfer
boundary (accounting for fixed-length burst transfers). Priority is based on how far ahead the port number
of the requesting master is to the port number of the last master.

After granted access to a slave port, a master can perform as many transfers as desired to that port until
another master makes a request to the same slave port. The next master in line is granted access to the slave
port when the current transfer is completed, or possibly on the next clock cycle if the current master has
no pending access request.

Crossbar Switch (XBAR)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 7-11

As an example of arbitration in round-robin mode, assume the three masters have ID’s 0, 1, and 2. If the
last master of the slave port was master 1, and masters 0 and 2 make simultaneous requests, they are
serviced in the order 2 and then 0 assuming no further requests are made.

As another example, if master 1 is waiting on a response from a slow slave and has no further pending
access to that slave, no other masters are requesting, and master 0 then makes a request, master 0’s request
is granted on the next clock (assuming that master 1’s transfer is not a burst transfer), and the request
information for master 0 is driven to the slave as a pending access. If master 2 were to make a request after
master 0 has been granted access, but prior to master 0’s access being accepted by the slave, master 0
maintains the grant on the slave port, and master 2 is delayed until the next arbitration boundary, which
occurs after the transfer is complete. The round-robin pointer is reset to 0, so if master 1 has another request
that occurs before master 0’s transfer completes, master 1 is the granted the bus. This implies a worst case
latency of N transfers for a system with N masters.

Parking can continue to be used in round-robin mode, but affects the round-robin pointer unless the parked
master actually performs a transfer. Handoff to the next master in line occurs after one cycle of arbitration.

The slave port does an arbitration check at every clock edge to ensure that the proper master (if any) has
control of the slave port.

A new requesting master must wait until the end of the fixed-length burst transfer, before it is granted
control of the slave port. If the new requesting master’s priority level is lower than that of the master that
currently has control of the slave port, the new requesting master is forced to wait until the master that
currently has control of the slave port completes its access.

7.3.6.2.1 Parking

If no master is currently requesting the slave port, the slave port is parked. The slave port parks in one of
three places, indicated by the value of the PCTL field in the XBAR_SGPCR.

• If park-on-specific master mode is selected, the slave port parks on the master designated by the
PARK field. When the master accesses the slave port again, a one clock arbitration penalty is
incurred only for an access request made by another master port to the slave port. No other
arbitration penalties are incurred. All other masters pay a one clock penalty.

• If park-on-last (POL) mode is selected, then the slave port parks on the last master to access it,
passing that master’s signals through to the slave bus. When the master accesses the slave port
again, no other arbitration penalties are incurred except that a one clock arbitration penalty is
incurred for each access request to the slave port made by another master port. All other masters
pay a one clock penalty.

• If the low-power-park (LPP) mode is selected, then the slave port enters low-power park mode. It
is not under control by any master and does not transmit any master signals to the slave bus. All
slave bus activity halts because all slave bus signals are not toggling. This saves power if the slave
port is not used for some time. However, when a master does make a request to a slave port parked
in low-power-park, a one clock arbitration delay is incurred to get ownership of the slave port.

Crossbar Switch (XBAR)

MPC5534 Microcontroller Reference Manual, Rev. 2

7-12 Freescale Semiconductor

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 8-1

Chapter 8
Error Correction Status Module (ECSM)
This device includes error-correcting code (ECC) implementations to improve the quality and reliability
of internal SRAM and internal flash memories. The error correction status module (ECSM) allows the
application to collect data on memory errors reported by the ECC or generic access error information.

8.1 Overview
The ECSM provides a set of registers that configure and report ECC errors for the device, including
accesses to SRAM and flash memory. The types of memory are:

• SRAM—32 data bits plus seven check bits for every 32-bit word

• Flash—64 data bits plus eight check bits for every 64-bit doubleword

The application must:

1. Configure the ECC for the types of memory errors to report.

2. Initialize internal SRAM by performing write operations to the entire SRAM memory before
enabling the ECC. Flash memory does not require this step. See Section 8.3, “Initialization and
Application Information.”

3. Query a set of read-only status and information registers to identify ECC errors, in response to an
enabled ECC error interrupt.

8.1.1 Types of ECC Errors

The ECSM is configurable for reporting non-correctable errors, and has registers for capturing ECC
information for internal SRAM and flash access errors. The types of ECC errors are:

• Correctable error—A correctable ECC error is generated when only one bit is incorrect in the data
and ECC check bits. In this case, the bit in error is corrected automatically by hardware, and no
flags or other indicators are set by the error that occurred.

• Non-correctable error—An ECC non-correctable error is generated when two or more bits in the
data and ECC check bits are incorrect. The bus transaction which caused the memory access to
produce the non-correctable error terminates with a bus error. If correctly enabled in the ECSM
module, non-correctable ECC errors can generate an interrupt and capture additional error details
about the access in ECSM registers.

Error Correction Status Module (ECSM)

MPC5534 Microcontroller Reference Manual, Rev. 2

8-2 Freescale Semiconductor

8.1.2 ECC Operations

ECCs are calculated across the entire width of the data field. The memory controller (flash or SRAM)
checks for ECC errors on read accesses, and calculates the ECC check bits on write accesses. ECC
operations for system RAM differ depending on the operation and memory:

• Read operations are comparable for SRAM and flash memory

• Write operations for SRAM and flash memory have major differences

Flash memory writes are program events and are managed entirely by the flash memory module. See
Chapter 13, “Flash Memory” for information on flash memory write operations. The following write
operations apply to SRAM only.

Read operation—SRAM and flash memory:

1. Read the data bits that contain the desired byte, halfword, word or doubleword from memory.

2. Calculate the syndrome from the read data and the check bits to determine if a correctable or
non-correctable error is present.

3. Return the data bits, error-free or corrected data, to the requesting bus master; or
respond with an error termination, and assert an interrupt if necessary.

32-bit write operation—SRAM only:

1. Generate the check bits based on the 32 data bits to be written.

2. Write the 32 data bits plus the check bits to memory.

Eight- or 16-bit write operations—SRAM only:

1. Read the data bits that contain the desired byte or halfword from memory.

2. Perform a read ECC check.

a) If the read operation is error-free, go to Step 3.

b) If a correctable single-bit error is detected, forward the corrected data to Step 3.

c) If a non-correctable error is detected, the write operation is not performed and the bus cycle
terminates with an error.

3. Merge the write data with the 32-bit read data (error-free or corrected data).

4. Generate the check bits for the destination write data.

5. Write the 32 bits of destination write data plus the check bits to memory.

Error Correction Status Module (ECSM)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 8-3

8.2 Memory Map and Register Definition
Table 8-1 is the memory map for the ECSM registers.

Table 8-1. ECSM Memory Map

Address Register Name Register Description Bits

Base (0xFFF4_0000) + 0x0016 ECSM_SWTCR Software watchdog timer control register 1

1 These registers control and configure the software watchdog timer, and are included as part of a standard Freescale ECSM
module. Use the core watchdog functions to implement watchdog capabilities rather than these registers.
See Section 8.2.1.1, “Software Watchdog Timer Registers: Control, Service, and Interrupt (ECSM_SWTCR, ECSM_SWTSR,
and ECSM_SWTIR).”

16

Base + (0x0018–0x001A) — Reserved —

Base + 0x001B ECSM_SWTSR Software watchdog timer service register 1 8

Base + (0x001C–0x001E) — Reserved —

Base + 0x001F ECSM_SWTIR Software watchdog timer interrupt register 1 8

Base + (0x0020–0x0042) — Reserved —

Base + 0x0043 ECSM_ECR ECC configuration register 8

Base + (0x0044–0x0046) — Reserved —

Base + 0x0047 ECSM_ESR ECC status register 8

Base + (0x0048–0x0049) — Reserved —

Base + 0x004A ECSM_EEGR ECC error generation register 16

Base + (0x004B–0x004F) — Reserved —

Base + 0x0050 ECSM_FEAR Flash ECC address register 32

Base + (0x0054–0x0055) — Reserved —

Base + 0x0056 ECSM_FEMR Flash ECC master register 8

Base + 0x0057 ECSM_FEAT Flash ECC attribute register 8

Base + 0x0058 ECSM_FEDRH Flash ECC data high register 32

Base + 0x005C ECSM_FEDRL Flash ECC data low register 32

Base + 0x0060 ECSM_REAR SRAM ECC address register 32

Base + (0x0064–0x0065) — Reserved —

Base + 0x0066 ECSM_REMR SRAM ECC master register 8

Base + 0x0067 ECSM_REAT SRAM ECC attributes register 8

Base + 0x0068 ECSM_REDRH SRAM ECC data high register 32

Base + 0x006C ECSM_REDRL SRAM ECC data low register 32

Base + (0x0070–0x007F) — Reserved —

Error Correction Status Module (ECSM)

MPC5534 Microcontroller Reference Manual, Rev. 2

8-4 Freescale Semiconductor

8.2.1 Register Descriptions

The following limitations apply to ECC accesses:

• Attempted accesses to reserved addresses result in an error termination.

• Attempted writes to read-only registers are ignored and do not terminate with an error.

• Writes to the programming model must match the size of the register unless noted otherwise; for
example, an n-bit register only supports n-bit writes. Attempted writes greater or less than the
register width produce an error termination of the bus cycle and no change to the targeted register.

8.2.1.1 Software Watchdog Timer Registers: Control, Service, and Interrupt
(ECSM_SWTCR, ECSM_SWTSR, and ECSM_SWTIR)

The core provides watchdog functions for flexible watchdog implementation. Use the core watchdog
functions to optimize code portability to other Power Architecture-based products in the MPC5500 family.
See the core reference manual for information on the core watchdog timer functions.

These ECSM read-only registers control and configure the ESCM software watchdog timer that is
included as part of the Freescale standard for this device:

NOTE
DO NOT change the reset values in the ECSM software watchdog registers.
Any change to the reset values can cause an ECSM_SWTIR_SWTIC
interrupt.

8.2.1.2 ECC Registers

The ECSM registers in Table 8-3 are visible to application software, and allow you to configure the data
reported and log ECC memory failures.

Table 8-2. ECSM Register Domains

Domain ECSM Register Name Register Purpose

Software Watchdog

ECSM_SWTCR ECSM Watchdog Timer Control

ECSM_SWTSR ECSM Watchdog Timer Service

ECSM_SWTIR ECSM Watchdog Timer Interrupt

Table 8-3. ECSM Register Domains

Domain ECSM Register Name Register Purpose

Global Reporting

ECSM_ECR ECC configuration

ECSM_ESR ECC status

ECSM_EEGR ECC error generation

Error Correction Status Module (ECSM)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 8-5

The details of each ECC register are described in the following sections.

8.2.1.3 ECC Configuration Register (ECSM_ECR)

ECSM_ECR is an 8-bit control register that enables or disables ECC error reporting during internal SRAM
and flash accesses. In addition to the interrupt generation, the ECSM captures specific information
(memory address, attributes and data, bus master number, etc.) that is useful for failure analysis.

The ECC reporting logic can detect non-correctable memory errors. When a non-correctable error
terminates the current access to the memory (flash or SRAM), an error condition is generated. In many
cases, the error termination is reported directly by the initiating bus master.

Flash Reporting

ECSM_FEAR Flash ECC address

ECSM_FEMR Flash ECC master number

ECSM_FEAT Flash ECC attributes

ECSM_FEDR Flash ECC data

SRAM Reporting

ECSM_REAR SRAM ECC address

ECSM_REMR SRAM ECC master number

ECSM_REAT SRAM ECC attributes

ECSM_REDR SRAM ECC data

Base (0xFFF4_0000) + 0x0043 Access: R/W

0 1 2 3 4 5 6 7

R 0 0 0 0 0 0
ERNCR EFNCR

W

Reset 0 0 0 0 0 0 0 0

Figure 8-1. ECC Configuration Register (ECSM_ECR)

Table 8-3. ECSM Register Domains (continued)

Domain ECSM Register Name Register Purpose

Error Correction Status Module (ECSM)

MPC5534 Microcontroller Reference Manual, Rev. 2

8-6 Freescale Semiconductor

The following table describes the fields in the error configuration register:

8.2.1.4 ECC Status Register (ECSM_ESR)

The ECC status register (ECSM_ESR) is an 8-bit control register that defines the types of ECC events
detected. The ESR indicates the last, correctly-enabled memory event detected. The ECSM ECC interrupt
request is generated as defined by the boolean equation:

ECSM_ECC_IRQ
 = ECSM_ECR[ERNCR] & ECSM_ESR[RNCE] // ram, noncorrectable error
 | ECSM_ECR[EFNCR] & ECSM_ESR[FNCE] // flash, noncorrectable error

where the combination of the following criteria generates the interrupt request:

• Correctly enabled category in the ECSM_ECR; and

• Condition in the ECSM_ESR detected.

The ECSM allows a maximum of one bit of the ECSM_ESR to assert at any given time. This preserves
the relationship of the ECSM_ESR to the address and attribute registers, which are loaded for each enabled
ECC event. If an ECC interrupt is pending and another enabled ECC event occurs, the ECSM hardware
automatically performs ECSM_ESR reporting by clearing the previous data, and then loading the new
status, which ensures that only a single flag is asserted.

To maintain a coherent software view of the reported event, use the following sequence in the ECSM error
interrupt service routine:

1. Read the ECSM_ESR and save it.

2. Read and save all the address and attribute reporting registers.

3. Re-read the ECSM_ESR and verify the current contents matches the original contents. If the two
values differ, return to step 1 and repeat this sequence.

4. When the values are identical, write a 1 to the asserted ECSM_ESR flag to negate the interrupt
request.

If multiple status flags are detected simultaneously, the ECSM records the higher priority SRAM
non-correctable error (RNCE) events before flash non-correctable error (FNCE) events.

Table 8-4. ECSM_ECR Field Definitions

Field Description

0–5 Reserved

6
ERNCR

Enable internal SRAM non-correctable reporting. When this bit is set (enabled), a non-correctable multi-bit internal
SRAM error sets the ECSM_ESR[RNCE] bit in the ECC status register, which generates an ECSM ECC internal
SRAM interrupt. The faulting address, attributes and data are also captured in the REAR, REMR, REAT and REDR
registers.
0 Reporting of non-correctable internal SRAM errors is disabled.
1 Reporting of non-correctable internal SRAM errors is enabled.

7
EFNCR

Enable flash non-correctable reporting. When this bit is set (enabled), a non-correctable multi-bit flash error sets the
ECSM_ESR[FNCE] bit in the ECC status register, which generates an ECSM ECC flash interrupt. The faulting
address, attributes and data are also captured in the FEAR, FEMR, FEAT and FEDR registers.
0 Reporting of non-correctable flash errors is disabled.
1 Reporting of non-correctable flash errors is enabled.

Error Correction Status Module (ECSM)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 8-7

8.2.1.5 ECC Error Generation Register (ECSM_EEGR)

The ECSM_EEGR is a 16-bit control register used to generate double-bit data errors in internal SRAM.
This allows you to test the software service routines for memory error logging. By generating errors during
data write cycles, subsequent reads of the corrupt address locations generate ECC events, such as
double-bit noncorrectable errors that are terminated with an error response.

If an attempt to force a non-correctable error (by asserting ECSM_EEGR[FRCNCI] or
ECSM_EEGR[FRC1NCI]) and the ECSM_EEGR[ERRBIT] equals 64, then no data error is generated.

NOTE
Only values {0,0}, {1,0} and {0,1} are allowed for the two control bit
enables {FRCNCI, FR1NCI}. The value {1,1} causes undefined results.

Base + 0x0047 Access: R/W1c

0 1 2 3 4 5 6 7

R 0 0 0 0 0 0 RNCE FNCE

W w1c w1c

Reset 0 0 0 0 0 0 0 0

Figure 8-2. ECC Status Register (ECSM_ESR)

Table 8-5. ECSM_ESR Field Definitions

Field Description

0–5 Reserved

6
RNCE

SRAM non-correctable error.
A non-correctable SRAM error occurs, generates an ECSM ECC interrupt request. The faulting address, attributes
and data are also captured in the REAR, REMR, REAT and REDR registers. To clear this interrupt flag, write a 1 to
this bit. Writing a 0 has no effect.
0 No reportable non-correctable SRAM error has been detected.
1 A reportable non-correctable SRAM error has been detected.

7
FNCE

Flash non-correctable error. The occurrence of a correctly-enabled non-correctable flash error generates an ECSM
ECC interrupt request. The faulting address, attributes and data are also captured in the FEAR, FEMR, FEAT and
FEDR registers. To clear this interrupt flag, write a 1 to this bit. Writing a 0 has no effect.
0 No reportable non-correctable flash error has been detected.
1 A reportable non-correctable flash error has been detected.

Base + 0x004A Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 FRC
NCI

FR1
NCI

0
ERRBIT[0:6]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 8-3. ECC Error Generation (ECSM_EEGR) Register

Error Correction Status Module (ECSM)

MPC5534 Microcontroller Reference Manual, Rev. 2

8-8 Freescale Semiconductor

8.2.1.6 Flash ECC Address Register (ECSM_FEAR)

The ECSM_FEAR is a 32-bit register for capturing the address of the last, correctly-enabled ECC event
in the flash memory. Depending on the state of the ECSM_ECR, an ECC event in the flash loads the
address, attributes and data of the access into the ECSM_FEAR, ECSM_FEMR, ECSM_FEAT, and
ECSM_FEDR registers, and asserts the F1BC or FNCE flag in ECSM_ESR.

Table 8-6. ECSM_EEGR Field Definitions

Field Description

0–5 Reserved

6
FRCNCI

Force internal SRAM continuous noncorrectable data errors.
0 No internal SRAM continuous 2-bit data errors are generated.
1 2-bit data errors in the internal SRAM are continuously generated.
When this bit is cleared:
1. The RAM controller generates a normal ECC
2. The polarity of the bit position specified in ERRBIT plus the overall odd parity bit

are inverted to introduce a 2-bit ECC error in internal SRAM.
When this bit is set:
1. The internal SRAM controller generates 2-bit data errors,

as defined by the bit position specified in ERRBIT[0:6] and the overall odd parity bit,
on every write operation.

7
FR1NCI

Force internal SRAM one noncorrectable data errors.
0 No internal SRAM single 2-bit data errors are generated.
1 One 2-bit data error in internal SRAM is generated.
When this bit is cleared, the RAM controller generates a normal ECC, but then the polarity of the bit position defined
by ERRBIT and the overall odd parity bit are inverted to introduce a 2-bit ECC error in the internal SRAM.
When this bit is set, the internal SRAM controller generates 2-bit data errors, as defined by the bit position specified
in ERRBIT[0:6] and the overall odd parity bit, on every write operation.
The assertion of this bit forces the internal SRAM controller to create one 2-bit data error, as defined by the bit
position specified in ERRBIT[0:6] and the overall odd parity bit, on the first write operation after this bit is set.
The normal ECC generation takes place in the internal SRAM controller, but then the polarity of the bit position
defined by ERRBIT and the overall odd parity bit are inverted to introduce a 2-bit ECC error in the internal SRAM.
After this bit has been enabled to generate a single 2-bit error, it must be cleared before being set again to correctly
re-enable the error generation logic.

8 Reserved

9–15
ERRBIT

Error bit position. Defines the bit position which is complemented to create the data error on the write operation. The
bit specified by this field plus the odd parity bit of the ECC code are inverted.
The internal SRAM controller follows a vector bit ordering scheme where LSB=0. Errors in the ECC check bits can
be generated by setting this field to a value greater than the internal SRAM width. The following association between
the ERRBIT field and the corrupted memory bit is defined:
if ERRBIT = 0, then internal SRAM[0] is inverted
if ERRBIT = 1, then internal SRAM[1] is inverted
...
if ERRBIT = 31, then internal SRAM[31] is inverted
if ERRBIT = 32, then ECC Parity[0] is inverted
if ERRBIT = 33, then ECC Parity[1] is inverted
...
if ERRBIT = 39, then ECC Parity[7] is inverted

For ERRBIT values greater than 39, no bit position is inverted.

Error Correction Status Module (ECSM)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 8-9

The address that is captured in ECSM_FEAR is the flash page address as seen on the system bus. See
Section 13.3.2.7, “Address Register FLASH_AR” to retrieve the doubleword address.

8.2.1.7 Flash ECC Master Number Register (ECSM_FEMR)

The FEMR is an 8-bit register for capturing the XBAR bus master number of the last, correctly-enabled
ECC event in the flash memory. Depending on the state of the ECSM_ECR, an ECC event in the flash
loads the address, attributes and data of the access into the ECSM_FEAR, ECSM_FEMR, ECSM_FEAT
and ECSM_FEDR registers, and asserts the FNCE flag in the ECSM_ESR.

Base + 0x0050 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R FEAR

W

Reset 1 U U U U U U U U U U U U U U U U

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R FEAR

W

Reset 1 U U U U U U U U U U U U U U U U

1 “U” signifies a bit that is uninitialized.

Figure 8-4. Flash ECC Address Register (ECSM_FEAR)

Table 8-7. ECSM_FEAR Field Descriptions

Field Description

0–31
FEAR
[0:31]

Flash ECC address. Contains the faulting access address of the last, correctly-enabled flash ECC event.

ECSM Base + 0x0056 Access: Read

0 1 2 3 4 5 6 7

R 0 0 0 0 FEMR

W

Reset 1 0 0 0 0 U U U U

1 “U” signifies a bit that is uninitialized.

Figure 8-5. Flash ECC Master Number Register (ECSM_FEMR)

Error Correction Status Module (ECSM)

MPC5534 Microcontroller Reference Manual, Rev. 2

8-10 Freescale Semiconductor

8.2.1.8 Flash ECC Attributes Register (ECSM_FEAT)

The ECSM_FEAT is an 8-bit register for capturing the XBAR bus master attributes of the last,
correctly-enabled ECC event in the flash memory. Depending on the state of the ECSM_ECR register, an
ECC event in the flash loads the address, attributes and data of the access into the ECSM_FEAR,
ECSM_FEMR, ECSM_FEAT, and ECSM_FEDR registers, and asserts the FNCE flag in ECSM_ESR.

Table 8-8. ECSM_FEMR Field Descriptions

Field Description

0–3 Reserved

4–7
FEMR
[0:3]

Flash ECC master number. Contains the XBAR bus master number of the faulting access of the last,
correctly-enabled flash ECC event. The reset value of this field is undefined.

Base + 0x0057 Access: Read

0 1 2 3 4 5 6 7

R WRITE SIZE PROT0 PROT1 PROT2 PROT3

W

Reset 1 U U U U U U U U

1 “U” signifies a bit that is uninitialized.

Figure 8-6. Flash ECC Attributes Register (ECSM_FEAT)

Table 8-9. ECSM_FEAT Field Descriptions

Field Description

0
WRITE

Write. The reset value of this field is undefined.
0 System bus read access
1 System bus write access

1–3
SIZE
[0:2]

Size. The reset value of this field is undefined.
000 8-bit System bus access
001 16-bit System bus access
010 32-bit System bus access
011 Reserved
1xx Reserved

4
PROT0

Protection: cache. The reset value of this field is undefined.
0 Non-cacheable
1 Cacheable

5
PROT1

Protection: buffer. The reset value of this field is undefined.
0 Non-bufferable
1 Bufferable

Error Correction Status Module (ECSM)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 8-11

8.2.1.9 Flash ECC Data High Register (ECSM_FEDRH)

The ECSM_FEDRH and ECSM_FEDRL are 32-bit registers for capturing the data of the last,
correctly-enabled ECC event in flash memory. Depending on the state of the ECSM_ECR, an ECC event
in the flash loads the address, attributes and data of the access into the ECSM_FEAR, ECSM_FEMR,
ECSM_FEAT and ECSM_FEDR registers, and asserts the FNCE flag in ECSM_ESR.

The data captured on a multi-bit non-correctable ECC error is undefined.

8.2.1.10 Flash ECC Data Low Registers (ECSM_FEDRL)

The ECSM_FEDRH and ECSM_FEDRL are 32-bit registers for capturing the data of the last,
correctly-enabled ECC event in the flash memory. Depending on the state of the ECSM_ECR, an ECC
event in the flash loads the address, attributes and data of the access into the ECSM_FEAR,
ECSM_FEMR, ECSM_FEAT and ECSM_FEDR registers, and asserts the FNCE flag in ECSM_ESR.

6
PROT2

Protection: mode. The reset value of this field is undefined.
0 User mode
1 Supervisor mode

7
PROT3

Protection: type. The reset value of this field is undefined.
0 I-Fetch
1 Data

Base + 0x0058 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R FEDH

W

Reset 1 U U U U U U U U U U U U U U U U

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R FEDH

W

Reset 1 U U U U U U U U U U U U U U U U

1 “U” signifies a bit that is uninitialized.

Figure 8-7. Flash ECC Data High Register (ECSM_FEDRH)

Table 8-10. ECSM_FEDRH Field Descriptions

Field Description

0–31
FEDH
[0:31]

Flash ECC data. Contains the data associated with the faulting access of the last, correctly-enabled flash ECC event.
The register contains the data value taken directly from the data bus. The reset value of this field is undefined.

Table 8-9. ECSM_FEAT Field Descriptions (continued)

Field Description

Error Correction Status Module (ECSM)

MPC5534 Microcontroller Reference Manual, Rev. 2

8-12 Freescale Semiconductor

The data captured on a multi-bit non-correctable ECC error is undefined.

8.2.1.11 SRAM ECC Address Register (ECSM_REAR)

The ECSM_REAR is a 32-bit register for capturing the address of the last, correctly-enabled ECC event
in the RAM memory. Depending on the state of the ECSM_ECR, an ECC event in the RAM loads the
address, attributes and data of the access into the ECSM_REAR, ECSM_REMR, ECSM_REAT and
ECSM_REDR registers, and asserts the RNCE flag in ECSM_ESR.

Base + 0x005C Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R FEDL

W

Reset 1 U U U U U U U U U U U U U U U U

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R FEDL

W

Reset 1 U U U U U U U U U U U U U U U U

1 “U” signifies a bit that is uninitialized.

Figure 8-8. Flash ECC Data Low Register (ECSM_FEDRL)

Table 8-11. ECSM_FEDRL Field Descriptions

Field Description

0–31
FEDL
[0:31]

Flash ECC data. Contains the data associated with the faulting access of the last, correctly-enabled flash ECC event.
The register contains the data value taken directly from the data bus. The reset value of this field is undefined.

Base + 0x0060 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R REAR

W

Reset 1 U U U U U U U U U U U U U U U U

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R REAR

W

Reset 1 U U U U U U U U U U U U U U U U

1 “U” signifies a bit that is uninitialized.

Figure 8-9. RAM ECC Address Register (ECSM_REAR)

Error Correction Status Module (ECSM)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 8-13

8.2.1.12 SRAM ECC Master Number Register (ECSM_REMR)

The REMR is an 8-bit register for capturing the XBAR bus master number of the last, correctly-enabled
ECC event in the RAM memory. Depending on the state of the ECSM_ECR, an ECC event in the SRAM
loads the address, attributes and data of the access into the ECSM_REAR, ECSM_REMR, ECSM_REAT
and ECSM_REDR registers, and asserts the RNCE flag in ECSM_ESR.

Table 8-12. ECSM_REAR Field Descriptions

Field Description

0–31
REAR
[0:31]

SRAM ECC address. Contains the faulting access address of the last, correctly-enabled RAM ECC event. The reset
value of this field is undefined.

Base + 0x0066 Access: Read

0 1 2 3 4 5 6 7

R 0 0 0 0 REMR

W

Reset 1 0 0 0 0 U U U U

1 “U” signifies a bit that is uninitialized.

Figure 8-10. RAM ECC Master Number Register (ECSM_REMR)

Table 8-13. ECSM_REMR Field Descriptions

Field Description

0–3 Reserved

4–7
REMR
[0:3]

SRAM ECC master number. Contains the XBAR bus master number of the faulting access of the last,
correctly-enabled RAM ECC event. The reset value of this field is undefined.

Error Correction Status Module (ECSM)

MPC5534 Microcontroller Reference Manual, Rev. 2

8-14 Freescale Semiconductor

8.2.1.13 SRAM ECC Attributes Register (ECSM_REAT)

The ECSM_REAT is an 8-bit register for capturing the XBAR bus master attributes of the last,
correctly-enabled ECC event in the RAM memory. Depending on the state of the ECSM_ECR, an ECC
event in the RAM loads the address, attributes and data of the access into the ECSM_REAR,
ECSM_REMR, ECSM_REAT and ECSM_REDR registers, and asserts the RNCE flag in ECSM_ESR.

Base + 0x0067 Access: Read

0 1 2 3 4 5 6 7

R WRITE SIZE PROT0 PROT1 PROT2 PROT3

W

Reset 1 U U U U U U U U

1 “U” signifies a bit that is uninitialized.

Figure 8-11. SRAM ECC Attributes Register (ECSM_REAT)

Table 8-14. ECSM_REAT Field Descriptions

Field Description

0
WRITE

Write. The reset value of this field is undefined.
0 System bus read access
1 System bus write access

1–3
SIZE
[0:2]

Size. The reset value of this field is undefined.
000 8-bit system bus access
001 16-bit system bus access
010 32-bit system bus access
011 Reserved
1xx Reserved

4
PROT0

Protection: cache. The reset value of this field is undefined.
0 Non-cacheable
1 Cacheable

5
PROT1

Protection: buffer. The reset value of this field is undefined.
0 Non-bufferable
1 Bufferable

6
PROT2

Protection: mode. The reset value of this field is undefined.
0 User mode
1 Supervisor mode

7
PROT3

Protection: type. The reset value of this field is undefined.
0 Fetch
1 Data

Error Correction Status Module (ECSM)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 8-15

8.2.1.14 SRAM ECC Data High Register (ECSM_REDRH)

The ECSM_REDRH and ECSM_REDRL are 32-bit registers for capturing the data of the last,
correctly-enabled ECC event in the RAM memory. Depending on the state of the ECSM_ECR, an ECC
event in the RAM loads the address, attributes and data of the access into the ECSM_REAR,
ECSM_REMR, ECSM_REAT, ECSM_REDRH and ECSM_REDRL registers, and asserts the RFNCE
flag in ECSM_ESR.

The data captured on a multi-bit non-correctable ECC error is undefined.

8.2.1.15 SRAM ECC Data Low Registers (ECSM_REDRL)

The ECSM_REDRH and ECSM_REDRL are 32-bit registers for capturing the data for the last,
correctly-enabled ECC event in RAM. Depending on the state of the ECSM_ECR, an ECC event in the
RAM loads the address, attributes and data of the access to the following registers:

• ECSM_REAR

• ECSM_REMR

• ECSM_REAT

• ECSM_REDRH

• ECSM_REDRL

and asserts the RFNCE flag in ECSM_ESR. The data captured on a multi-bit non-correctable ECC error
is undefined.

Base + 0x0068 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R REDH

W

Reset 1 U U U U U U U U U U U U U U U U

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R REDH

W

Reset 1 U U U U U U U U U U U U U U U U

1 “U” signifies a bit that is uninitialized.

Figure 8-12. SRAM ECC Data High Register (ECSM_REDRH)

Table 8-15. ECSM_REDRH Field Descriptions

Field Description

0–31
REDH
[0:31]

RAM ECC data. Contains the data of the faulting access of the last, correctly-enabled RAM ECC event. The register
contains the data value taken directly from the data bus. The reset value of this field is undefined.

Error Correction Status Module (ECSM)

MPC5534 Microcontroller Reference Manual, Rev. 2

8-16 Freescale Semiconductor

The following table describes the RAM ECC data field in the

8.3 Initialization and Application Information
The Error Correction Code (ECC) is used to verify the contents of the internal SRAM and flash memories.
This is done by generating ECC check bits. Typically ECC check bits are calculated on writes and then
used on reads to detect and correct errors.

• SRAM—Seven ECC check bits for each 32-bit SRAM data word.

• Flash—Eight ECC check bits for each 32-bit flash data word.

After Power on Reset (POR), the contents of internal SRAM is random and the corresponding ECC check
bits are unknown. To prevent generating ECC errors during reads, an initialization routine must perform
32-bit writes to all SRAM locations. Because the flash module is non-volatile, the ECC check bits are
calculated and stored when the flash is programmed.

Transparent to the application, the ECC uses the check bits to automatically correct single-bit memory
errors. Multi-bit memory errors are not correctable. If the ECC detects a multi-bit error, an exception is
generated. The type of exception generated by a multi-bit error depends on the settings of the EE and ME
in the Machine State Register (MSR), as shown in Table 8-17. When error reporting is enabled, as long as
its priority is 0, an interrupt request is generated to the interrupt controller (INTC) even though the INTC
request is not serviced.

ECSM Base + 0x006C Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R REDL

W

Reset 1 U U U U U U U U U U U U U U U U

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R REDL

W

Reset 1 U U U U U U U U U U U U U U U U

1 “U” signifies a bit that is uninitialized.

Figure 8-13. SRAM ECC Data Low Register (ECSM_REDRL)

Table 8-16. ECSM_REDRL Field Descriptions

Field Description

0–31
REDL
[0:31]

RAM ECC data. Contains the data associated with the faulting access of the last, correctly-enabled RAM ECC event.
The register contains the data value taken directly from the data bus. The reset value of this field is undefined.

Error Correction Status Module (ECSM)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 8-17

A non-correctable data ECC error executes one of the following actions, regardless of whether
non-correctable reporting is enabled:

When the device is in the checkstop state, processing is suspended and cannot resume without a reset.
When a debug request is presented to the core while it is in the checkstop state, the core temporarily exits
the checkstop state and enters debug mode. When debug mode exits, the core re-enters the checkstop state.

If the external interrupt bit in the MSR is enabled, data or instruction stage interrupts are reported when
the ECC errors are a result of CPU accesses, regardless of whether non-correctable reporting is enabled.
ECC errors generated by other masters (eDMA, etc.) do not generate data or instruction storage
exceptions, and the ECSM is used to report these errors. You must initialize the ECSM to enable
non-correctable reporting with interrupt generation to detect and report ECC interrupts from the ECSM.

Error reporting details can be independently enabled for flash memory and SRAM. To enable
non-correctable error reporting and save the error details for:

• SRAM—set the ERNCR bit in the ECSM Error Configuration Register (ECSM_ECR).

• Flash—set the EFNCR bit in ECSM_ECR.

When these bits are set and a non-correctable ECC error occurs, error information is recorded in other
ECSM registers and an interrupt request is generated on vector 9 of the interrupt controller (INTC).

• CPU data access error—Generates data storage exception (IVOR2).

• CPU instruction access error—Generates instruction storage exception (IVOR3).

• Vector 9 of INTC enabled—Generates an external exception (IVOR4).

Table 8-17. MSR[EE] and MSR[ME] Bit Settings

Field Description

EE External interrupt enable.
0 External input interrupts disabled.
1 External interrupts enabled.

ME Machine check enable.
0 Machine check interrupts disabled. Enters machine check.
1 Machine interrupts enabled.

Table 8-18. Non-correctable Data ECC States

MSR[EE] MSR[ME] Access Type Result

0 0 Instruction or data Enters checkstop state. A reset is required to resume processing.

0 1 Instruction or data Machine check interrupt (IVOR1).

1 X Data Data storage interrupt (IVOR2). External interrupt must be enabled.
Machine check can be enabled or disabled.

1 X Instruction Instruction storage interrupt (IVOR3).

Error Correction Status Module (ECSM)

MPC5534 Microcontroller Reference Manual, Rev. 2

8-18 Freescale Semiconductor

To prevent generating an ECSM interrupt in response to a non-correctable error:

• Enable non-correctable reporting in the ECSM.

• Ensure the external interrupt is disabled.

• Ensure that the INTC_PSR[PRI] value for the ECC error interrupt request is 0.

To use the detailed data or instruction storage exception information, design an exception handler that can
determine:

• The destination that asserted the error, indicated by the value of the ESR[XTE] bit.

• The address of the corrupted instruction for an instruction storage exception (SRR0).

• The address where the error occurred for a data storage exception, indicated in the data exception
address register (DEAR).

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 9-1

Chapter 9
Enhanced Direct Memory Access (eDMA)

9.1 Introduction
This chapter describes the enhanced Direct Memory Access (eDMA) controller, a second-generation
module capable of performing complex data transfers with minimal intervention from a host processor.

The enhanced direct memory access (eDMA) controller hardware microarchitecture includes a DMA
engine which performs source and destination address calculations, and the actual data movement
operations, along with SRAM-based local memory containing the transfer control descriptors (TCD) for
the channels.

Figure 9-1 is a block diagram of the eDMA module.

Figure 9-1. eDMA Block Diagram

S
la

ve
 In

te
rf

a
ce

eDMA

eDMA done

S
ys

te
m

 B
us

Data path Control
Address

Program model and

Slave write data

Slave write address

Bus write data

Slave read data

Bus address

eDMA Engine

TCD0

TCDn-1*

eDMA peripheral

Bus read data

channel arbitration

request

path

SRAM
Transfer Control Descriptor

(TCD)

SRAM

*n = 32 channels

Enhanced Direct Memory Access (eDMA)

MPC5534 Microcontroller Reference Manual, Rev. 2

9-2 Freescale Semiconductor

9.1.1 Features

The eDMA is a highly-programmable data transfer engine, which has been optimized to minimize the
required intervention from the host processor. It is intended for use in applications where the data size to
be transferred is statically known, and is not defined within the data packet itself. The eDMA module
features:

• All data movement via dual-address transfers: read from source, write to destination

Programmable source, destination addresses, transfer size, plus support for enhanced addressing
modes

• 32-channel implementation performs complex data transfers with minimal intervention from a host
processor

— 32 bytes of data registers, used as temporary storage to support burst transfers
(see SSIZE bit)

— Connections to the crossbar switch for bus mastering the data movement

• Transfer control descriptor (TCD) organized to support two-deep, nested transfer operations

— 32-byte TCD per channel stored in local memory

— An inner data transfer loop defined by a minor byte transfer count

— An outer data transfer loop defined by a major iteration count

• Channel activation via one of three methods:

— Explicit software initiation

— Initiation via a channel-to-channel linking mechanism for continual transfers

— Peripheral-paced hardware requests (one per channel)

NOTE
For all three methods, one activation per execution of the minor loop is
required.

• Support for fixed-priority and round-robin channel arbitration

• Channel completion reported via optional interrupt requests

— One interrupt per channel, optionally asserted at completion of major iteration count

— Error terminations are enabled per channel, and logically summed together to form a single
error interrupt

• Support for scatter/gather DMA processing

• Any channel can be programmed so that it can be suspended by a higher priority channel’s
activation, before completion of a minor loop

Throughout this chapter, n is used to reference the channel number. Additionally, data sizes are defined as
byte (8-bit), halfword (16-bit), word (32-bit) and doubleword (64-bit).

Enhanced Direct Memory Access (eDMA)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 9-3

9.1.2 Modes of Operation

9.1.2.1 Normal Mode

In normal mode, the eDMA is used to transfer data between a source and a destination. The source and
destination can be a memory block or an I/O block capable of operation with the eDMA.

9.1.2.2 Debug Mode

If enabled by EDMA_CR[EDBG] and the CPU enters debug mode, the eDMA does not grant a service
request when the debug input signal is asserted. If the signal asserts during a data block transfer as
described by a minor loop in the current active channel’s TCD, the eDMA continues the operation until
the minor loop completes.

9.2 Memory Map and Register Definition

9.2.1 Memory Map

The eDMA programming model is partitioned into two regions:

Region 1 defines control registers; region 2 defines the local transfer control for the descriptor memory.

Table 9-1 is a 32-bit view of the eDMA memory map.

Table 9-1. eDMA 32-bit Memory Map

Address Register Name Register Description Bits

Base (0xFFF4_4000) EDMA_CR eDMA control register 32

Base + 0x0004 EDMA_ESR eDMA error status register 32

Base + 0x0008 — Reserved —

Base + 0x000C EDMA_ERQRL eDMA enable request low register 32

Base + 0x0010 — Reserved —

Base + 0x0014 EDMA_EEIRL eDMA enable error interrupt low register 32

Base + 0x0018 EDMA_SERQR eDMA set enable request register 8

Base + 0x0019 EDMA_CERQR eDMA clear enable request register 8

Base + 0x001A EDMA_SEEIR eDMA set enable error interrupt register 8

Base + 0x001B EDMA_CEEIR eDMA clear enable error interrupt register 8

Base + 0x001C EDMA_CIRQR eDMA clear interrupt request register 8

Base + 0x001D EDMA_CER eDMA clear error register 8

Base + 0x001E EDMA_SSBR eDMA set start bit register 8

Base + 0x001F EDMA_CDSBR eDMA clear done status bit register 8

Base + 0x0020 — Reserved —

Enhanced Direct Memory Access (eDMA)

MPC5534 Microcontroller Reference Manual, Rev. 2

9-4 Freescale Semiconductor

Base + 0x0024 EDMA_IRQRL eDMA interrupt request low register 32

Base + 0x0028 — Reserved —

Base + 0x002C EDMA_ERL eDMA error low register 32

Base + 0x0030–
Base + 0x00FF

— Reserved —

Base + 0x0100 EDMA_CPR0 eDMA channel 0 priority register 8

Base + 0x0101 EDMA_CPR1 eDMA channel 1 priority register 8

Base + 0x0102 EDMA_CPR2 eDMA channel 2 priority register 8

Base + 0x0103 EDMA_CPR3 eDMA channel 3 priority register 8

Base + 0x0104 EDMA_CPR4 eDMA channel 4 priority register 8

Base + 0x0105 EDMA_CPR5 eDMA channel 5 priority register 8

Base + 0x0106 EDMA_CPR6 eDMA channel 6 priority register 8

Base + 0x0107 EDMA_CPR7 eDMA channel 7 priority register 8

Base + 0x0108 EDMA_CPR8 eDMA channel 8 priority register 8

Base + 0x0109 EDMA_CPR9 eDMA channel 9 priority register 8

Base + 0x010A EDMA_CPR10 eDMA channel 10 priority register 8

Base + 0x010B EDMA_CPR11 eDMA channel 11 priority register 8

Base + 0x010C EDMA_CPR12 eDMA channel 12 priority register 8

Base + 0x010D EDMA_CPR13 eDMA channel 13 priority register 8

Base + 0x010E EDMA_CPR14 eDMA channel 14 priority register 8

Base + 0x010F EDMA_CPR15 eDMA channel 15 priority register 8

Base + 0x0110 EDMA_CPR16 eDMA channel 16 priority register 8

Base + 0x0111 EDMA_CPR17 eDMA channel 17 priority register 8

Base + 0x0112 EDMA_CPR18 eDMA channel 18 priority register 8

Base + 0x0113 EDMA_CPR19 eDMA channel 19 priority register 8

Base + 0x0114 EDMA_CPR20 eDMA channel 20 priority register 8

Base + 0x0115 EDMA_CPR21 eDMA channel 21 priority register 8

Base + 0x0116 EDMA_CPR22 eDMA channel 22 priority register 8

Base + 0x0117 EDMA_CPR23 eDMA channel 23 priority register 8

Base + 0x0118 EDMA_CPR24 eDMA channel 24 priority register 8

Base + 0x0119 EDMA_CPR25 eDMA channel 25 priority register 8

Base + 0x011A EDMA_CPR26 eDMA channel 26 priority register 8

Base + 0x011B EDMA_CPR27 eDMA channel 27 priority register 8

Table 9-1. eDMA 32-bit Memory Map (continued)

Address Register Name Register Description Bits

Enhanced Direct Memory Access (eDMA)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 9-5

Base + 0x011C EDMA_CPR28 eDMA channel 28 priority register 8

Base + 0x011D EDMA_CPR29 eDMA channel 29 priority register 8

Base + 0x011E EDMA_CPR30 eDMA channel 30 priority register 8

Base + 0x011F EDMA_CPR31 eDMA channel 31 priority register 8

Base + 0x0120–0x0FFF — Reserved —

Base + 0x1000 TCD00 eDMA transfer control descriptor 00 256

Base + 0x1020 TCD01 eDMA transfer control descriptor 01 256

Base + 0x1040 TCD02 eDMA transfer control descriptor 02 256

Base + 0x1060 TCD03 eDMA transfer control descriptor 03 256

Base + 0x1080 TCD04 eDMA transfer control descriptor 04 256

Base + 0x10A0 TCD05 eDMA transfer control descriptor 05 256

Base + 0x10C0 TCD06 eDMA transfer control descriptor 06 256

Base + 0x10E0 TCD07 eDMA transfer control descriptor 07 256

Base + 0x1100 TCD08 eDMA transfer control descriptor 08 256

Base + 0x1120 TCD09 eDMA transfer control descriptor 09 256

Base + 0x1140 TCD10 eDMA transfer control descriptor 10 256

Base + 0x1160 TCD11 eDMA transfer control descriptor 11 256

Base + 0x1180 TCD12 eDMA transfer control descriptor 12 256

Base + 0x11A0 TCD13 eDMA transfer control descriptor 13 256

Base + 0x11C0 TCD14 eDMA transfer control descriptor 14 256

Base + 0x11E0 TCD15 eDMA transfer control descriptor 15 256

Base + 0x1200 TCD16 eDMA transfer control descriptor 16 256

Base + 0x1220 TCD17 eDMA transfer control descriptor 17 256

Base + 0x1240 TCD18 eDMA transfer control descriptor 18 256

Base + 0x1260 TCD19 eDMA transfer control descriptor 19 256

Base + 0x1280 TCD20 eDMA transfer control descriptor 20 256

Base + 0x12A0 TCD21 eDMA transfer control descriptor 21 256

Base + 0x12C0 TCD22 eDMA transfer control descriptor 22 256

Base + 0x12E0 TCD23 eDMA transfer control descriptor 23 256

Base + 0x1300 TCD24 eDMA transfer control descriptor 24 256

Base + 0x1320 TCD25 eDMA transfer control descriptor 25 256

Base + 0x1340 TCD26 eDMA transfer control descriptor 26 256

Base + 0x1360 TCD27 eDMA transfer control descriptor 27 256

Table 9-1. eDMA 32-bit Memory Map (continued)

Address Register Name Register Description Bits

Enhanced Direct Memory Access (eDMA)

MPC5534 Microcontroller Reference Manual, Rev. 2

9-6 Freescale Semiconductor

9.2.2 Register Descriptions

Read operations on reserved bits in a register return undefined data. Do not write operations to reserved
bits. Writing to reserved bits in a register can generate errors. The maximum register bit-width for this
device is 32-bits wide.

9.2.2.1 eDMA Control Register (EDMA_CR)

The 32-bit EDMA_CR defines the basic operating configuration of the eDMA.

The eDMA arbitrates channel service requests in two groups (0, 1) of 16 channels each:

• Group 0 contains channels 0–15

• Group 1 contains channels 16–31

Arbitration within a group can be configured to use either fixed-priority or round-robin. In fixed-priority
arbitration, the highest priority channel requesting service is selected to execute. The priorities are
assigned by the channel priority registers. In round-robin arbitration mode, the channel priorities are
ignored and the channels within each group are cycled through, from channel 15 down to channel 0,
without regard to priority.

See Section 9.2.2.16, “eDMA Channel n Priority Registers (EDMA_CPRn).”

The group priorities operate in a similar fashion. In group fixed-priority arbitration mode, channel service
requests in the highest priority group are executed first where priority level 1 is the highest and priority
level 0 is the lowest. The group priorities are assigned in the GRPnPRI fields of the eDMA control register
(EDMA_CR). All group priorities must have unique values prior to any channel service requests occur,
otherwise a configuration error is reported. In group round-robin mode, the group priorities are ignored
and the groups are cycled through, from group 1 down to group 0, without regard to priority.

Base + 0x1380 TCD28 eDMA transfer control descriptor 28 256

Base + 0x13A0 TCD29 eDMA transfer control descriptor 29 256

Base + 0x13C0 TCD30 eDMA transfer control descriptor 30 256

Base + 0x13E0 TCD31 eDMA transfer control descriptor 31 256

Base + 0x1400–0x17FC — Reserved —

Table 9-1. eDMA 32-bit Memory Map (continued)

Address Register Name Register Description Bits

Enhanced Direct Memory Access (eDMA)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 9-7

Address: Base + 0x0000 Access: User R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 GRP1
PRI

0 GRP0
PRI

0 0 0 0
ERGA ERCA EDBG

0

W

Reset 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0

Figure 9-2. eDMA Control Register (EDMA_CR)

Table 9-2. EDMA_CR Field Descriptions

Field Description

0–20 Reserved

21
GRP1PRI

Channel group 1 priority. Group 1 priority level when fixed-priority group arbitration is enabled.

22 Reserved

23
GRP0PRI

Channel group 0 priority. Group 0 priority level when fixed-priority group arbitration is enabled.

24–27 Reserved

28
ERGA

Enable round-robin group arbitration.
0 Fixed-priority arbitration is used for selection among the groups.
1 Round-robin arbitration is used for selection among the groups.

29
ERCA

Enable round-robin channel arbitration.
0 Fixed-priority arbitration is used for channel selection within each group.
1 Round-robin arbitration is used for channel selection within each group.

30
EDBG

Enable debug.
0 The assertion of the system debug control input is ignored.
1 The assertion of the system debug control input causes the eDMA to stall the start of a new channel.

Executing channels are allowed to complete. Channel execution resumes when either the system
debug control input is negated or the EDBG bit is cleared.

31 Reserved

Enhanced Direct Memory Access (eDMA)

MPC5534 Microcontroller Reference Manual, Rev. 2

9-8 Freescale Semiconductor

9.2.2.2 eDMA Error Status Register (EDMA_ESR)

The EDMA_ESR provides information concerning the last recorded channel error. Channel errors can be
caused by a configuration error (an illegal setting in the transfer control descriptor or an illegal priority
register setting in fixed arbitration mode) or an error termination to a bus master read or write cycle.

A configuration error is caused when the starting source or destination address, source or destination
offsets, minor loop byte count, and the transfer size represent an inconsistent state. The addresses and
offsets must be aligned on 0-modulo-transfer_size boundaries, and the minor loop byte count must be a
multiple of the source and destination transfer sizes. All source reads and destination writes must be
configured to the natural boundary of the programmed transfer size respectively.

In fixed arbitration mode, a configuration error is caused by any two channel priorities being equal within
a group, or any group priority levels being equal among the groups. For either type of priority
configuration error, the ERRCHN field is undefined. All channel priority levels within a group must be
unique and all group priority levels among the groups must be unique when fixed arbitration mode is
enabled.

If a scatter/gather operation is enabled upon channel completion, a configuration error is reported if the
scatter/gather address (DLAST_SGA) is not aligned on a 32-byte boundary. If minor loop channel linking
is enabled upon channel completion, a configuration error is reported when the link is attempted if the
TCD.CITER.E_LINK bit does not equal the TCD.BITER.E_LINK bit. All configuration error conditions
except scatter/gather and minor loop link error are reported as the channel is activated and assert an error
interrupt request if enabled. When correctly enabled, a scatter/gather configuration error is reported when
the scatter/gather operation begins at major loop completion. A minor loop channel link configuration
error is reported when the link operation is serviced at minor loop completion.

If a system bus read or write is terminated with an error, the data transfer is immediately stopped and the
appropriate bus error flag is set. In this case, the state of the channel’s transfer control descriptor is updated
by the eDMA engine with the current source address, destination address, and minor loop byte count at the
point of the fault. If a bus error occurs on the last read prior to beginning the write sequence, the write
executes using the data captured during the bus error. If a bus error occurs on the last write prior to
switching to the next read sequence, the read sequence executes before the channel is terminated due to
the destination bus error.

The occurrence of any type of error causes the eDMA engine to stop the active channel, and the appropriate
channel bit in the eDMA error register to be asserted. At the same time, the details of the error condition
are loaded into the EDMA_ESR. The major loop complete indicators, setting the transfer control
descriptor DONE flag and the possible assertion of an interrupt request, are not affected when an error is
detected. After the error status has been updated, the eDMA engine continues to operate by servicing the
next appropriate channel. A channel that experiences an error condition is not automatically disabled. If a
channel is terminated by an error and then issues another service request before the error is fixed, that
channel executes and terminates with the same error condition.

Enhanced Direct Memory Access (eDMA)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 9-9

Address: Base + 0x0004 Access: User R/O

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R VLD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R GPE CPE ERRCHN SAE SOE DAE DOE NCE SGE SBE DBE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 9-3. eDMA Error Status Register (EDMA_ESR)

Table 9-3. EDMA_ESR Field Descriptions

Field Description

0
VLD

Logical OR of all EDMA_ERH and EDMA_ERL status bits.
0 No EDMA_ER bits are set.
1 At least one EDMA_ER bit is set indicating a valid error exists that has not been cleared.

1–15 Reserved

16
GPE

Group priority error.
0 No group priority error.
1 The last recorded error was a configuration error among the group priorities indicating not all group

priorities are unique.

17
CPE

Channel priority error.
0 No channel priority error.
1 The last recorded error was a configuration error in the channel priorities within a group, indicating not

all channel priorities within a group are unique.

18–23
ERRCHN[0:5]

Error channel number. Channel number of the last recorded error (excluding GPE and CPE errors).
Note: Do not rely on the number in the ERRCHN field for group and channel priority errors. Group and

channel priority errors need to be resolved by inspection. The application code must interrogate the
priority registers to find groups or channels with duplicate priority level.

24
SAE

Source address error.
0 No source address configuration error.
1 The last recorded error was a configuration error detected in the TCD.SADDR field, indicating

TCD.SADDR is inconsistent with TCD.SSIZE.

25
SOE

Source offset error.
0 No source offset configuration error.
1 The last recorded error was a configuration error detected in the TCD.SOFF field, indicating

TCD.SOFF is inconsistent with TCD.SSIZE.

26
DAE

Destination address error.
0 No destination address configuration error.
1 The last recorded error was a configuration error detected in the TCD.DADDR field, indicating

TCD.DADDR is inconsistent with TCD.DSIZE.

Enhanced Direct Memory Access (eDMA)

MPC5534 Microcontroller Reference Manual, Rev. 2

9-10 Freescale Semiconductor

9.2.2.3 eDMA Enable Request Register (EDMA_ERQRL)

The EDMA_ERQRL provides a bit map for the 32 implemented channels to enable the request signal for
each channel. EDMA_ERQRL maps to channels 31–0.

The state of any given channel enable is directly affected by writes to this register; the state is also affected
by writes to the EDMA_SERQR and EDMA_CERQR. The EDMA_CERQR and EDMA_SERQR are
provided so that the request enable for a single channel can easily be modified without the need to perform
a read-modify-write sequence to the EDMA_ERQRL.

Both the DMA request input signal and this enable request flag must be asserted before a channel’s
hardware service request is accepted. The state of the eDMA enable request flag does not affect a channel
service request made explicitly through software or a linked channel request.

27
DOE

Destination offset error.
0 No destination offset configuration error.
1 The last recorded error was a configuration error detected in the TCD.DOFF field, indicating

TCD.DOFF is inconsistent with TCD.DSIZE.

28
NCE

NBYTES/CITER configuration error.
0 No NBYTES/CITER configuration error.
1 The last recorded error was a configuration error detected in the TCD.NBYTES or TCD.CITER fields,

indicating the following conditions exist:
 • TCD.NBYTES is not a multiple of TCD.SSIZE and TCD.DSIZE, or
 • TCD.CITER is equal to zero, or
 • TCD.CITER.E_LINK is not equal to TCD.BITER.E_LINK.

29
SGE

Scatter/gather configuration error.
0 No scatter/gather configuration error.
1 The last recorded error was a configuration error detected in the TCD.DLAST_SGA field, indicating

TCD.DLAST_SGA is not on a 32-byte boundary. This field is checked at the beginning of a
scatter/gather operation after major loop completion if TCD.E_SG is enabled.

30
SBE

Source bus error.
0 No source bus error.
1 The last recorded error was a bus error on a source read.

31
DBE

Destination bus error.
0 No destination bus error.
1 The last recorded error was a bus error on a destination write.

Table 9-3. EDMA_ESR Field Descriptions (continued)

Field Description

Enhanced Direct Memory Access (eDMA)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 9-11

As a given channel completes the processing of its major iteration count, there is a flag in the transfer
control descriptor that can affect the ending state of the EDMA_ERQR bit for that channel. If the
TCD.D_REQ bit is set, then the corresponding EDMA_ERQR bit is cleared after the major loop is
complete, disabling the DMA hardware request. Otherwise if the D_REQ bit is cleared, the state of the
EDMA_ERQR bit is unaffected.

9.2.2.4 eDMA Enable Error Interrupt Register (EDMA_EEIRL)

The EDMA_EEIRL provides a bit map for the 32 channels to enable the error interrupt signal for each
channel. EDMA_EEIRL maps to channels 31-0.

The state of any given channel’s error interrupt enable is directly affected by writes to these registers; it is
also affected by writes to the EDMA_SEEIR and EDMA_CEEIR. The EDMA_SEEIR and
EDMA_CEEIR are provided so that the error interrupt enable for a single channel can easily be modified
without the need to perform a read-modify-write sequence to the EDMA_EEIRL.

Both the DMA error indicator and this error interrupt enable flag must be asserted before an error interrupt
request for a given channel is asserted.

Address: Base + 0x000C Access: User R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R ERQ
31

ERQ
30

ERQ
29

ERQ
28

ERQ
27

ERQ
26

ERQ
25

ERQ
24

ERQ
23

ERQ
22

ERQ
21

ERQ
20

ERQ
19

ERQ
18

ERQ
17

ERQ
16W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R ERQ
15

ERQ
14

ERQ
13

ERQ
12

ERQ
11

ERQ
10

ERQ
09

ERQ
08

ERQ
07

ERQ
06

ERQ
05

ERQ
04

ERQ
03

ERQ
02

ERQ
01

ERQ
00W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 9-4. eDMA Enable Request Low Register (EDMA_ERQRL)

Table 9-4. EDMA_ERQRL Field Descriptions

Field Description

0–31
ERQn

Enable DMA hardware service request n.
0 The DMA request signal for channel n is disabled.
1 The DMA request signal for channel n is enabled.

Enhanced Direct Memory Access (eDMA)

MPC5534 Microcontroller Reference Manual, Rev. 2

9-12 Freescale Semiconductor

9.2.2.5 eDMA Set Enable Request Register (EDMA_SERQR)

The EDMA_SERQR is a simple memory-mapped mechanism used to enable the DMA request for a given
channel by setting a bit in the EDMA_ERQRL. The data value on a register write sets the bit in the
EDMA_ERQRL. Bit 1 (SERQn) is a global set function that asserts the entire contents of
EDMA_ERQRL. Reads of this register return all zeroes.

Address: Base + 0x0014 Access: User R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R EEI
31

EEI
30

EEI
29

EEI
28

EEI
27

EEI
26

EEI
25

EEI
24

EEI
23

EEI
22

EEI
21

EEI
20

EEI
19

EEI
18

EEI
17

EEI
16W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R EEI
15

EEI
14

EEI
13

EEI
12

EEI
11

EEI
10

EEI
09

EEI
08

EEI
07

EEI
06

EEI
05

EEI
04

EEI
03

EEI
02

EEI
01

EEI
00W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 9-5. eDMA Enable Error Interrupt Low Register (EDMA_EEIRL)

Table 9-5. EDMA_EEIRL Field Descriptions

Field Description

0–31
EEIn

Enable error interrupt n.
0 The error signal for channel n does not generate an error interrupt.
1 The assertion of the error signal for channel n generate an error interrupt request.

Address: Base + 0x0018 Access: User W/O

0 1 2 3 4 5 6 7

R 0 0 0 0 0 0 0 0

W SERQ[0:6]

Reset 0 0 0 0 0 0 0 0

Figure 9-6. eDMA Set Enable Request Register (EDMA_SERQR)

Table 9-6. EDMA_SERQR Field Descriptions

Field Descriptions

0 Reserved

1–7
SERQ
[0:6]

Set enable request.
0–31 Set corresponding bit in EDMA_ERQRL
32–63 Reserved
64–127 Set all bits in EDMA_ERQRH and EDMA_ERQRL
Bit 2 (SERQ1) is not used.

Enhanced Direct Memory Access (eDMA)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 9-13

9.2.2.6 eDMA Clear Enable Request Register (EDMA_CERQR)

The EDMA_CERQR provides a simple memory-mapped mechanism to clear a given bit in the
EDMA_ERQRL to disable the DMA request for a given channel. The data value on a register write causes
the corresponding bit in the EDMA_ERQRL to be cleared. Setting bit 1 (CERQn) provides a global clear
function, forcing the entire contents of the EDMA_ERQRL to be zeroed, disabling all DMA request
inputs. Reads of this register return all zeroes.

9.2.2.7 eDMA Set Enable Error Interrupt Register (EDMA_SEEIR)

The EDMA_SEEIR provides a simple memory-mapped mechanism to set a given bit in the
EDMA_EEIRL to enable the error interrupt for a given channel. The data value on a register write causes
the corresponding bit in the EDMA_EEIRL to be set. Setting bit 1 (SEEIn) provides a global set function,
forcing the entire contents of EDMA_EEIRL to be asserted. Reads of this register return all zeroes.

Address: Base + 0x0019 Access: User W/O

0 1 2 3 4 5 6 7

R 0 0 0 0 0 0 0 0

W CERQ[0:6]

Reset 0 0 0 0 0 0 0 0

Figure 9-7. eDMA Clear Enable Request Register (EDMA_CERQR)

Table 9-7. EDMA_CERQR Field Descriptions

Field Description

0 Reserved

1–7
CERQ[0:6]

Clear enable request.
0–31 Clear corresponding bit in EDMA_ERQRL
32–63 Reserved
64–127 Clear all bits in EDMA_ERQRH and EDMA_ERQRL

Bit 2 (CERQ1) is not used.

Address: Base + 0x001A Access: User W/O

0 1 2 3 4 5 6 7

R 0 0 0 0 0 0 0 0

W SEEI[0:6]

Reset 0 0 0 0 0 0 0 0

Figure 9-8. eDMA Set Enable Error Interrupt Register (EDMA_SEEIR)

Enhanced Direct Memory Access (eDMA)

MPC5534 Microcontroller Reference Manual, Rev. 2

9-14 Freescale Semiconductor

9.2.2.8 eDMA Clear Enable Error Interrupt Register (EDMA_CEEIR)

The EDMA_CEEIR provides a simple memory-mapped mechanism to clear a given bit in the
EDMA_EEIRL which disables the error interrupt for a given channel. The data value on a register write
causes the corresponding bit in the EDMA_EEIRL to be cleared. Setting bit 1 (CEEIn) provides a global
clear function, forcing the entire contents of the EDMA_EEIRL to be zeroed, disabling error interrupts for
all channels. Reads of this register return all zeroes.

Table 9-8. EDMA_SEEIR Field Descriptions

Field Description

0 Reserved

1–7
SEEI[0:6]

Set enable error interrupt.
0–31 Set corresponding bit in EDMA_EIRRL
32–63 Reserved
64–127 Set all bits in EDMA_EEIRH or EDMA_EEIRL

Bit 2 (SEEI1) is not used.

Address: Base + 0x001B Access: User W/O

0 1 2 3 4 5 6 7

R 0 0 0 0 0 0 0 0

W CEEI[0:6]

Reset 0 0 0 0 0 0 0 0

Figure 9-9. eDMA Clear Enable Error Interrupt Register (EDMA_CEEIR)

Table 9-9. EDMA_CEEIR Field Descriptions

Field Description

0 Reserved

1–7
CEEI[0:6]

Clear enable error interrupt.
0–31 Clear corresponding bit in EDMA_EEIRL
32–63 Reserved
64–127 Clear all bits in EDMA_EEIRH or EDMA_EEIRL

Bit 2 (CEEI1) is not used.

Enhanced Direct Memory Access (eDMA)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 9-15

9.2.2.9 eDMA Clear Interrupt Request Register (EDMA_CIRQR)

The EDMA_CIRQR provides a simple memory-mapped mechanism to clear a given bit in the
EDMA_IRQRL to disable the interrupt request for a given channel. The given value on a register write
causes the corresponding bit in the EDMA_IRQRL to be cleared. Setting bit 1 (CINTn) provides a global
clear function, forcing the entire contents of the EDMA_IRQRL to be zeroed, disabling all DMA interrupt
requests. Reads of this register return all zeroes.

9.2.2.10 eDMA Clear Error Register (EDMA_CER)

The EDMA_CER provides a simple memory-mapped mechanism to clear a given bit in the EDMA_ERL
to disable the error condition flag for a given channel. The given value on a register write causes the
corresponding bit in the EDMA_ERL to be cleared. Setting bit 1 (CERRn) provides a global clear
function, forcing the entire contents of the EDMA_ERL to be zeroed, clearing all channel error indicators.
Reads of this register return all zeroes.

Address: Base + 0x001C Access: User W/O

0 1 2 3 4 5 6 7

R 0 0 0 0 0 0 0 0

W CINT[0:6]

Reset 0 0 0 0 0 0 0 0

Figure 9-10. eDMA Clear Interrupt Request (EDMA_CIRQR)

Table 9-10. EDMA_CIRQR Field Descriptions

Field Description

0 Reserved

1–7
CINT[0:6]

Clear interrupt request.
0–31 Clear corresponding bit in EDMA_IRQRL
32–63 Reserved
64–127 Clear all bits in EDMA_IRQRH or EDMA_IRQRL

Bit 2 (CINT1) is not used.

Address: Base + 0x001D Access:User W/O

0 1 2 3 4 5 6 7

R 0 0 0 0 0 0 0 0

W CERR[0:6]

Reset 0 0 0 0 0 0 0 0

Figure 9-11. eDMA Clear Error Register (EDMA_CER)

Enhanced Direct Memory Access (eDMA)

MPC5534 Microcontroller Reference Manual, Rev. 2

9-16 Freescale Semiconductor

9.2.2.11 eDMA Set START Bit Register (EDMA_SSBR)

The EDMA_SSBR provides a memory-mapped mechanism to set the START bit in the TCD for a channel.
The data value on a register write sets the START bit in the transfer control descriptor. SSBn is a global
set function that sets all START bits for a channel. Reads of this register return all zeroes.

Table 9-11. EDMA_CER Field Descriptions

Field Description

0 Reserved

1–7
CERR[0:6]

Clear error indicator.
0–31 Clear corresponding bit in EDMA_ERL
32–63 Reserved
64–127 Clear all bits in EDMA_ERH or EDMA_ERL

Bit 2 (CERR1) is not used.

Address: Base + 0x001E Access: User W/O

0 1 2 3 4 5 6 7

R 0 0 0 0 0 0 0 0

W SSB[0:6]

Reset 0 0 0 0 0 0 0 0

Figure 9-12. eDMA Set START Bit Register (EDMA_SSBR)

Table 9-12. EDMA_SSBR Field Descriptions

Field Description

0 Reserved

1–7
SSB[0:6]

Set START bit (channel service request).
0–31 Set the corresponding channel’s TCD START bit
32–63 Reserved
64–127 Set all TCD START bits

Bit 2 (SSB1) is not used.

Enhanced Direct Memory Access (eDMA)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 9-17

9.2.2.12 eDMA Clear DONE Status Bit Register (EDMA_CDSBR)

The EDMA_CDSBR provides a simple memory-mapped mechanism to clear the DONE bit in the TCD
of the given channel. The data value on a register write causes the DONE bit in the corresponding transfer
control descriptor to be cleared. Setting bit 1 (CDSBn) provides a global clear function, forcing all DONE
bits to be cleared.

9.2.2.13 eDMA Interrupt Request Register (EDMA_IRQRL)

The EDMA_IRQRL provide a bit map for the 32 channels signaling the presence of an interrupt request
for each channel. EDMA_IRQRL maps to channels 31–0.

The eDMA engine signals the occurrence of a programmed interrupt upon the completion of a data transfer
as defined in the transfer control descriptor by setting the appropriate bit in this register. The outputs of
this register are directly routed to the interrupt controller (INTC). During the execution of the interrupt
service routine associated with any given channel, it is software’s responsibility to clear the appropriate
bit, negating the interrupt request. Typically, a write to the EDMA_CIRQR in the interrupt service routine
is used for this purpose.

The state of any given channel’s interrupt request is directly affected by writes to this register; it is also
affected by writes to the EDMA_CIRQR. On writes to the EDMA_IRQRL, a 1 in any bit position clears
the corresponding channel’s interrupt request. A zero in any bit position has no affect on the corresponding
channel’s current interrupt status. The EDMA_CIRQR is provided so the interrupt request for a single
channel can easily be cleared without the need to perform a read-modify-write sequence to the
EDMA_IRQRL.

Address: Base + 0x001F Access: User W/O

0 1 2 3 4 5 6 7

R 0 0 0 0 0 0 0 0

W CDSB[0:6]

Reset 0 0 0 0 0 0 0 0

Figure 9-13. eDMA Clear DONE Status Bit Register (EDMA_CDSBR)

Table 9-13. EDMA_CDSBR Field Descriptions

Field Description

0 Reserved

1–7
CDSB[0:6]

Clear DONE status bit.
0–31 Clear the corresponding channel’s DONE bit
32–63 Reserved
64–127 Clear all TCD DONE bits

Bit 2 (CDSB1) is not used.

Enhanced Direct Memory Access (eDMA)

MPC5534 Microcontroller Reference Manual, Rev. 2

9-18 Freescale Semiconductor

9.2.2.14 eDMA Error Register (EDMA_ERL)

The EDMA_ERL provides a bit map for the 32 channels signaling the presence of an error for each
channel. EDMA_ERL maps to channels 31-0.

The eDMA engine signals the occurrence of a error condition by setting the appropriate bit in this register.
The outputs of this register are enabled by the contents of the EDMA_EEIR, then logically summed across
groups of 16 and 32 channels to form several group error interrupt requests which is then routed to the
interrupt controller. During the execution of the interrupt service routine associated with any DMA errors,
it is software’s responsibility to clear the appropriate bit, negating the error interrupt request. Typically, a
write to the EDMA_CER in the interrupt service routine is used for this purpose. Recall the normal DMA
channel completion indicators, setting the transfer control descriptor DONE flag and the possible assertion
of an interrupt request, are not affected when an error is detected.

The contents of this register can also be polled and a non-zero value indicates the presence of a channel
error, regardless of the state of the EDMA_EEIR. The EDMA_ESR[VLD] bit is a logical OR of all bits in
this register and it provides a single bit indication of any errors. The state of any given channel’s error
indicators is affected by writes to this register; it is also affected by writes to the EDMA_CER. On writes
to EDMA_ERL, a 1 in any bit position clears the corresponding channel’s error status. A 0 in any bit
position has no affect on the corresponding channel’s current error status. The EDMA_CER is provided
so the error indicator for a single channel can easily be cleared.

Address: Base + 0x0024 Access: User R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R INT
31

INT
30

INT
29

INT
28

INT
27

INT
26

INT
25

INT
24

INT
23

INT
22

INT
21

INT
20

INT
19

INT
18

INT
17

INT
16W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R INT
15

INT
14

INT
13

INT
12

INT
11

INT
10

INT
09

INT
08

INT
07

INT
06

INT
05

INT
04

INT
03

INT
02

INT
01

INT
00W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 9-14. eDMA Interrupt Request Low Register (EDMA_IRQRL)

Table 9-14. EDMA_IRQRL Field Descriptions

Field Description

0–31
INTn

eDMA interrupt request n.
0 The interrupt request for channel n is cleared.
1 The interrupt request for channel n is active.

Enhanced Direct Memory Access (eDMA)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 9-19

9.2.2.15 DMA Hardware Request Status (EDMA_HRSL)

The EDMA_HRSL registers provide a bit map for the implemented channels (16and32) to show the
current hardware request status for each channel. EDMA_HRSL supports channels 31–0.See Table 9-16
for the EDMA_HRS definition.

Figure 9-16. EDMA Hardware Request Status Register Low (EDMA_HRSL)

Address: Base + 0x002C Access: User R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R ERR
31

ERR
30

ERR
29

ERR
28

ERR
27

ERR
26

ERR
25

ERR
24

ERR
23

ERR
22

ERR
21

ERR
20

ERR
19

ERR
18

ERR
17

ERR
16W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R ERR
15

ERR
14

ERR
13

ERR
12

ERR
11

ERR
10

ERR
09

ERR
08

ERR
07

ERR
06

ERR
05

ERR
04

ERR
03

ERR
02

ERR
01

ERR
00W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 9-15. eDMA Error Low Register (EDMA_ERL)

Table 9-15. EDMA_ERL Field Descriptions

Field Description

0–31
ERRn

eDMA Error n.
0 An error in channel n has not occurred.
1 An error in channel n has occurred.

Address: Base + 0x0034 Access: User R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R HRS
31

HRS
30

HRS
29

HRS
28

HRS
27

HRS
26

HRS
25

HRS
24

HRS
23

HRS
22

HRS
21

HRS
20

HRS
19

HRS
18

HRS
17

HRS
16W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R HRS
15

HRS
14

HRS
13

HRS
12

HRS
11

HRS
10

HRS
09

HRS
08

HRS
07

HRS
06

HRS
05

HRS
04

HRS
03

HRS
02

HRS
01

HRS
00W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Enhanced Direct Memory Access (eDMA)

MPC5534 Microcontroller Reference Manual, Rev. 2

9-20 Freescale Semiconductor

9.2.2.16 eDMA Channel n Priority Registers (EDMA_CPRn)

When the fixed-priority channel arbitration mode is enabled (EDMA_CR[ERCA] = 0), the contents of
these registers define the unique priorities associated with each channel within a group. The channel
priorities are evaluated by numeric value; that is, 0 is the lowest priority, 1 is the next higher priority, then
2, 3, etc. If software chooses to modify channel priority values, then the software must ensure that the
channel priorities contain unique values, otherwise a configuration error is reported. The range of the
priority value is limited to the values of 0 through 15. When read, the GRPPRI bits of the EDMA_CPRn
register reflect the current priority level of the group of channels in which the corresponding channel
resides. GRPPRI bits are not affected by writes to the EDMA_CPRn registers. The group priority is
assigned in the EDMA_CR.

See Figure 9-2 and Table 9-2 for the EDMA_CR definition.

Channel preemption is enabled on a per-channel basis by setting the ECP bit in the EDMA_CPRn register.
Channel preemption allows the executing channel’s data transfers to be temporarily suspended in favor of
starting a higher priority channel. After the preempting channel has completed all of its minor loop data
transfers, the preempted channel is restored and resumes execution. After the restored channel completes
one read/write sequence, it is again eligible for preemption. If any higher priority channel is requesting
service, the restored channel is suspended and the higher priority channel is serviced. Nested preemption
(attempting to preempt a preempting channel) is not supported. After a preempting channel begins
execution, it cannot be preempted. Preemption is only available when fixed arbitration is selected for both
group and channel arbitration modes.

Table 9-16. EDMA_HRSL Field Descriptions

Field Description

0–31
HRSn

DMA Hardware Request Status
0 A hardware service request for channel n is not present.
1 A hardware service request for channel n is present.
Note: The hardware request status reflects the state of the request as seen by the arbitration logic.

Therefore, this status is affected by the EDMA_ERQRL[ERQn] bit.

Address: Base + (0x100 + n) Access: User R/W

0 1 2 3 4 5 6 7

R
ECP

0 GRPPRI
CHPRI

W

Reset 0 0 — 1

1 The reset value for the group and channel priority fields,
GRPPRI[0–1] and CHPRI[0–3] is the channel number
for the priority register;
EDMA_CPR31[GRPPRI] = 0b01 and
EDMA_CPR31[CHPRI] = 0b1111.

Figure 9-17. eDMA Channel n Priority Register (EDMA_CPRn)

Enhanced Direct Memory Access (eDMA)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 9-21

The following table describes the fields in the eDMA channel n priority register:

9.2.2.17 Transfer Control Descriptor (TCD)

Each channel requires a 256-bit transfer control descriptor for defining the desired data movement
operation. The channel descriptors are stored in the local memory in sequential order: channel 0,
channel 1,... channel 31. The definitions of the TCD are presented as 23 variable-length fields.

Table 9-18 defines the fields of the basic TCD structure.

Table 9-17. EDMA_CPRn Field Descriptions

Field Description

0
ECP

Enable channel preemption.
0 Channel n cannot be suspended by a higher priority channel’s service request.
1 Channel n can be temporarily suspended by the service request of a higher priority channel.

1 Reserved

2–3
GRPPRI

[0:1]

Channel n current group priority. Group priority assigned to this channel group when fixed-priority
arbitration is enabled. These two bits are read only; writes are ignored. The reset value for the group
priority fields, is equal to the corresponding channel number for each priority register; that is,
EDMA_CPR31[GRPPRI] = 0b01.

4–7
CHPRI

[0:3]

Channel n arbitration priority. Channel priority when fixed-priority arbitration is enabled. The reset value
for the channel priority fields CHPRI[0–3], is equal to the corresponding channel number for each priority
register; that is, EDMA_CPR31[CHPRI] = 0b1111.

Table 9-18. TCDn 32-bit Memory Structure

eDMA Bit Offset
Bit

Length
TCDn Field Name TCDn Abbreviation Word #

0x1000 + (32 x n) + 0 32 Source address SADDR Word 0

0x1000 + (32 x n) + 32 5 Source address modulo SMOD

Word 1

0x1000 + (32 x n) + 37 3 Source data transfer size SSIZE

0x1000 + (32 x n) + 40 5 Destination address modulo DMOD

0x1000 + (32 x n) + 45 3 Destination data transfer size DSIZE

0x1000 + (32 x n) + 48 16 Signed source address offset SOFF

0x1000 + (32 x n) + 64 32 Inner minor byte count NBYTES Word 2

0x1000 + (32 x n) + 96 32 Last source address adjustment SLAST Word 3

0x1000 + (32 x n) + 128 32 Destination address DADDR Word 4

0x1000 + (32 x n) + 160 1 Channel-to-channel linking on minor loop complete CITER.E_LINK

Word 5

0x1000 + (32 x n) + 161 6 Current major iteration count or
Link channel number

CITER or
CITER.LINKCH

0x1000 + (32 x n) + 167 9 Current major iteration count CITER

0x1000 + (32 x n) + 176 16 Destination address offset (signed) DOFF

Enhanced Direct Memory Access (eDMA)

MPC5534 Microcontroller Reference Manual, Rev. 2

9-22 Freescale Semiconductor

0x1000 + (32 x n) + 192 32 Last destination address adjustment /
scatter gather address

DLAST_SGA Word 6

0x1000 + (32 x n) + 224 1 Channel-to-channel Linking on Minor Loop Complete BITER.E_LINK

Word 7

0x1000 + (32 x n) + 225 6 Starting major iteration count or
link channel number

BITER or
BITER.LINKCH

0x1000 + (32 x n) + 231 9 Starting major iteration count BITER

0x1000 + (32 x n) + 240 2 Bandwidth control BWC

0x1000 + (32 x n) + 242 6 Link channel number MAJOR.LINKCH

0x1000 + (32 x n) + 248 1 Channel done DONE

0x1000 + (32 x n) + 249 1 Channel active ACTIVE

0x1000 + (32 x n) + 250 1 Channel-to-channel linking on major loop complete MAJOR.E_LINK

0x1000 + (32 x n) + 251 1 Enable scatter/gather processing E_SG

0x1000 + (32 x n) + 252 1 Disable request D_REQ

0x1000 + (32 x n) + 253 1 Channel interrupt enable when current major
iteration count is half complete

INT_HALF

0x1000 + (32 x n) + 254 1 Channel interrupt enable when current major
iteration count complete

INT_MAJ

0x1000 + (32 x n) + 255 1 Channel start START

Table 9-18. TCDn 32-bit Memory Structure (continued)

eDMA Bit Offset
Bit

Length
TCDn Field Name TCDn Abbreviation Word #

Enhanced Direct Memory Access (eDMA)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 9-23

Figure 9-18 defines the fields of the TCDn structure.

NOTE
The TCD structures for the eDMA channels shown in Figure 9-18 are
implemented in internal SRAM. These structures are not initialized at reset.
Therefore, all channel TCD parameters must be initialized by the
application code before activating that channel.

Word
Offset 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0x0000 SADDR

0x0004 SMOD SSIZE DMOD DSIZE SOFF

0x0008 NBYTES

0x000C SLAST

0x0010 DADDR

0x0014

C
IT

E
R

.E
_

LI
N

K

CITER1 or
CITER.LINKCH

1 If channel linking on minor link completion is disabled, TCD bits [161:175] are used to form a 15-bit CITER field;
if channel-to-channel linking is enabled, CITER becomes a 9-bit field.

CITER1 DOFF

0x0018 DLAST_SGA

0x001C

B
IT

E
R

.E
_

LI
N

K

BITER2 or
BITER.LINKCH

2 If channel linking on minor link completion is disabled, TCD bits [225:239] are used to form a 15-bit BITER field;
if channel-to-channel linking is enabled, BITER becomes a 9-bit field.

BITER2 BWC MAJOR LINKCH

D
O

N
E

A
C

T
IV

E

M
A

JO
R

.E
_L

IN
K

E
_S

G

D
_R

E
Q

IN
T

_H
A

LF

IN
T

_M
A

J

S
TA

R
T

Figure 9-18. TCD Structure

Enhanced Direct Memory Access (eDMA)

MPC5534 Microcontroller Reference Manual, Rev. 2

9-24 Freescale Semiconductor

The following table gives a detailed description of the TCDn fields:

Table 9-19. TCDn Field Descriptions

Bits
Word Offset

[n:n]
Field Name Description

0–31
0x0

[0:31]

SADDR
[0:31]

Source address. Memory address pointing to the source data.
Word 0x0, bits 0–31.

32–36
0x4
[0:4]

SMOD
[0:4]

Source address modulo.
0 Source address modulo feature is disabled.
not 0 This value defines a specific address range which is specified to be either the value

after SADDR + SOFF calculation is performed or the original register value. The
setting of this field provides the ability to easily implement a circular data queue.
For data queues requiring power-of-2 “size” bytes, start the queue at a
0-modulo-size address and set the SMOD field to the value for the queue,
freezing the desired number of upper address bits. The value programmed into
this field specifies the number of lower address bits that are allowed to change.
For this circular queue application, the SOFF is typically set to the transfer size to
implement post-increment addressing with the SMOD function constraining the
addresses to a 0-modulo-size range.

37–39
0x4
[5:7]

SSIZE
[0:2]

Source data transfer size.
000 8-bit
001 16-bit
010 32-bit
011 64-bit
100 32-bit
101 32-byte burst (64-bit x 4)
110 Reserved
111 Reserved
The attempted specification of a ‘reserved’ encoding causes a configuration error.

40–44
0x4

[8:12]

DMOD
[0:4]

Destination address modulo. See the SMOD[0:5] definition.

45–47
0x4

[13:15]

DSIZE
[0:2]

Destination data transfer size. See the SSIZE[0:2] definition.

48–63
0x4

[16:31]

SOFF
[0:15]

Source address signed offset. Sign-extended offset applied to the current source address
to form the next-state value as each source read is completed.

64–95
0x8

[0:31]

NBYTES
[0:31]

Inner “minor” byte transfer count. Number of bytes to be transferred in each service
request of the channel. As a channel is activated, the contents of the appropriate TCD is
loaded into the eDMA engine, and the appropriate reads and writes performed until the
complete byte transfer count has been transferred. This is an indivisible operation and
cannot be stalled or halted. Once the minor count is exhausted, the current values of the
SADDR and DADDR are written back into the local memory, the major iteration count is
decremented and restored to the local memory. If the major iteration count is completed,
additional processing is performed.
Note: The NBYTES value of 0x0000_0000 is interpreted as 0x1_0000_0000, thus
specifying a four GB transfer.

Enhanced Direct Memory Access (eDMA)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 9-25

96–127
0xC

[0:31]

SLAST
[0:31]

Last source address adjustment. Adjustment value added to the source address at the
completion of the outer major iteration count. This value can be applied to “restore” the
source address to the initial value, or adjust the address to reference the next data
structure.

128–159
0x10
[0:31]

DADDR
[0:31]

Destination address. Memory address pointing to the destination data.

160
0x14
[0]

CITER.E_LINK Enable channel-to-channel linking on minor loop completion. As the channel completes
the inner minor loop, this flag enables the linking to another channel, defined by
CITER.LINKCH[0:5]. The link target channel initiates a channel service request via an
internal mechanism that sets the TCD.START bit of the specified channel. If channel
linking is disabled, the CITER value is extended to 15 bits in place of a link channel
number. If the major loop is exhausted, this link mechanism is suppressed in favor of the
MAJOR.E_LINK channel linking.
0 The channel-to-channel linking is disabled.
1 The channel-to-channel linking is enabled.

Note: This bit must be equal to the BITER.E_LINK bit otherwise a configuration error is
reported.

161–166
0x14
[1:6]

CITER
[0:5]
or

CITER.LINKCH
[0:5]

Current “major” iteration count or link channel number.
If channel-to-channel linking is disabled (TCD.CITER.E_LINK = 0), then
 • No channel-to-channel linking (or chaining) is performed after the inner minor loop is

exhausted. TCD bits [161:175] are used to form a 15-bit CITER field.
otherwise
 • After the minor loop is exhausted, the eDMA engine initiates a channel service request

at the channel defined by CITER.LINKCH[0:5] by setting that channel’s TCD.START
bit.

167–175
0x14
[7:15]

CITER
[6:14]

Current “major” iteration count. This 9 or 15-bit count represents the current major loop
count for the channel. It is decremented each time the minor loop is completed and
updated in the transfer control descriptor memory. After the major iteration count is
exhausted, the channel performs a number of operations (for example, final source and
destination address calculations), optionally generating an interrupt to signal channel
completion before reloading the CITER field from the beginning iteration count (BITER)
field.
Note: When the CITER field is initially loaded by software, it must be set to the same
value as that contained in the BITER field.
Note: If the channel is configured to execute a single service request, the initial values
of BITER and CITER must be 0x0001.

176–191
0x14 [16:31]

DOFF
[0:15]

Destination address signed offset. Sign-extended offset applied to the current destination
address to form the next-state value as each destination write is completed.

Table 9-19. TCDn Field Descriptions (continued)

Bits
Word Offset

[n:n]
Field Name Description

Enhanced Direct Memory Access (eDMA)

MPC5534 Microcontroller Reference Manual, Rev. 2

9-26 Freescale Semiconductor

192–223
0x18
[0:31]

DLAST_SGA
[0:31]

Last destination address adjustment or the memory address for the next transfer control
descriptor to be loaded into this channel (scatter/gather).
If scatter/gather processing for the channel is disabled (TCD.E_SG = 0) then
 • Adjustment value added to the destination address at the completion of the outer major

iteration count.
This value can be applied to “restore” the destination address to the initial value, or adjust
the address to reference the next data structure.
Otherwise
 • This address points to the beginning of a 0-modulo-32 byte region containing the next

transfer control descriptor to be loaded into this channel. This channel reload is
performed as the major iteration count completes. The scatter/gather address must be
0-modulo-32 byte, otherwise a configuration error is reported.

224
0x1C

[0]

BITER.E_LINK Enables channel-to-channel linking on minor loop complete. As the channel completes
the inner minor loop, this flag enables the linking to another channel, defined by
BITER.LINKCH[0:5]. The link target channel initiates a channel service request via an
internal mechanism that sets the TCD.START bit of the specified channel. If channel
linking is disabled, the BITER value is extended to 15 bits in place of a link channel
number. If the major loop is exhausted, this link mechanism is suppressed in favor of the
MAJOR.E_LINK channel linking.
0 The channel-to-channel linking is disabled.
1 The channel-to-channel linking is enabled.
Note: When the TCD is first loaded by software, this field must be set equal to the
corresponding CITER field, otherwise a configuration error is reported. As the major
iteration count is exhausted, the contents of this field is reloaded into the CITER field.

225–230
0x1C
[1:6]

BITER
[0:5]
or

BITER.LINKCH
[0:5]

Beginning or starting “major” iteration count or link channel number.
If channel-to-channel linking is disabled (TCD.BITER.E_LINK = 0), then
 • No channel-to-channel linking (or chaining) is performed after the inner minor loop is

exhausted. TCD bits [225:239] are used to form a 15-bit BITER field.
Otherwise
 • After the minor loop is exhausted, the eDMA engine initiates a channel service request

at the channel, defined by BITER.LINKCH[0:5], by setting that channel’s TCD.START
bit.

Note: When the TCD is first loaded by software, this field must be set equal to the
corresponding CITER field, otherwise a configuration error is reported. As the major
iteration count is exhausted, the contents of this field is reloaded into the CITER field.

231–239
0x1C
[7:15]

BITER
[6:14]

Beginning or starting major iteration count. As the transfer control descriptor is first loaded
by software, this field must be equal to the value in the CITER field. As the major iteration
count is exhausted, the contents of this field is reloaded into the CITER field.
Note: If the channel is configured to execute a single service request, the initial values
of BITER and CITER must be 0x0001.

Table 9-19. TCDn Field Descriptions (continued)

Bits
Word Offset

[n:n]
Field Name Description

Enhanced Direct Memory Access (eDMA)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 9-27

240–241
0x1C

[16:17]

BWC
[0:1]

Bandwidth control. This two-bit field provides a mechanism to effectively throttle the
amount of bus bandwidth consumed by the eDMA. In general, as the eDMA processes
the inner minor loop, it continuously generates read/write sequences until the minor count
is exhausted. This field forces the eDMA to stall after the completion of each read/write
access to control the bus request bandwidth seen by the system bus crossbar switch
(XBAR).
To minimize start-up latency, bandwidth control stalls are suppressed for the first two
system bus cycles and after the last write of each minor loop.
00 No eDMA engine stalls
01 Reserved
10 eDMA engine stalls for four cycles after each r/w
11 eDMA engine stalls for eight cycles after each r/w

242–247
0x1C

[18:23]

MAJOR.LINKCH
[0:5]

Link channel number. If channel-to-channel linking on major loop complete is disabled
(TCD.MAJOR.E_LINK = 0) then:
 • No channel-to-channel linking (or chaining) is performed after the outer major loop

counter is exhausted.
Otherwise
 • After the major loop counter is exhausted, the eDMA engine initiates a channel service

request at the channel defined by MAJOR.LINKCH[0:5] by setting that channel’s
TCD.START bit.

248
0x1C
[24]

DONE Channel done. This flag indicates the eDMA has completed the outer major loop. It is set
by the eDMA engine as the CITER count reaches zero; it is cleared by software or
hardware when the channel is activated (when the channel has begun to be processed
by the eDMA engine, not when the first data transfer occurs).
Note: This bit must be cleared to write the MAJOR.E_LINK or E_SG bits.

249
0x1C
[25]

ACTIVE Channel active. This flag signals the channel is currently in execution. It is set when
channel service begins, and is cleared by the eDMA engine as the inner minor loop
completes or if any error condition is detected.

250
0x1C
[26]

MAJOR.E_LINK Enable channel-to-channel linking on major loop completion. As the channel completes
the outer major loop, this flag enables the linking to another channel, defined by
MAJOR.LINKCH[0:5]. The link target channel initiates a channel service request via an
internal mechanism that sets the TCD.START bit of the specified channel.
NOTE: To support the dynamic linking coherency model, this field is forced to zero when
written to while the TCD.DONE bit is set.
0 The channel-to-channel linking is disabled.
1 The channel-to-channel linking is enabled.

251
0x1C
[27]

E_SG Enable scatter/gather processing. As the channel completes the outer major loop, this
flag enables scatter/gather processing in the current channel. If enabled, the eDMA
engine uses DLAST_SGA as a memory pointer to a 0-modulo-32 address containing a
32-byte data structure which is loaded as the transfer control descriptor into the local
memory.
NOTE: To support the dynamic scatter/gather coherency model, this field is forced to zero
when written to while the TCD.DONE bit is set.
0 The current channel’s TCD is “normal” format.
1 The current channel’s TCD specifies a scatter gather format. The DLAST_SGA field

provides a memory pointer to the next TCD to be loaded into this channel after the
outer major loop completes its execution.

Table 9-19. TCDn Field Descriptions (continued)

Bits
Word Offset

[n:n]
Field Name Description

Enhanced Direct Memory Access (eDMA)

MPC5534 Microcontroller Reference Manual, Rev. 2

9-28 Freescale Semiconductor

9.3 Functional Description
This section provides an overview of the microarchitecture and functional operation of the eDMA module.

9.3.1 eDMA Microarchitecture

The eDMA module is partitioned into two major modules: the eDMA engine and the transfer control
descriptor local memory. Additionally, the eDMA engine is further partitioned into four submodules,
which are detailed below.

• eDMA engine

— Address path: This module implements registered versions of two channel transfer control
descriptors: channel ‘x’ and channel ‘y,’ and is responsible for all the master bus address
calculations. All the implemented channels provide the exact same functionality. This
hardware structure allows the data transfers associated with one channel to be preempted after
the completion of a read/write sequence if a higher priority channel service request is asserted
while the first channel is active. After a channel is activated, it runs until the minor loop is
completed unless preempted by a higher priority channel. This capability provides a
mechanism (optionally enabled by EDMA_CPRn[ECP]) where a large data move operation
can be preempted to minimize the time another channel is blocked from execution.

252
0x1C
[28]

D_REQ Disable hardware request. If this flag is set, the eDMA hardware automatically clears the
corresponding EDMA_ERQL bit when the current major iteration count reaches zero.
0 The channel’s EDMA_ERQL bit is not affected.
1 The channel’s EDMA_ERQL bit is cleared when the outer major loop is complete.

253
0x1C
[29]

INT_HALF Enable an interrupt when major counter is half complete.
If this flag is set, the channel generates an interrupt request by setting the bit in the
EDMA_ERQL when the current major iteration count reaches the halfway point. The
eDMA engine performs the compare (CITER == (BITER >> 1)). This halfway point
interrupt request supports double-buffered schemes, or where the processor needs an
early indication of the data transfer’s progress during data movement. CITER = BITER =
1 with INT_HALF enabled generates an interrupt as it satisfies the equation (CITER ==
(BITER >> 1)) after a single activation.
0 The half-point interrupt is disabled.
1 The half-point interrupt is enabled.

254
0x1C
[30]

INT_MAJ Enable an interrupt when major iteration count completes. If this flag is set, the channel
generates an interrupt request by setting the appropriate bit in the EDMA_ERQL when
the current major iteration count reaches zero.
0 The end-of-major loop interrupt is disabled.
1 The end-of-major loop interrupt is enabled.

255
0x1C
[31]

START Channel start. If this flag is set, the channel is requesting service. The eDMA hardware
automatically clears this flag after the channel begins execution.
0 The channel is not explicitly started.
1 The channel is explicitly started via a software initiated service request.

Table 9-19. TCDn Field Descriptions (continued)

Bits
Word Offset

[n:n]
Field Name Description

Enhanced Direct Memory Access (eDMA)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 9-29

When any other channel is activated, the contents of its transfer control descriptor is read from
the local memory and loaded into the registers of the other address path channel{x,y}. After
the inner minor loop completes execution, the address path hardware writes the new values for
the TCDn.{SADDR, DADDR, CITER} back into the local memory. If the major iteration
count is exhausted, additional processing is performed, including the final address pointer
updates, reloading the TCDn.CITER field, and a possible fetch of the next TCDn from memory
as part of a scatter/gather operation.

— Data path: This module implements the actual bus master read/write datapath. It includes 32
bytes of register storage (matching the maximum transfer size) and the necessary mux logic to
support any required data alignment. The system read data bus is the primary input, and the
system write data bus is the primary output.

The address and data path modules directly support the 2-stage pipelined system bus. The
address path module represents the 1st stage of the bus pipeline (the address phase), while the
data path module implements the 2nd stage of the pipeline (the data phase).

— Program model/channel arbitration: This module implements the first section of eDMA’s
programming model as well as the channel arbitration logic. The programming model registers
are connected to the slave bus (not shown). The eDMA peripheral request inputs and eDMA
interrupt request outputs are also connected to this module (via the Control logic).

— Control: This module provides all the control functions for the eDMA engine. For data
transfers where the source and destination sizes are equal, the eDMA engine performs a series
of source read, destination write operations until the number of bytes specified in the inner
‘minor loop’ byte count has been moved.

A minor loop interaction is defined as the number of bytes to transfer (nbytes) divided by the
transfer size. Transfer size is defined as the following:

if (SSIZE < DSIZE)

transfer size = destination transfer size (# of bytes)

else

transfer size = source transfer size (# of bytes)

Minor loop TCD variables are SOFF, SMOD, DOFF, DMOD, NBYTES, SADDR, DADDR,
BWC, ACTIVE, AND START. Major loop TCD variables are DLAST, SLAST, CITER,
BITER, DONE, D_REQ, INT_MAJ, MAJOR_LNKCH, and INT_HALF.

For descriptors where the sizes are not equal, multiple access of the smaller size data are
required for each reference of the larger size. As an example, if the source size references 16-bit
data and the destination is 32-bit data, two reads are performed, then one 32-bit write.

• TCD local memory

— Memory controller: This logic implements the required dual-ported controller, handling
accesses from both the eDMA engine as well as references from the slave bus. As noted earlier,
in the event of simultaneous accesses, the eDMA engine is given priority and the slave
transaction is stalled. The hooks to a BIST controller for the local TCD memory are included
in this module.

— Memory array: The TCD is implemented using a single-ported, synchronous compiled RAM
memory array.

Enhanced Direct Memory Access (eDMA)

MPC5534 Microcontroller Reference Manual, Rev. 2

9-30 Freescale Semiconductor

9.3.2 eDMA Basic Data Flow

The basic flow of a data transfer can be partitioned into three segments. As shown in Figure 9-19, the first
segment involves the channel service request. In the diagram, this example uses the assertion of the eDMA
peripheral request signal to request service for channel n. Channel service request via software and the
TCDn.START bit follows the same basic flow as an eDMA peripheral request. The eDMA peripheral
request input signal is registered internally and then routed to through the eDMA engine, first through the
control module, then into the program model/channel arbitration module. In the next cycle, the channel
arbitration is performed, either using the fixed-priority or round-robin algorithm. After the arbitration is
complete, the activated channel number is sent through the address path and converted into the required
address to access the TCD local memory. Next, the TCD memory is accessed and the required descriptor
read from the local memory and loaded into the eDMA engine address path channel{x,y} registers. The
TCD memory is organized 64-bits in width to minimize the time needed to fetch the activated channel’s
descriptor and load it into the eDMA engine address path channel{x,y} registers.

Figure 9-19. eDMA Operation, Part 1

In the second part of the basic data flow as shown in Figure 9-20, the modules associated with the data
transfer (address path, data path and control) sequence through the required source reads and destination
writes to perform the actual data movement. The source reads are initiated and the fetched data is
temporarily stored in the data path module until it is gated onto the system bus during the destination write.

S
la

ve
 In

te
rf

ac
e

eDMA

eDMA Peripheral Request

S
ys

te
m

 B
us

Data Path Control
Address

Program Model/

Slave Write Data

Slave Write Address

Bus Write Data

Slave Read Data

Bus Address

eDMA Engine

TCD0

TCDn-1*

eDMA Interrupt Request

Bus Read Data

Channel Arbitration

eDMA Done Handshake

Path

SRAM
Transfer Control Descriptor

(TCD)

SRAM

*n = 32 channels

Enhanced Direct Memory Access (eDMA)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 9-31

This source read/destination write processing continues until the inner minor byte count has been
transferred. The eDMA Done Handshake signal is asserted at the end of the minor byte count transfer.

Figure 9-20. eDMA Operation, Part 2

After the inner minor byte count has been moved, the final phase of the basic data flow is performed. In
this segment, the address path logic performs the required updates to certain fields in the channel’s TCD:
for example., SADDR, DADDR, CITER. If the outer major iteration count is exhausted, then there are
additional operations which are performed. These include the final address adjustments and reloading of
the BITER field into the CITER. Additionally, assertion of an optional interrupt request occurs at this time,
as does a possible fetch of a new TCD from memory using the scatter/gather address pointer included in
the descriptor. The updates to the TCD memory and the assertion of an interrupt request are shown in
Figure 9-21.

S
la

ve
 In

te
rf

ac
e

eDMA

eDMA Interrupt Request

S
ys

te
m

 B
us

Program Model/

Slave Write Data

Slave Write Address

Bus Write Data

Slave Read Data

Bus Address

eDMA Engine

TCD0

TCDn-1*

eDMA Peripheral

Bus Read Data

Channel Arbitration

Request

SRAM
Transfer Control Descriptor

(TCD)

SRAM

Data Path Control
Address

Path

eDMA Done Handshake

*n = 32 channels

Enhanced Direct Memory Access (eDMA)

MPC5534 Microcontroller Reference Manual, Rev. 2

9-32 Freescale Semiconductor

Figure 9-21. eDMA Operation, Part 3

9.3.3 eDMA Performance

This section addresses the performance of the eDMA module, focusing on two separate metrics. In the
traditional data movement context, performance is best expressed as the peak data transfer rates achieved
using the eDMA. In most implementations, this transfer rate is limited by the speed of the source and
destination address spaces. In a second context where device-paced movement of single data values
to/from peripherals is dominant, a measure of the requests that can be serviced in a fixed time is a more
useful metric. In this environment, the speed of the source and destination address spaces remains
important, but the microarchitecture of the eDMA also factors significantly into the resulting metric.

The peak transfer rates for several different source and destination transfers are shown in Table 9-20.
The following assumptions apply to Table 9-20 and Table 9-21:

• Internal SRAM can be accessed with zero wait-states when viewed from the system bus data phase.

• All slave reads require two wait-states, and slave writes three wait-states, again viewed from the
system bus data phase.

• All slave accesses are 32-bits in size.

S
la

ve
 In

te
rf

ac
e

eDMA

eDMA Done

S
ys

te
m

 B
u

s

Slave Write Data

Slave Write Address

Bus Write Data

Slave Read Data

Bus Address

eDMA Engine

TCD0

TCDn-1*

eDMA Peripheral

Bus Read Data

Request

SRAM
Transfer Control Descriptor

(TCD)

SRAM

Data Path Address
Path

Control

Program Model/
Channel Arbitration

*n = 32 channels

Enhanced Direct Memory Access (eDMA)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 9-33

Table 9-20 presents a peak transfer rate comparison, measured in MBs per second where the
internal-SRAM-to-internal-SRAM transfers occur at the core’s datapath width; that is, either 32- or 64-bits
per access. For all transfers involving the slave bus, 32-bit transfer sizes are used. In all cases, the transfer
rate includes the time to read the source plus the time to write the destination.

The second performance metric is a measure of the number of DMA requests that can be serviced in a
given amount of time. For this metric, it is assumed the peripheral request causes the channel to move a
single slave-mapped operand to/from internal SRAM. The same timing assumptions used in the previous
example apply to this calculation. In particular, this metric also reflects the time required to activate the
channel. The eDMA design supports the following hardware service request sequence:

• Cycle 1: eDMA peripheral request is asserted.

• Cycle 2: The eDMA peripheral request is registered locally in the eDMA module and
qualified. (TCD.START bit initiated requests start at this point with the registering
of the slave write to TCD bit 255).

• Cycle 3: Channel arbitration begins.

• Cycle 4: Channel arbitration completes. The transfer control descriptor local memory read is
initiated.

• Cycle 5–6: The first two parts of the activated channel’s TCD is read from the local memory.
The memory width to the eDMA engine is 64 bits, so the entire descriptor can be
accessed in four cycles.

Table 9-20. eDMA Peak Transfer Rates (MB/Sec)

System Speed,
Transfer Size

Internal SRAM-to-
Internal SRAM

32-Bit Slave-to-
Internal SRAM

Internal SRAM-to-
32-Bit Slave

(buffering disabled)

Internal SRAM-to-
32-Bit Slave

(buffering enabled)

66.7 MHz, 32 bit 66.7 66.7 53.3 88.7

66.7 MHz, 64 bit 133.3 66.7 53.3 88.7

66.7 MHz, 256 bit1

1 A 256-bit transfer occurs as a burst of four 64-bit beats.

213.4 — 2

2 Not applicable: burst access to a slave port is not supported.

— 2 — 2

83.3 MHz, 32 bit 83.3 83.3 66.7 110.8

83.3 MHz, 64 bit 166.7 83.3 66.7 110.8

83.3 MHz, 256 bit1 266.6 — 2 — 2 — 2

100.0 MHz, 32 bit 100.0 100.0 80.0 133.0

100.0 MHz, 64 bit 200.0 100.0 80.0 133.0

100.0 MHz, 256 bit1 320.0 — 2 — 2 — 2

132.0 MHz, 32 bit 132.0 132.0 105.6 175.6

132.0 MHz, 64 bit 264.0 132.0 105.6 175.6

132.0 MHz, 256 bit1 422.4 — 2 — 2 — 2

Enhanced Direct Memory Access (eDMA)

MPC5534 Microcontroller Reference Manual, Rev. 2

9-34 Freescale Semiconductor

• Cycle 7: The first system bus read cycle is initiated, as the third part of the channel’s TCD is read
from the local memory. Depending on the state of the crossbar switch, arbitration at
the system bus can insert an additional cycle of delay here.

• Cycle 8 – n: The last part of the TCD is read in. This cycle represents the first data phase for the
read, and the address phase for the destination write.

The exact timing from this point is a function of the response times for the channel’s
read and write accesses. In this case of an slave read and internal SRAM write, the
combined data phase time is 4 cycles. For an SRAM read and slave write, it is five
cycles.

• Cycle n + 1: This cycle represents the data phase of the last destination write.

• Cycle n + 2: The eDMA engine completes the execution of the inner minor loop and prepares to
write back the required TCDn fields into the local memory. The control and status
fields at word offset 0x1C in TCDn are read. If the major loop is complete, the
MAJOR.E_LINK and E_SG bits are checked and processed if enabled.

• Cycle n + 3: The appropriate fields in the first part of the TCDn are written back into the local
memory.

• Cycle n + 4: The fields in the second part of the TCDn are written back into the local memory. This
cycle coincides with the next channel arbitration cycle start.

• Cycle n + 5: The next channel to be activated performs the read of the first part of its TCD from
the local memory. This is equivalent to Cycle 4 for the first channel’s service request.

Assuming zero wait states on the system bus, DMA requests can be processed every 9 cycles. Assuming
an average of the access times associated with slave-to-SRAM (4 cycles) and SRAM-to-slave (5 cycles),
DMA requests can be processed every 11.5 cycles (4 + (4+5)/2 + 3). This is the time from Cycle 4 to Cycle
“n + 5.” The resulting peak request rate, as a function of the system frequency, is shown in Table 9-21. This
metric represents millions of requests per second.

A general formula to compute the peak request rate (with overlapping requests) is:

PEAKreq = freq / [entry + (1 + read_ws) + (1 + write_ws) + exit]

where:

PEAKreq is the peak request rate

freq is the system frequency

Table 9-21. eDMA Peak Request Rate (MReq/Sec)

System Frequency
(MHz)

Request Rate
(Zero Wait States)

Request Rate
(with Wait States)

66.6 7.4 5.8

83.3 9.2 7.2

100.0 11.1 8.7

133.3 14.8 11.6

150.0 16.6 13.0

Enhanced Direct Memory Access (eDMA)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 9-35

entry is the channel startup (four cycles)

read_ws is the wait states seen during the system bus read data phase

write_ws is the wait states seen during the system bus write data phase

exit is the channel shutdown (three cycles)

For example, consider a system with the following characteristics:

• Internal SRAM can be accessed with one wait-state when viewed from the system bus data phase.

• All slave reads require two wait-states, and slave writes three wait-states, again viewed from the
system bus data phase.

• System operates at 150 MHz.

For an SRAM to slave transfer,

PEAKreq = 150 MHz / [4 + (1 + 1) + (1 + 3) + 3] cycles = 11.5 Mreq/sec

For a slave to SRAM transfer,

PEAKreq = 150 MHz / [4 + (1 + 2) + (1 + 1) + 3] cycles = 12.5 Mreq/sec

Assuming an even distribution of the two transfer types, the average peak request rate is:

PEAKreq = (11.5 Mreq/sec + 12.5 Mreq/sec) / 2 = 12.0 Mreq/sec

The minimum number of cycles to perform a single read/write, zero wait states on the system bus, from a
cold start (no channel is executing, eDMA is idle) are the following:

• 11 cycles for a software (TCD.START bit) request

• 12 cycles for a hardware (eDMA peripheral request signal) request

Two cycles account for the arbitration pipeline and one extra cycle on the hardware request resulting from
the internal registering of the eDMA peripheral request signals. For the peak request rate calculations
above, the arbitration and request registering is absorbed in or overlap the previous executing channel.

NOTE
When channel linking or scatter/gather is enabled, a two-cycle delay is
imposed on the next channel selection and startup. This allows the link
channel or the scatter/gather channel to be eligible and considered in the
arbitration pool for next channel selection.

Enhanced Direct Memory Access (eDMA)

MPC5534 Microcontroller Reference Manual, Rev. 2

9-36 Freescale Semiconductor

9.4 Initialization and Application Information

9.4.1 eDMA Initialization

A typical initialization of the eDMA has the following sequence:

1. Write the EDMA_CR if a configuration other than the default is desired.

2. Write the channel priority levels into the EDMA_CPRn registers if a configuration other than the
default is desired.

3. Enable error interrupts in the EDMA_EEIRL and/or EDMA_EEIRH registers (optional).

4. Write the 32-byte TCD for each channel that can request service.

5. Enable any hardware service requests via the EDMA_ERQRH and/or EDMA_ERQRL registers.

6. Request channel service by either software (setting the TCD.START bit) or by hardware (slave
device asserting its eDMA peripheral request signal).

After any channel requests service, a channel is selected for execution based on the arbitration and priority
levels written into the programmer's model. The eDMA engine reads the entire TCD, including the
primary transfer control parameter shown in Table 9-22, for the selected channel into its internal address
path module. As the TCD is being read, the first transfer is initiated on the system bus unless a
configuration error is detected. Transfers from the source (as defined by the source address, TCD.SADDR)
to the destination (as defined by the destination address, TCD.DADDR) continue until the specified
number of bytes (TCD.NBYTES) have been transferred. When the transfer is complete, the eDMA
engine's local TCD.SADDR, TCD.DADDR, and TCD.CITER are written back to the main TCD memory
and any minor loop channel linking is performed, if enabled. If the major loop is exhausted, further post
processing is executed: for example, interrupts, major loop channel linking, and scatter/gather operations,
if enabled.

Table 9-22. TCD Primary Control and Status Fields

TCD Field
Name

Description

START Control bit to explicitly start channel when using a software
initiated DMA service (Automatically cleared by hardware)

ACTIVE Status bit indicating the channel is currently in execution

DONE Status bit indicating major loop completion (Cleared by software
when using a software initiated DMA service)

D_REQ Control bit to disable DMA request at end of major loop
completion when using a hardware-initiated DMA service

BWC Control bits for “throttling” bandwidth control of a channel

E_SG Control bit to enable scatter-gather feature

INT_HALF Control bit to enable interrupt when major loop is half complete

INT_MAJ Control bit to enable interrupt when major loop completes

Enhanced Direct Memory Access (eDMA)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 9-37

Figure 9-22 shows how each DMA request initiates one minor loop transfer (iteration) without CPU
intervention. DMA arbitration can occur after each minor loop, and one level of minor loop DMA
preemption is allowed. The number of minor loops in a major loop is specified by the beginning iteration
count (biter).

Figure 9-22. Example of Multiple Loop Iterations

Figure 9-23 lists the memory array terms and how the TCD settings interrelate.

Figure 9-23. Memory Array Terms

DMA Request

Minor Loop 3

Current Major Loop
Iteration Count

(CITER)
Example Memory Array

•
•
•

DMA Request

Minor Loop 2•
•
•

DMA Request

Minor Loop 1•
•
•

Major Loop

xADDR:
(Starting Address)

xSIZE:
(Size of one data

Minor Loop

(NBYTES in Minor

 Loop, often the same
value as xSIZE)

Offset (xOFF): Number of bytes
 added to current address

 after each transfer
(Often the same value as xSIZE)

•
Minor Loop

Each DMA Source (S) and
Destination (D) has its own:
• Address (xADDR)
• Size (xSIZE)
• Offset (xOFF)

xLAST: Number of bytes
added to current address

Peripheral queues typically have
 size and offset equal to NBYTES

•
•

after Major Loop

(Typically used to loop back)

transfer)

•
•
•

•
•
•

Last Minor Loop

• Modulo (xMOD)

• Last Address Adjustment

(xLAST) where x = S or D

•
•
•

Enhanced Direct Memory Access (eDMA)

MPC5534 Microcontroller Reference Manual, Rev. 2

9-38 Freescale Semiconductor

9.4.2 DMA Programming Errors

The eDMA performs various tests on the transfer control descriptor to verify consistency in the descriptor
data. Most programming errors are reported on a per channel basis with the exception of two errors: group
priority error and channel priority error, or EDMA_ESR[GPE] and EDMA_ESR[CPE], respectively.

For all error types other than group or channel priority errors, the channel number causing the error is
recorded in the EDMA_ESR. If the error source is not removed before the next activation of the problem
channel, the error is detected and recorded again.

Channel priority errors are identified within a group after that group has been selected as the active group.
For the example that follows, all of the channel priorities in Group 1 are unique, but some of the channel
priorities in Group 0 are the same:

1. Configure the eDMA for fixed-group and fixed-channel arbitration modes so that:

— Group 1 is the highest priority and all channels are unique in that group.

— Group 0 is the next highest priority and two channels have the same priority level.

2. If Group 1 has service requests pending, those requests are executed.

3. After all Group 1 requests have completed, Group 0 becomes the active group.

4. If Group 0 has a service request, the eDMA selects the undefined channel in Group 0 and generates
a channel priority error.

5. Repeat Step 4 until the all Group 0 requests are serviced or a higher-priority Group 1 request is
received.

In step 2, the eDMA acknowledge lines assert only if the selected channel is requesting service via the
eDMA peripheral request signal. If interrupts are enabled for all channels, an error interrupt is generated.
However, the channel number for the EDMA_ER and the error interrupt request line contain undefined
data because the channel is ‘undefined’. A group priority error is global and any request in any group
causes a group priority error.

If priority levels are not unique, the highest (channel/group) priority that has an active request is selected,
but the lowest numbered (channel/group) with that priority is selected by arbitration and executed by the
eDMA engine. The hardware service request handshake signals, error interrupts and error reporting are
associated with the selected channel.

9.4.3 DMA Request Assignments

The assignments between the DMA requests from the modules to the channels of the eDMA are shown in
Table 9-23. The source column is written in C language syntax. The syntax is
module_instance.register[bit].

Table 9-23. DMA Request Summary for eDMA

DMA Request Channel Source Description

eQADC_FISR0_CFFF0 0 EQADC.FISR0[CFFF0] eQADC Command FIFO 0 Fill Flag

eQADC_FISR0_RFDF0 1 EQADC.FISR0[RFDF0] eQADC Receive FIFO 0 Drain Flag

eQADC_FISR1_CFFF1 2 EQADC.FISR1[CFFF1] eQADC Command FIFO 1 Fill Flag

Enhanced Direct Memory Access (eDMA)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 9-39

eQADC_FISR1_RFDF1 3 EQADC.FISR1[RFDF1] eQADC Receive FIFO 1 Drain Flag

eQADC_FISR2_CFFF2 4 EQADC.FISR2[CFFF2] eQADC Command FIFO 2 Fill Flag

eQADC_FISR2_RFDF2 5 EQADC.FISR2[RFDF2] eQADC Receive FIFO 2 Drain Flag

eQADC_FISR3_CFFF3 6 EQADC.FISR3[CFFF3] eQADC Command FIFO 3 Fill Flag

eQADC_FISR3_RFDF3 7 EQADC.FISR3[RFDF3] eQADC Receive FIFO 3 Drain Flag

eQADC_FISR4_CFFF4 8 EQADC.FISR4[CFFF4] eQADC Command FIFO 4 Fill Flag

eQADC_FISR4_RFDF4 9 EQADC.FISR4[RFDF4] eQADC Receive FIFO 4 Drain Flag

eQADC_FISR5_CFFF5 10 EQADC.FISR5[CFFF5] eQADC Command FIFO 5 Fill Flag

eQADC_FISR5_RFDF5 11 EQADC.FISR5[RFDF5] eQADC Receive FIFO 5 Drain Flag

DSPIB_SR_TFFF 12 DSPIB.SR[TFFF] DSPIB Transmit FIFO Fill Flag

DSPIB_SR_RFDF 13 DSPIB.SR[RFDF] DSPIB Receive FIFO Drain Flag

DSPIC_SR_TFFF 14 DSPIC.SR[TFFF] DSPIC Transmit FIFO Fill Flag

DSPIC_SR_RFDF 15 DSPIC.SR[RFDF] DSPIC Receive FIFO Drain Flag

DSPID_SR_TFFF 16 DSPID.SR[TFFF] DSPID Transmit FIFO Fill Flag

DSPID_SR_RFDF 17 DSPID.SR[RFDF] DSPID Receive FIFO Drain Flag

eSCIA_COMBTX 18 ESCIA.SR[TDRE] ||
ESCIA.SR[TC] ||
ESCIA.SR[TXRDY]

eSCIA combined DMA request of the Transmit Data
Register Empty, Transmit Complete, and LIN Transmit
Data Ready DMA requests

eSCIA_COMBRX 19 ESCIA.SR[RDRF] ||
ESCIA.SR[RXRDY]

eSCIA combined DMA request of the Receive Data
Register Full and LIN Receive Data Ready DMA
requests

eMIOS_GFR_F0 20 EMIOS.GFR[F0] eMIOS channel 0 Flag

eMIOS_GFR_F1 21 EMIOS.GFR[F1] eMIOS channel 1 Flag

eMIOS_GFR_F2 22 EMIOS.GFR[F2] eMIOS channel 2 Flag

eMIOS_GFR_F3 23 EMIOS.GFR[F3] eMIOS channel 3 Flag

eMIOS_GFR_F4 24 EMIOS.GFR[F4] eMIOS channel 4 Flag

eMIOS_GFR_F8 25 EMIOS.GFR[F8] eMIOS channel 8 Flag

eMIOS_GFR_F9 26 EMIOS.GFR[F9] eMIOS channel 9 Flag

eTPU_CDTRSR_A_DTRS0 27 ETPU.CDTRSR_A[DTRS0] eTPUA Channel 0 Data Transfer Request Status

eTPU_CDTRSR_A_DTRS1 28 ETPU.CDTRSR_A[DTRS1] eTPUA Channel 1 Data Transfer Request Status

eTPU_CDTRSR_A_DTRS2 29 ETPU.CDTRSR_A[DTRS2] eTPUA Channel 2 Data Transfer Request Status

eTPU_CDTRSR_A_DTRS14 30 ETPU.CDTRSR_A[DTRS14] eTPUA Channel 14 Data Transfer Request Status

eTPU_CDTRSR_A_DTRS15 31 ETPU.CDTRSR_A[DTRS15] eTPUA Channel 15 Data Transfer Request Status

Table 9-23. DMA Request Summary for eDMA (continued)

DMA Request Channel Source Description

Enhanced Direct Memory Access (eDMA)

MPC5534 Microcontroller Reference Manual, Rev. 2

9-40 Freescale Semiconductor

9.4.4 DMA Arbitration Mode Considerations

9.4.4.1 Fixed-Group Arbitration and Fixed-Channel Arbitration

In this mode, the channel service request from the highest priority channel in the highest priority group is
selected to execute. If the eDMA is programmed so the channels within one group use ‘fixed’ priorities,
and that group is assigned the highest ‘fixed’ priority of all groups, it is possible for that group to take all
the bandwidth of the eDMA controller; that is, no other groups is serviced if there is always at least one
DMA request pending on a channel in the highest priority group when the controller arbitrates the next
DMA request. The advantage of this scenario is that latency can be small for channels that need to be
serviced quickly. Preemption is available in this scenario only.

9.4.4.2 Round-Robin Group Arbitration, Fixed-Channel Arbitration

The occurrence of one or more DMA requests from one or more groups, the channel with the highest
priority from a specific group is serviced first. Groups are serviced starting with the highest group number
with a service request and rotating through to the lowest group number containing a service request.

After the channel request is serviced, the group round-robin algorithm selects the highest pending request
from the next group in the round-robin sequence. Servicing continues using the round-robin method,
always servicing the highest priority channel in the next group in the sequence, or just skipping a group if
it has no pending requests.

If a channel requests service at a rate that equals or exceeds the round-robin service rate, then that channel
is always serviced before lower priority channels in the same group, and thus the lower priority channels
never are serviced. The advantage of this scenario is that no one group uses all the eDMA bandwidth. The
highest priority channel selection latency is potentially greater than fixed/fixed arbitration. Excessive
request rates on high priority channels can prevent the servicing of lower priority channels in the same
group.

9.4.4.3 Round-Robin Group Arbitration, Round-Robin Channel Arbitration

Groups are serviced as described in Section 9.4.4.2, “Round-Robin Group Arbitration, Fixed-Channel
Arbitration, but this time channels are serviced in channel number order. Only one channel is serviced from
each requesting group for each round-robin pass through the groups.

Within each group, channels are serviced starting with the highest channel number and rotating through to
the lowest channel number without regard to channel priority levels.

Because channels are serviced using a round-robin method, any channel that generates DMA requests
faster than a combination of the group round-robin service rate and the channel service rate for its group
does not prevent the servicing of other channels in its group.

This scenario ensures that all channels are guaranteed service at some point, regardless of the request rates.
However, the potential latency can be quite high. All channels are treated equally. Priority levels are not
used in round-robin/round-robin mode.

Enhanced Direct Memory Access (eDMA)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 9-41

9.4.4.4 Fixed-Group Arbitration, Round-Robin Channel Arbitration

The highest priority group with a request is serviced. Lower priority groups are serviced if no pending
requests exist in the higher priority groups.

Within each group, channels are serviced starting with the highest channel number and rotating through to
the lowest channel number without regard to the channel priority levels assigned within the group.

This can cause the same bandwidth problem indicated in Section 9.4.4.1, but all the channels in the highest
priority group are serviced. Service latency is short on the highest-priority group, but increases as the
group priority decreases.

9.4.5 DMA Transfer

9.4.5.1 Single Request

To perform a simple transfer of ‘n’ bytes of data with one activation, set the major loop to 1
(TCD.CITER = TCD.BITER = 1). The data transfer begins after the channel service request is
acknowledged and the channel is selected to execute. After the transfer completes, the TCD.DONE bit is
set and an interrupt is generated if correctly enabled.

For example, the following TCD entry is configured to transfer 16 bytes of data. The eDMA is
programmed for one iteration of the major loop transferring 16 bytes per iteration. The source memory has
a byte-wide memory port located at 0x1000. The destination memory has a word-wide port located at
0x2000. The address offsets are programmed in increments to match the size of the transfer; one byte for
the source and four bytes for the destination. The final source and destination addresses are adjusted to
return to their beginning values.

TCD.CITER = TCD.BITER = 1

TCD.NBYTES = 16

TCD.SADDR = 0x1000

TCD.SOFF = 1

TCD.SSIZE = 0

TCD.SLAST = –16

TCD.DADDR = 0x2000

TCD.DOFF = 4

TCD.DSIZE = 2

TCD.DLAST_SGA= –16

TCD.INT_MAJ = 1

TCD.START = 1 (Initialize all other fields before writing to this bit)

All other TCD fields = 0

Enhanced Direct Memory Access (eDMA)

MPC5534 Microcontroller Reference Manual, Rev. 2

9-42 Freescale Semiconductor

This generates the following sequence of events:

1. Slave write to the TCD.START bit requests channel service.

2. The channel is selected by arbitration for servicing.

3. eDMA engine writes: TCD.DONE = 0, TCD.START = 0, TCD.ACTIVE = 1.

4. eDMA engine reads: channel TCD data from local memory to internal register file.

5. The source to destination transfers are executed as follows:

a) read_byte (0x1000), read_byte (0x1001), read_byte (0x1002), read_byte (0x1003)

b) write_word (0x2000) –> first iteration of the minor loop

c) read_byte (0x1004), read_byte (0x1005), read_byte (0x1006), read_byte (0x1007)

d) write_word (0x2004) –> second iteration of the minor loop

e) read_byte (0x1008), read_byte (0x1009), read_byte (0x100A), read_byte (0x100B)

f) write_word (0x2008) –> third iteration of the minor loop

g) read_byte (0x100C), read_byte (0x100D), read_byte (0x100E), read_byte (0x100F)

h) write_word (0x200C) –> last iteration of the minor loop –> major loop complete

6. eDMA engine writes: TCD.SADDR = 0x1000, TCD.DADDR = 0x2000,
TCD.CITER = 1 (TCD.BITER).

7. eDMA engine writes: TCD.ACTIVE = 0, TCD.DONE = 1, EDMA_IRQRn = 1.

8. The channel retires.

The eDMA goes idle or services the next channel.

9.4.5.2 Multiple Requests

The next example is similar except it transfers 32 bytes via two hardware requests. The only fields that
change are the major loop iteration count and the final address offsets. The eDMA is programmed for two
iterations of the major loop transferring 16 bytes per iteration. After the channel’s hardware requests are
enabled in the EDMA_ERQR, channel service requests are initiated by the slave device (set ERQR after
TCD; TCD.START = 0).

TCD.CITER = TCD.BITER = 2
TCD.NBYTES = 16
TCD.SADDR = 0x1000
TCD.SOFF = 1
TCD.SSIZE = 0
TCD.SLAST = –32
TCD.DADDR = 0x2000
TCD.DOFF = 4
TCD.DSIZE = 2
TCD.DLAST_SGA= –32
TCD.INT_MAJ = 1
TCD.START = 0 (Initialize all other fields before writing this bit.)
All other TCD fields = 0

Enhanced Direct Memory Access (eDMA)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 9-43

This generates the following sequence of events:

1. First hardware (eDMA peripheral request) request for channel service.

2. The channel is selected by arbitration for servicing.

3. eDMA engine writes: TCD.DONE = 0, TCD.START = 0, TCD.ACTIVE = 1.

4. eDMA engine reads: channel TCD data from local memory to internal register file.

5. The source to destination transfers execute as follows:

a) read_byte (0x1000), read_byte (0x1001), read_byte (0x1002), read_byte (0x1003)

b) write_word (0x2000) –> first iteration of the minor loop

c) read_byte (0x1004), read_byte (0x1005), read_byte (0x1006), read_byte (0x1007)

d) write_word (0x2004) –> second iteration of the minor loop

e) read_byte (0x1008), read_byte (0x1009), read_byte (0x100A), read_byte (0x100B)

f) write_word (0x2008) –> third iteration of the minor loop

g) read_byte (0x100C), read_byte (0x100D), read_byte (0x100E), read_byte (0x100F)

h) write_word (0x200C) –> last iteration of the minor loop

6. eDMA engine writes: TCD.SADDR = 0x1010, TCD.DADDR = 0x2010, TCD.CITER = 1.

7. eDMA engine writes: TCD.ACTIVE = 0.

8. The channel retires –> one iteration of the major loop.

The eDMA goes idle or services the next channel.

9. Second hardware (eDMA peripheral request) requests channel service.

10. The channel is selected by arbitration for servicing.

11. eDMA engine writes: TCD.DONE = 0, TCD.START = 0, TCD.ACTIVE = 1.

12. eDMA engine reads: channel TCD data from local memory to internal register file.

13. The source to destination transfers execute as follows:

a) read_byte (0x1010), read_byte (0x1011), read_byte (0x1012), read_byte (0x1013)

b) write_word (0x2010) –> first iteration of the minor loop

c) read_byte (0x1014), read_byte (0x1015), read_byte (0x1016), read_byte (0x1017)

d) write_word (0x2014) –> second iteration of the minor loop

e) read_byte (0x1018), read_byte (0x1019), read_byte (0x101A), read_byte (0x101B)

f) write_word (0x2018) –> third iteration of the minor loop

g) read_byte (0x101C), read_byte (0x101D), read_byte (0x101E), read_byte (0x101F)

h) write_word (0x201C) –> last iteration of the minor loop –> major loop complete

14. eDMA engine writes: TCD.SADDR = 0x1000, TCD.DADDR = 0x2000,
TCD.CITER = 2 (TCD.BITER).

15. eDMA engine writes: TCD.ACTIVE = 0, TCD.DONE = 1, EDMA_IRQRn = 1.

16. The channel retires –> major loop complete.

The eDMA goes idle or services the next channel.

Enhanced Direct Memory Access (eDMA)

MPC5534 Microcontroller Reference Manual, Rev. 2

9-44 Freescale Semiconductor

9.4.5.3 Modulo Feature

The modulo feature of the eDMA provides the ability to easily implement a circular data queue in which
the size of the queue is a power of two. MOD is a 5-bit field for the source and destination in the TCD, and
specifies which lower address bits increment from their original value after the address + offset
calculation. All upper address bits remain the same as in the original value. Clearing this field to zero
disables the modulo feature.

Table 9-24 shows how the transfer addresses are specified based on the setting of the MOD field. Here a
circular buffer is created where the address wraps to the original value while the 28 upper address bits
(0x1234567x) retain their original value. In this example the source address is set to 0x12345670, the
offset is set to 4 bytes and the mod field is set to 4, allowing for a 24 byte (16-byte) size queue.

9.4.6 TCD Status

9.4.6.1 Minor Loop Complete

There are two methods to test for minor loop completion when using software initiated service requests.
The first method is to read the TCD.CITER field and test for a change. Another method can be extracted
from the following sequence. The second method is to test the TCD.START bit AND the TCD.ACTIVE
bit. The minor loop complete condition is indicated by both bits reading zero after the TCD.START was
written to a one. Polling the TCD.ACTIVE bit can be inconclusive because the active status can be missed
if the channel execution is short in duration.

The TCD status bits execute the following sequence for a software activated channel:

1. TCD.START = 1, TCD.ACTIVE = 0, TCD.DONE = 0 (issued service request via software)

2. TCD.START = 0, TCD.ACTIVE = 1, TCD.DONE = 0 (executing)

3. TCD.START = 0, TCD.ACTIVE = 0, TCD.DONE = 0 (completed minor loop and is idle) or

4. TCD.START = 0, TCD.ACTIVE = 0, TCD.DONE = 1 (completed major loop and is idle)

The best method to test for minor loop completion when using hardware initiated service requests is to
read the TCD.CITER field and test for a change. The hardware request and acknowledge handshakes
signals are not visible in the programmer’s model.

Table 9-24. Modulo Feature Example

Transfer
Number

Address

1 0x1234_5670

2 0x1234_5674

3 0x1234_5678

4 0x1234_567C

5 0x1234_5670

6 0x1234_5674

Enhanced Direct Memory Access (eDMA)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 9-45

The TCD status bits execute the following sequence for a hardware activated channel:

1. eDMA peripheral request asserts (issued service request via hardware)

2. TCD.START = 0, TCD.ACTIVE = 1, TCD.DONE = 0 (executing)

3. TCD.START = 0, TCD.ACTIVE = 0, TCD.DONE = 0 (completed minor loop and is idle) or

4. TCD.START = 0, TCD.ACTIVE = 0, TCD.DONE = 1 (completed major loop and is idle)

For both activation types, the major loop complete status is explicitly indicated via the TCD.DONE bit.

The TCD.START bit is cleared automatically when the channel begins execution regardless of how the
channel was activated.

9.4.6.2 Active Channel TCD Reads

The eDMA reads the true TCD.SADDR, TCD.DADDR, and TCD.NBYTES values if read while a
channel is executing. The true values of the SADDR, DADDR, and NBYTES are the values the eDMA
engine is currently using in its internal register file and not the values in the TCD local memory for that
channel. The addresses (SADDR and DADDR) and NBYTES (decrements to zero as the transfer
progresses) can give an indication of the progress of the transfer. All other values are read back from the
TCD local memory.

9.4.6.3 Preemption Status

Preemption is only available when fixed arbitration is selected for both group and channel arbitration
modes. A preempt-able situation is one in which a preempt-enabled channel is running and a higher
priority request becomes active. When the eDMA engine is not operating in fixed group, fixed channel
arbitration mode, the determination of the relative priority of the actively running and the outstanding
requests become undefined. Channel and/or group priorities are treated as equal (or more exactly,
constantly rotating) when round-robin arbitration mode is selected.

The TCD.ACTIVE bit for the preempted channel remains asserted throughout the preemption. The
preempted channel is temporarily suspended while the preempting channel executes one iteration of the
major loop. Two TCD.ACTIVE bits set at the same time in the overall TCD map indicates a higher priority
channel is actively preempting a lower priority channel.

9.4.7 Channel Linking

Channel linking (or chaining) is a mechanism where one channel sets the TCD.START bit of another
channel (or itself) thus initiating a service request for that channel. This operation is automatically
performed by the eDMA engine at the conclusion of the major or minor loop when correctly enabled.

The minor loop channel linking occurs at the completion of the minor loop (or one iteration of the major
loop). The TCD.CITER.E_LINK field are used to determine whether a minor loop link is requested. When
enabled, the channel link is made after each iteration of the minor loop except for the last.

Enhanced Direct Memory Access (eDMA)

MPC5534 Microcontroller Reference Manual, Rev. 2

9-46 Freescale Semiconductor

When the major loop is exhausted, only the major loop channel link fields are used to determine whether
to make a channel link. For example, with the initial fields of:

TCD.CITER.E_LINK = 1

TCD.CITER.LINKCH = 0xC

TCD.CITER value = 0x4

TCD.MAJOR.E_LINK = 1

TCD.MAJOR.LINKCH = 0x7

channel linking executes as:

1. Minor loop done –> set channel 12 TCD.START bit

2. Minor loop done –> set channel 12 TCD.START bit

3. Minor loop done –> set channel 12 TCD.START bit

4. Minor loop done, major loop done –> set channel 7 TCD.START bit

When minor loop linking is enabled (TCD.CITER.E_LINK = 1), the TCD.CITER field uses a nine bit
vector to form the current iteration count.

When minor loop linking is disabled (TCD.CITER.E_LINK = 0), the TCD.CITER field uses a 15-bit
vector to form the current iteration count. The bits associated with the TCD.CITER.LINKCH field are
concatenated onto the CITER value to increase the range of the CITER.

NOTE
After configuration, the TCD.CITER.E_LINK bit and the
TCD.BITER.E_LINK bit must be equal or a configuration error is reported.
The CITER and BITER vector widths must be equal to calculate the major
loop, half-way done interrupt point.

Table 9-25 summarizes how a DMA channel can “link” to another DMA channel, i.e, use another
channel’s TCD, at the end of a loop.

Table 9-25. Channel Linking Parameters

Desired Link
Behavior

TCD Control
Field Name

Description

Link at end of
Minor Loop

citer.e_link Enable channel-to-channel linking on minor loop completion
(current iteration)

citer.linkch Link channel number when linking at end of minor loop
(current iteration)

Link at end of
Major Loop

major.e_link Enable channel-to-channel linking on major loop completion

major.linkch Link channel number when linking at end of major loop

Enhanced Direct Memory Access (eDMA)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 9-47

9.4.8 Dynamic Programming

This section provides recommended methods to change the programming model during channel execution.

9.4.8.1 Dynamic Channel Linking and Dynamic Scatter/Gather

Dynamic channel linking and dynamic scatter/gather is the process of changing the
TCD.MAJOR.E_LINK or TCD.E_SG bits during channel execution. These bits are read from the TCD
local memory at the end of channel execution thus allowing you to enable either feature during channel
execution.

Because you are allowed to change the configuration during execution, a coherency model is needed.
Consider the scenario where you try to execute a dynamic channel link by enabling the
TCD.MAJOR.E_LINK bit at the same time the eDMA engine is retiring the channel. The
TCD.MAJOR.E_LINK is set in the programmer’s model, but it is unclear whether the link completed
before the channel retired.

Use the following coherency model when executing a dynamic channel link or dynamic scatter/gather
request:

1. Set the TCD.MAJOR.E_LINK bit

2. Read the TCD.MAJOR.E_LINK bit

3. Test the TCD.MAJOR.E_LINK request status:

a) If the bit is set, the dynamic link attempt was successful.

b) If the bit is cleared, the channel had already retired before the dynamic link completed.

This same coherency model is true for dynamic scatter/gather operations. For both dynamic requests, the
TCD local memory controller forces the TCD.MAJOR.E_LINK and TCD.E_SG bits to zero on any writes
to a channel’s TCD after that channel’s TCD.DONE bit is set indicating the major loop is complete.

NOTE
You must clear the TCD.DONE bit before writing the
TCD.MAJOR.E_LINK or TCD.E_SG bits. The TCD.DONE bit is cleared
automatically by the eDMA engine after a channel begins execution.

Enhanced Direct Memory Access (eDMA)

MPC5534 Microcontroller Reference Manual, Rev. 2

9-48 Freescale Semiconductor

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 10-1

Chapter 10
Interrupt Controller (INTC)

10.1 Introduction
This chapter describes the interrupt controller (INTC), which schedules interrupt requests (IRQs) from
software and internal peripherals to the e200z3 core. The INTC provides interrupt prioritization and
preemption, interrupt masking, interrupt priority elevation, and protocol support.

Interrupts implemented by the MCU are defined in the e200z3 PowerPCtm Core Reference Manual.

10.1.1 Block Diagram

Figure 4-1 shows details of the interrupt controller.

Figure 10-1. INTC Block Diagram

Software
Set/Clear
Interrupt
Registers

Flag Bits

Priority
Select

Registers

8

Peripheral
Interrupt

Requests1 n1 Priority
Arbitrator

n1
Highest
Priority

Interrupt
Requests

n1 Request
Selector

Lowest
Vector

Interrupt
Request

n1 Vector
Encoder

Interrupt
Vector

9

x 4-bits

Interrupt
Acknowledge

Register

Interrupt
Vector

9

Hardware
Vector
Enable

Vector Table
Entry Size

1

Module
Configuration

Register

1End of
Interrupt
Register

Highest Priority4

Priority
Comparator

New
4

Current

4

PriorityCurrent
Priority

Register

Priority

4

Popped

4

Priority

Pushed
Priority

Priority
LIFO

Slave
Interface

for Reads
and Writes

1Push/Update/Acknowledge

1Pop

Slave
Bus

Signals

1Interrupt Acknowledge

1Update Interrupt Vector

1

Interrupt
Request to
Processor

Memory mapped registers
Non-memory mapped logic

1 The total number of interrupt sources is 210, which includes 12 reserved
sources, and 8 software sources.

Interrupt Controller (INTC)

MPC5534 Microcontroller Reference Manual, Rev. 2

10-2 Freescale Semiconductor

10.1.2 Overview

Interrupt functionality for the device is handled between the e200z3 core and the interrupt controller. The
CPU core has 19 exception sources, each of which can interrupt the core. One exception source is from
the interrupt controller (INTC). The INTC provides priority-based preemptive scheduling of interrupt
requests. This scheduling scheme is suitable for statically scheduled hard real-time systems. The INTC is
optimized for a large number of interrupt requests. It is targeted to work with a PowerPC book E processor
and automotive powertrain applications where the ISRs nest to multiple levels.

Table 10-1 displays the interrupt sources and the number available for each module; Figure 10-2 shows a
general diagram of INTC software vector mode. See Table 10-9 for interrupt source vector details.

Figure 10-2. INTC Software Vector Mode

Table 10-1. Interrupt Sources Available

Interrupt Source (IRQs)
Number
Available

Software 8

Watchdog 1

Memory 1

eDMA 33

FMPLL 2

External IRQ Input Pins 6

eMIOS 24

eTPU Engine A 33

eQADC 31

DSPI 15

eSCI 2

FlexCAN 40

IRQs Interrupt
Controller

(INTC)

External Interrupt
Exception Request e200z3

Core

Interrupt Controller (INTC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 10-3

Two modes are available to determine the vector for the interrupt request source: software vector mode
and hardware vector mode. In software vector mode, as shown in Figure 10-2, the e200z3 branches to a
common interrupt exception handler whose location is determined by an address derived from special
purpose registers IVPR and IVOR4. The interrupt exception handler reads the INTC_IACKR to determine
the vector of the interrupt request source. Typical program flow for software vector mode is shown in
Figure 10-3.

Figure 10-3. Program Flow–Software Vector Mode

In hardware vector mode, the core branches to a unique interrupt exception handler whose location is
unique for each interrupt request source. Typical program flow for hardware vector mode is shown in
Figure 10-4.

Figure 10-4. Program Flow–Hardware Vector Mode

For high priority interrupt requests in these target applications, the time from when the interrupt request
from the peripheral asserts to the time when the processor begins to service the interrupt request must be
minimized. The INTC can be optimized to minimize the time-to-service an interrupt request using
hardware vector mode, where a unique vector is provided for each interrupt request source. It also provides

ISRISR_0 address ISR_0

ISRISR_1

•••

ISRISR_n

•••

ISRISR_N

ISR_n address

ISR_N address

ISR_1 address

•••

•••

Prolog
(Including

Using IACKR
to get Vector
then bl ISR_n

Epilog

IVPR + IVOR4IRQn
Taken IACKR

InstructionsAddressInstructionsAddress

VTBA

N = 211 which includes reserved
sources.

Prologb handler_0 handler_0

ISR

•••

•••

ISR

•••

•••

Instructions
NOTE:

‘b ISR_n’ is technically

Epilog

Prolog

Epilog

ISR

Prolog

Epilog

handler_n

handler_N

b handler_1

•••

b handler_2

•••

b handler_n

b handler_N

IVPR + 0x00

IVPR + 0x10

IVPR + 0x20

IVPR + n[0x10]

see definition of N

IRQn
Taken

Address

N = 211 which includes reserved sources. The address is
IVPR + 0x0D30

part of the handler.

Interrupt Controller (INTC)

MPC5534 Microcontroller Reference Manual, Rev. 2

10-4 Freescale Semiconductor

16 priorities so that lower priority ISRs do not delay the execution of higher priority ISRs. Since
applications have different priorities for each interrupt request source, the priority of each interrupt request
is configurable.

When multiple tasks share a resource, coherent accesses to that resource need to be supported. The INTC
supports the priority ceiling protocol for coherent accesses. By providing a modifiable priority mask, the
priority level can be raised temporarily so that no task can preempt another task that shares the same
resource.

Multiple processors can assert interrupt requests to each other through software settable interrupt requests,
i.e., by using application software to assert an interrupt request. These same software settable interrupt
requests also can be used to break the work involved in servicing an interrupt request into a high priority
portion and a low priority portion. The high priority portion is initiated by a peripheral interrupt request,
but then the ISR can assert a software settable interrupt request to finish the servicing in a lower priority
ISR.

10.1.3 Features

Features include the following:

• Total number of interrupt vectors is 210 of which

— 8 are software settable sources, and

— 12 are reserved sources.

• 9-bit unique vector for each interrupt request source in hardware vector mode.

• Each interrupt source can be programmed to one of 16 priorities.

• Preemption:

— Preemptive prioritized interrupt requests to processor.

— ISR at a higher priority preempts ISRs or tasks at lower priorities.

— Automatic pushing or popping of preempted priority to or from a LIFO.

— Ability to modify the ISR or task priority. Modifying the priority can be used to implement the
priority ceiling protocol for accessing shared resources.

• Low latency: three clocks from receipt of interrupt request from peripheral to interrupt request to
processor.

10.1.4 Modes of Operation

The interrupt controller has two handshaking modes with the processor: software vector mode and
hardware vector mode. The state of the hardware vector enable bit, INTC_MCR[HVEN], determines
which mode is used.

In debug mode the interrupt controller operation is identical to its normal operation of software vector
mode or hardware vector mode.

Interrupt Controller (INTC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 10-5

10.1.4.1 Software Vector Mode

In software vector mode, there is a common interrupt exception handler address which is calculated by
hardware as shown in Figure 10-5. The upper half of the interrupt vector prefix register (IVPR) is added
to the offset contained in the external input interrupt vector offset register (IVOR4). Because bits
IVOR4[28:31] are not part of the offset value, the vector offset must be located on a quad-word (16-byte)
aligned location in memory.

In software vector mode, the interrupt exception handler software must read the INTC interrupt
acknowledge register (INTC_IACKR) to obtain the vector associated with the corresponding peripheral
or software interrupt request. The INTC_IACKR contains a 32-bit address composed of a vector table base
address (VTBA) plus an offset which is the interrupt vector (INTVEC). The address is then used to branch
to the corresponding routine for that peripheral or software interrupt source.

Figure 10-5. Software Vector Mode: Interrupt Exception Handler Address Calculation

Reading the INTC_IACKR acknowledges the INTC interrupt request and negates the interrupt request to
the processor. The interrupt request to the processor does not clear if a higher priority interrupt request
arrives. Even in this case, INTVEC does not update to the higher priority request until the lower priority
interrupt request is acknowledged by reading the INTC_IACKR. Reading INTC_IACKR pushes the PRI
value in the INTC current priority register (INTC_CPR) onto the LIFO and updates PRI in the INTC_CPR
with the priority of the interrupt request. The INTC_CPR masks any peripheral or software settable
interrupt request at the same or lower priority of the current value of the PRI field in INTC_CPR from
generating an interrupt request to the processor.

The last actions of the interrupt exception handler must be the write to the end-of-interrupt register
(INTC_EOIR). Writing to the INTC_EOIR signals the end of the servicing of the interrupt request. The
INTC LIFO is popped into the INTC_CPR's PRI field by writing to the INTC_EOIR, and the size of a
write does not affect the operation of the write. Those values and sizes written to this register neither
update the INTC_EOIR contents nor affect whether the LIFO pops. For possible future compatibility,
write four bytes of all 0s to the INTC_EOIR. The timing relationship between popping the LIFO and
disabling recognition of external input has no restriction. The writes can happen in either order.

However, disabling recognition of the external input before popping the LIFO eases the calculation of the
maximum pipe depth at the cost of postponing the servicing of the next interrupt request.

3116150
IVPR

31282716150
+ IVOR4

31282716150

0x0

0x0

OFFSET

OFFSETPREFIX

0x0000

PREFIX

= Interrupt Exception

0x0000

Handler Address

Interrupt Controller (INTC)

MPC5534 Microcontroller Reference Manual, Rev. 2

10-6 Freescale Semiconductor

10.1.4.2 Hardware Vector Mode

In hardware vector mode, the interrupt exception handler address is specific to the peripheral or software
settable interrupt source rather than being common to all of them. No IVOR is used. The interrupt
exception handler address is calculated by hardware as shown in Figure 10-6. The upper half of the
interrupt vector prefix register (IVPR) is added to an offset which corresponds to the peripheral or software
interrupt source which caused the interrupt request. The offset matches the value in the Interrupt Vector
field, INTC_IACKR[INTVEC]. Each interrupt exception handler address is aligned on a quad word
(16-byte) boundary. IVOR4 is unused in this mode, and software does not need to read INTC_IACKR to
get the interrupt vector number.

Figure 10-6. Hardware Vector Mode: Interrupt Exception Handler Address Calculation

The processor negates INTC interrupt request when automatically acknowledging the interrupt request.
However, the interrupt request to the processor does not negate if a higher priority interrupt request arrives.
Even in this case, the interrupt vector number does not update to the higher priority request until the lower
priority request is acknowledged by the processor.

The assertion of the interrupt acknowledge signal pushes the PRI value in the INTC_CPR onto the LIFO
and updates PRI in the INTC_CPR with the new priority.

10.2 External Signal Description
The INTC does not have any direct external MCU signals. However, there are fifteen external pins which
can be configured in the SIU as external interrupt request input pins. When configured in this function, an
interrupt on the pin sets a corresponding SIU external interrupt flag. These flags can cause one of five
peripheral interrupt requests to the interrupt controller. See Table 10-2 for a list of the external interrupt
pins. See the SIU chapter for more information on these pins.

3116150
IVPR

312827161500

+ Hardware Vector

150

0b0000INTC_IACKR[INTVEC]

PREFIX

0x0000

PREFIX

18

0b000

19

0x0000

31282716

0b0000IRQ SPECIFIC OFFSET

18

0b000

1916

= Interrupt Exception
Handler Address

Mode Offset

Interrupt Controller (INTC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 10-7

Table 10-2. External Interrupt Signals

Function1

1 For each pin in the table, each line in the function column is a separate function of the pin. For all device I/O
pins the selection of primary, secondary or tertiary function is done in the SIU module except where explicitly
noted.

Description P/A/G2

2 Primary, alternate, or GPIO function.

I/O
Type

Reset
Function/

State3

3 Terminology is O - output, I - input, Up - weak pull up enabled, Down - weak pull down enabled, Low - output
driven low, High - output driven high.

Post Reset
Function/

State4

4 Function after reset of GPI is general-purpose input.

Pin

EMIOS[14:15] eMIOS channel (output only) P O — /
WKPCFG

— /
WKPCFG

AF19:
AD18IRQ[0:1] External interrupt request A I

GPIO[193:194] GPIO G I/O

BOOTCFG[0]5

5 This signal is not available on the 208 package due to pin limitations.

Boot configuration input P I BOOTCFG /
Down

— / Down AA25:
Y24IRQ[2] External interrupt request A I

GPIO[211] GPIO G I/O

BOOTCFG[1] Boot configuration input P I BOOTCFG /
Down

— / Down AA25:
Y24IRQ[3] External interrupt request A I

GPIO[212] GPIO G I/O

PLLCFG[0] FMPLL mode selection P I PLLCFG /
Up

— / Up AB25

IRQ[4] External Interrupt Request A I

GPIO[208] GPIO G I/O

PLLCFG[1] FMPLL mode selection P I PLLCFG /
Up

— / Up AA24

IRQ[5] External Interrupt Request A I

SOUTD DSPI D Data Output A2 O

GPIO[209] GPIO G I/O

TCRCLKA eTPU A TCR clock P I — / Up — / Up N4

IRQ[7] External interrupt request A I

GPIO[113] GPIO G I/O

ETPUA[20:23] eTPU A channel P I/O — /
WKPCFG

— /
WKPCFG

H1:G4
G2:G1IRQ[8:11] External interrupt request A I

GPIO[134:137] GPIO G I/O

ETPUA[24:26] eTPU A channel (output only) P O —
/WKPCFG

—
/WKPCFG

F1:G3:
F3IRQ[12:14] External interrupt request A I

GPIO[138:140] GPIO G I/O

ETPUA[27] eTPU A channel (output only) P O —
/WKPCFG

—
/WKPCFG

F2

IRQ[15] External interrupt request A I

GPIO[141] GPIO G I/O

Interrupt Controller (INTC)

MPC5534 Microcontroller Reference Manual, Rev. 2

10-8 Freescale Semiconductor

10.3 Memory Map/Register Definition
Table 10-3 is the INTC memory map.

10.3.1 Register Descriptions

With the exception of the INTC_SSCIn and INTC_PSRn registers, all of the registers are 32 bits in width.
Any combination of accessing the 4 bytes of a register with a single access is supported, provided that the
access does not cross a register boundary. These supported accesses include types and sizes of 8 bits,
aligned 16 bits, and aligned 32 bits.

Although INTC_SSCIn and INTC_PSRn and 8 bits wide, they can be accessed with a single 16-bit or
32-bit access, provided that the access does not cross a 32-bit boundary.

In software vector mode, the side effects of a read of the INTC interrupt acknowledge register
(INTC_IACKR) are the same regardless of the size of the read. In either software or hardware vector

Table 10-3. INTC Memory Map

Address Register Name Register Description Bits

Base (0xFFF4_8000) INTC_MCR INTC module configuration register 32

Base + 0x0004 — Reserved —

Base + 0x0008 INTC_CPR INTC current priority register 32

Base + 0x000C — Reserved —

Base + 0x0010 INTC_IACKR INTC interrupt acknowledge register 1

1 When the HVEN bit in the INTC_MCR is asserted, a read of the INTC_IACKR has no side effects.

32

Base + 0x0014 — Reserved —

Base + 0x0018 INTC_EOIR INTC end-of-interrupt register 32

Base + 0x001C — Reserved —

Base + 0x0020 INTC_SSCIR0 INTC software set/clear interrupt register 0 8

Base + 0x0021 INTC_SSCIR1 INTC software set/clear interrupt register 1 8

Base + 0x0022 INTC_SSCIR2 INTC software set/clear interrupt register 2 8

Base + 0x0023 INTC_SSCIR3 INTC software set/clear interrupt register 3 8

Base + 0x0024 INTC_SSCIR4 INTC software set/clear interrupt register 4 8

Base + 0x0025 INTC_SSCIR5 INTC software set/clear interrupt register 5 8

Base + 0x0026 INTC_SSCIR6 INTC software set/clear interrupt register 6 8

Base + 0x0027 INTC_SSCIR7 INTC software set/clear interrupt register 7 8

Base + (0x0028–0x003C) — Reserved —

Base + (0x0040–0x0110) INTC_PSRn INTC priority select register2 0–211

2 The PRI fields are “Reserved” for peripheral interrupt requests whose vectors are labeled as Reserved in Table 10-9.

8

Interrupt Controller (INTC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 10-9

mode, the size of a write to the INTC end-of-interrupt register (INTC_EOIR) does not affect the operation
of the write.

10.3.1.1 INTC Module Configuration Register (INTC_MCR)

The INTC_MCR is used to configure options of the INTC.

10.3.1.2 INTC Current Priority Register (INTC_CPR)

The INTC_CPR masks any peripheral or software settable interrupt request set at the same or lower
priority as the current value of the INTC_CPR[PRI] field from generating an interrupt request to the
processor. When the INTC interrupt acknowledge register (INTC_IACKR) is read in software vector
mode or the interrupt acknowledge signal from the processor is asserted in hardware vector mode, the
value of PRI is pushed onto the LIFO, and PRI is updated with the priority of the preempting interrupt
request. When the INTC end-of-interrupt register (INTC_EOIR) is written, the LIFO is popped into the
INTC_CPR’s PRI field.

The masking priority can be raised or lowered by writing to the PRI field, supporting the PCP. See
Section 10.5.5, “Priority Ceiling Protocol.”

Address: Base + 0x0000 Access: User R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0
VTES

0 0 0 0
HVEN

W

Reset 0

Figure 10-7. INTC Module Configuration Register (INTC_MCR)

Table 10-4. INTC_MCR Field Descriptions

Field Description

0–25 Reserved, must be cleared.

26
VTES

Vector table entry size. Controls the number of ‘0’s to the right of INTVEC in Section 10.3.1.3, “INTC Interrupt
Acknowledge Register (INTC_IACKR). If the contents of INTC_IACKR are used as an address of an entry in a vector
table as in software vector mode, then the number of rightmost ‘0’s determines the size of each vector table entry.
VTES impacts software vector mode operation but also affects INTC_IACKR[INTVEC] position in both hardware
vector mode and software vector mode.
0 4 bytes (Normal expected use)
1 8 bytes

27–30 Reserved, must be cleared.

31
HVEN

Hardware vector enable. Controls whether the INTC is in hardware vector mode or software vector mode. See
Section 10.1.4, “Modes of Operation”, for the details of the handshaking with the processor in each mode.
0 Software vector mode
1 Hardware vector mode

Interrupt Controller (INTC)

MPC5534 Microcontroller Reference Manual, Rev. 2

10-10 Freescale Semiconductor

NOTE
On some eSys MCUs, a store to raise the PRI field which closely precedes
an access to a shared resource can result in a non-coherent access to that
resource unless an MBAR or MSYNC followed by an ISYNC sequence of
instructions is executed between the accesses. An MBAR or MSYNC
instruction is also necessary after accessing the resource but before lowering
the PRI field. See Section 10.5.5.2, “Ensuring Coherency.”

10.3.1.3 INTC Interrupt Acknowledge Register (INTC_IACKR)

The INTC_IACKR provides a value that can be used to load the address of an ISR from a vector table. The
vector table can be composed of addresses of the ISRs specific to their respective interrupt vectors.

Also, in software vector mode, the INTC_IACKR has side effects from reads. The side effects are the same
regardless of the size of the read. Reading the INTC_IACKR does not have side effects in hardware vector
mode.

NOTE
The INTC_IACKR must not be read speculatively while in software vector
mode. Therefore, for future compatibility, the TLB entry covering the
INTC_IACKR must be configured to be guarded.

In software vector mode, the INTC_IACKR must be read before setting
MSR[EE]. No synchronization instruction is needed after reading the
INTC_IACKR and before setting MSR[EE].

Address: Base + 0x0008 (INTC_CPR) Access: User R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0
PRI

W

Reset 0 1 1 1 1

Figure 10-8. INTC Current Priority Register (INTC_CPR)

Table 10-5. INTC_CPR Field Descriptions

Field Description

0–27 Reserved, must be cleared.

28–31
PRI

Priority. PRI is the priority of the currently executing ISR according to the field values defined below.
1111 Priority 15 (highest)
1110 Priority 14
...
0001 Priority 1
0000 Priority 0 (lowest)

Interrupt Controller (INTC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 10-11

However, the time for the processor to recognize the assertion or negation
of the external input to it is not defined by the book E architecture and can
be greater than 0. Therefore, insert instructions between the reading of the
INTC_IACKR and the setting of MSR[EE] that consume at least two
processor clock cycles. This length of time allows the negation of the
interrupt request to propagate through the processor before MSR[EE] is set.

10.3.1.4 INTC End-of-Interrupt Register (INTC_EOIR)

Writing to the INTC_EOIR signals the end of the servicing of the interrupt request. When the INTC_EOIR
is written, the priority last pushed on the LIFO is popped into INTC_CPR. The values and size of data
written to the INTC_EOIR are ignored. Those values and sizes written to this register neither update the
INTC_EOIR contents or affect whether the LIFO pops. For possible future compatibility, write four bytes
of all 0’s to the INTC_EOIR.

Reading the INTC_EOIR has no effect on the LIFO.

Address: Base + 0x0010 (INTC_IACKR) Access: User R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
VTBA

INTVEC 0 0

W

Reset 0

Figure 10-9. INTC Interrupt Acknowledge Register (INTC_IACKR)—INTC_MCR[VTES] = 0

Address: Base + 0x0010 (INTC_IACKR) Access: User R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
VTBA

INTVEC 0 0 0

W

Reset 0

Figure 10-10. INTC Interrupt Acknowledge Register (INTC_IACKR)—INTC_MCR[VTES] = 1

Table 10-6. INTC_IACKR Field Descriptions

Field Description

0–20 or
0–19
VTBA

Vector table base address. Can be the base address of a vector table of addresses of ISRs. The VTBA only uses
the leftmost 20 bits when the VTES bit in INTC_MCR is asserted.

21–29 or
20–28

INTVEC

Interrupt vector. Vector of the peripheral or software-settable interrupt request that caused the interrupt request to
the processor. When the interrupt request to the processor asserts, the INTVEC is updated, whether the INTC is in
software or hardware vector mode.
Note: If INTC_MCR[VTES] = 1, then the INTVEC field is shifted left one position to bits 20–28. VTBA is then

shortened by one bit to bits 0–19.

30–31 or
29–31

Reserved, must be cleared.

Interrupt Controller (INTC)

MPC5534 Microcontroller Reference Manual, Rev. 2

10-12 Freescale Semiconductor

10.3.1.5 INTC Software Set/Clear Interrupt Registers (INTC_SSCIR[0–7])

The INTC_SSCIRn support the setting or clearing of software settable interrupt requests. These registers
contain eight independent sets of bits to set and clear a corresponding flag bit by software. With the
exception of being set by software, this flag bit behaves the same as a flag bit set within a peripheral. This
flag bit generates an interrupt request within the INTC just like a peripheral interrupt request. Writing a 1
to SETn leaves SETn unchanged at 0, but sets CLRn. Writing a 0 to SETn has no effect. CLRn is the flag
bit. Writing a 1 to CLRn clears it. Writing a 0 to CLRn has no effect. If a 1 is written to a pair SETn and
CLRn bits at the same time, CLRn is asserted, regardless of whether CLRn was asserted before the write.

Although INTC_SSCIn is 8-bits wide, it can be accessed with a single 16-bit or 32-bit access, provided
that the access does not cross a 32-bit boundary.

10.3.1.6 INTC Priority Select Registers (INTC_PSR[0–211])

The INTC_PSRn support the selection of an individual priority for each source of interrupt request. The
unique vector of each peripheral or software settable interrupt request determines which INTC_PSRn is
assigned to that interrupt request. The software settable interrupt requests 0–7 are assigned vectors 0–7,
and their priorities are configured in INTC_PSR0–INTC_PSR7, respectively. The peripheral interrupt

Address: Base + 0x0018 (INTC_EOIR) Access: User W/O

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0

W EOIR

Reset 0

Figure 10-11. INTC End-of-Interrupt Register (INTC_EOIR)

Address: Base + 0x0020 + n (INTC_SSCIRn); n = 0–7 Access: User R/W

0 1 2 3 4 5 6 7

R 0 0 0 0 0 0 0
CLRn

W SETn

Reset 0 0 0 0 0 0 0 0

Figure 10-12. INTC Software Set/Clear Interrupt Register (INTC_SSCIRn)

Table 10-7. INTC_SSCIRn Field Descriptions

Field Description

0–5 Reserved, must be cleared.

6
SETn

Set flag bits. Writing a 1 sets the CLRn bit. Writing a 0 has no effect. Each SETn always is read as a 0.

7
CLRn

Clear flag bits. CLRn is the flag bit. Writing a 1 to CLRn clear it provided that a 1 is not written simultaneously to its
corresponding SETn bit. Writing a 0 to CLRn has no effect.
0 Interrupt request not pending within INTC.
1 Interrupt request pending within INTC.

Interrupt Controller (INTC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 10-13

requests are assigned vectors 8–211 and their priorities are configured in INTC_PSR8 through
INTC_PSR211, respectively.

Although INTC_PSRn is 8 bits wide, it can be accessed with a single 16-bit or 32-bit access, provided that
the access does not cross a 32-bit boundary.

NOTE
Do not modify the PRIn field of an INTC_PSRn while its corresponding
peripheral or software settable interrupt request is asserted.

10.4 Functional Description

10.4.1 Interrupt Request Sources

The INTC has two types of interrupt requests, peripheral and software settable. The assignments between
the interrupt requests from the modules to the vectors for input to the e200z3 are shown in Table 10-9. The
Offset column lists the IRQ specific offsets when using hardware vector mode. The Source column is
written in C language syntax. The syntax is ‘module_register[bit].’ Interrupt requests from the same
module location or ORed together. The individual interrupt priorities are selected in INTC_PSRn, where
the specific select register is assigned according to the vector.

Address: Base + 0x0040 + n (INTC_PSRn); n = 0–211 Access: User R/W

0 1 2 3 4 5 6 7

R 0 0 0 0
PRIn

W

Reset 0 0 0 0 0 0 0 0

Figure 10-13. INTC Priority Select Registers (INTC_PSRn)

Table 10-8. INTC_SSCIRn Field Descriptions

Field Description

0–3 Reserved, must be cleared.

4–7
PRIn

Priority select. Selects the priority for corresponding interrupt request.
1111 Priority 15 (highest)
1110 Priority 14
...
0001 Priority 1
0000 Priority 0 (lowest)

Interrupt Controller (INTC)

MPC5534 Microcontroller Reference Manual, Rev. 2

10-14 Freescale Semiconductor

Table 10-9. INTC: Interrupt Request Sources

Hardware Vector
Mode Offset

Vector Source1 Description

Software

0x0000 0 INTC_SSCIR0[CLR0] INTC software settable Clear flag 0

0x0010 1 INTC_SSCIR1[CLR1] INTC software settable Clear flag 1

0x0020 2 INTC_SSCIR2[CLR2] INTC software settable Clear flag 2

0x0030 3 INTC_SSCIR3[CLR3] INTC software settable Clear flag 3

0x0040 4 INTC_SSCIR4[CLR4] INTC software settable Clear flag 4

0x0050 5 INTC_SSCIR5[CLR5] INTC software settable Clear flag 5

0x0060 6 INTC_SSCIR6[CLR6] INTC software settable Clear flag 6

0x0070 7 INTC_SSCIR7[CLR7] INTC software settable Clear flag 7

Watchdog / ECC

0x0080 8 ECSM_SWTIR[SWTIC] ECSM Software Watchdog Interrupt flag

0x0090 9 ECSM_ESR[RNCE]
ECSM_ESR[FNCE]

ECSM combined interrupt requests:
Internal SRAM Non-Correctable Error and flash
Non-Correctable Error

eDMA

0x00A0 10 EDMA_ERL[ERR31:ERR0] eDMA channel Error flags 31–0

0x00B0 11 EDMA_IRQRL[INT00] eDMA channel Interrupt 0

0x00C0 12 EDMA_IRQRL[INT01] eDMA channel Interrupt 1

0x00D0 13 EDMA_IRQRL[INT02] eDMA channel Interrupt 2

0x00E0 14 EDMA_IRQRL[INT03] eDMA channel Interrupt 3

0x00F0 15 EDMA_IRQRL[INT04] eDMA channel Interrupt 4

0x0100 16 EDMA_IRQRL[INT05] eDMA channel Interrupt 5

0x0110 17 EDMA_IRQRL[INT06] eDMA channel Interrupt 6

0x0120 18 EDMA_IRQRL[INT07] eDMA channel Interrupt 7

0x0130 19 EDMA_IRQRL[INT08] eDMA channel Interrupt 8

0x0140 20 EDMA_IRQRL[INT09] eDMA channel Interrupt 9

0x0150 21 EDMA_IRQRL[INT10] eDMA channel Interrupt 10

0x0160 22 EDMA_IRQRL[INT11] eDMA channel Interrupt 11

0x0170 23 EDMA_IRQRL[INT12] eDMA channel Interrupt 12

0x0180 24 EDMA_IRQRL[INT13] eDMA channel Interrupt 13

0x0190 25 EDMA_IRQRL[INT14] eDMA channel Interrupt 14

0x01A0 26 EDMA_IRQRL[INT15] eDMA channel Interrupt 15

0x01B0 27 EDMA_IRQRL[INT16] eDMA channel Interrupt 16

Interrupt Controller (INTC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 10-15

0x01C0 28 EDMA_IRQRL[INT17] eDMA channel Interrupt 17

0x01D0 29 EDMA_IRQRL[INT18] eDMA channel Interrupt 18

0x01E0 30 EDMA_IRQRL[INT19] eDMA channel Interrupt 19

0x01F0 31 EDMA_IRQRL[INT20] eDMA channel Interrupt 20

0x0200 32 EDMA_IRQRL[INT21] eDMA channel Interrupt 21

0x0210 33 EDMA_IRQRL[INT22] eDMA channel Interrupt 22

0x0220 34 EDMA_IRQRL[INT23] eDMA channel Interrupt 23

0x0230 35 EDMA_IRQRL[INT24] eDMA channel Interrupt 24

0x0240 36 EDMA_IRQRL[INT25] eDMA channel Interrupt 25

0x0250 37 EDMA_IRQRL[INT26] eDMA channel Interrupt 26

0x0260 38 EDMA_IRQRL[INT27] eDMA channel Interrupt 27

0x0270 39 EDMA_IRQRL[INT28] eDMA channel Interrupt 28

0x0280 40 EDMA_IRQRL[INT29] eDMA channel Interrupt 29

0x0290 41 EDMA_IRQRL[INT30] eDMA channel Interrupt 30

0x02A0 42 EDMA_IRQRL[INT31] eDMA channel Interrupt 31

PLL

0x02B0 43 FMPLL_SYNSR[LOCF] FMPLL Loss of Clock Flag

0x02C0 44 FMPLL_SYNSR[LOLF] FMPLL Loss of Lock Flag

SIU

0x02D0 45 SIU_OSR[OVF15:OVF0] SIU combined overrun interrupt requests of the
external interrupt Overrun Flags

0x02E0 46 SIU_EISR[EIF0] SIU External Interrupt Flag 0

0x02F0 47 SIU_EISR[EIF1] SIU External Interrupt Flag 1

0x0300 48 SIU_EISR[EIF2] SIU External Interrupt Flag 2

0x0310 49 SIU_EISR[EIF3] SIU External Interrupt Flag 3

0x0320 50 SIU_EISR[EIF15:EIF4] SIU External Interrupt Flags 15–4

eMIOS

0x0330 51 EMIOS_GFR[F0] eMIOS channel 0 Flag

0x0340 52 EMIOS_GFR[F1] eMIOS channel 1 Flag

0x0350 53 EMIOS_GFR[F2] eMIOS channel 2 Flag

0x0360 54 EMIOS_GFR[F3] eMIOS channel 3 Flag

0x0370 55 EMIOS_GFR[F4] eMIOS channel 4 Flag

Table 10-9. INTC: Interrupt Request Sources (continued)

Hardware Vector
Mode Offset

Vector Source1 Description

Interrupt Controller (INTC)

MPC5534 Microcontroller Reference Manual, Rev. 2

10-16 Freescale Semiconductor

0x0380 56 EMIOS_GFR[F5] eMIOS channel 5 Flag

0x0390 57 EMIOS_GFR[F6] eMIOS channel 6 Flag

0x03A0 58 EMIOS_GFR[F7] eMIOS channel 7 Flag

0x03B0 59 EMIOS_GFR[F8] eMIOS channel 8 Flag

0x03C0 60 EMIOS_GFR[F9] eMIOS channel 9 Flag

0x03D0 61 EMIOS_GFR[F10] eMIOS channel 10 Flag

0x03E0 62 EMIOS_GFR[F11] eMIOS channel 11 Flag

0x03F0 63 EMIOS_GFR[F12] eMIOS channel 12 Flag

0x0400 64 EMIOS_GFR[F13] eMIOS channel 13 Flag

0x0410 65 EMIOS_GFR[F14] eMIOS channel 14 Flag

0x0420 66 EMIOS_GFR[F15] eMIOS channel 15 Flag

eTPU A

0x0430 67 ETPU_MCR[MGEA]
ETPU_MCR[MGEB]
ETPU_MCR[ILFA]
ETPU_MCR[ILFB]
ETPU_MCR[SCMMISF]

eTPU Global Exception

0x0440 68 ETPU_CISR_A[CIS0] eTPU Engine A Channel 0 Interrupt Status

0x0450 69 ETPU_CISR_A[CIS1] eTPU Engine A Channel 1 Interrupt Status

0x0460 70 ETPU_CISR_A[CIS2] eTPU Engine A Channel 2 Interrupt Status

0x0470 71 ETPU_CISR_A[CIS3] eTPU Engine A Channel 3 Interrupt Status

0x0480 72 ETPU_CISR_A[CIS4] eTPU Engine A Channel 4 Interrupt Status

0x0490 73 ETPU_CISR_A[CIS5] eTPU Engine A Channel 5 Interrupt Status

0x04A0 74 ETPU_CISR_A[CIS6] eTPU Engine A Channel 6 Interrupt Status

0x04B0 75 ETPU_CISR_A[CIS7] eTPU Engine A Channel 7 Interrupt Status

0x04C0 76 ETPU_CISR_A[CIS8] eTPU Engine A Channel 8 Interrupt Status

0x04D0 77 ETPU_CISR_A[CIS9] eTPU Engine A Channel 9 Interrupt Status

0x04E0 78 ETPU_CISR_A[CIS10] eTPU Engine A Channel 10 Interrupt Status

0x04F0 79 ETPU_CISR_A[CIS11] eTPU Engine A Channel 11 Interrupt Status

0x0500 80 ETPU_CISR_A[CIS12] eTPU Engine A Channel 12 Interrupt Status

0x0510 81 ETPU_CISR_A[CIS13] eTPU Engine A Channel 13 Interrupt Status

0x0520 82 ETPU_CISR_A[CIS14] eTPU Engine A Channel 14 Interrupt Status

0x0530 83 ETPU_CISR_A[CIS15] eTPU Engine A Channel 15 Interrupt Status

0x0540 84 ETPU_CISR_A[CIS16] eTPU Engine A Channel 16 Interrupt Status

Table 10-9. INTC: Interrupt Request Sources (continued)

Hardware Vector
Mode Offset

Vector Source1 Description

Interrupt Controller (INTC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 10-17

0x0550 85 ETPU_CISR_A[CIS17] eTPU Engine A Channel 17 Interrupt Status

0x0560 86 ETPU_CISR_A[CIS18] eTPU Engine A Channel 18 Interrupt Status

0x0570 87 ETPU_CISR_A[CIS19] eTPU Engine A Channel 19 Interrupt Status

0x0580 88 ETPU_CISR_A[CIS20] eTPU Engine A Channel 20 Interrupt Status

0x0590 89 ETPU_CISR_A[CIS21] eTPU Engine A Channel 21 Interrupt Status

0x05A0 90 ETPU_CISR_A[CIS22] eTPU Engine A Channel 22 Interrupt Status

0x05B0 91 ETPU_CISR_A[CIS23] eTPU Engine A Channel 23 Interrupt Status

0x05C0 92 ETPU_CISR_A[CIS24] eTPU Engine A Channel 24 Interrupt Status

0x05D0 93 ETPU_CISR_A[CIS25] eTPU Engine A Channel 25 Interrupt Status

0x05E0 94 ETPU_CISR_A[CIS26] eTPU Engine A Channel 26 Interrupt Status

0x05F0 95 ETPU_CISR_A[CIS27] eTPU Engine A Channel 27 Interrupt Status

0x0600 96 ETPU_CISR_A[CIS28] eTPU Engine A Channel 28 Interrupt Status

0x0610 97 ETPU_CISR_A[CIS29] eTPU Engine A Channel 29 Interrupt Status

0x0620 98 ETPU_CISR_A[CIS30] eTPU Engine A Channel 30 Interrupt Status

0x0630 99 ETPU_CISR_A[CIS31] eTPU Engine A Channel 31 Interrupt Status

eQADC

0x0640 100 EQADC_FISRx[TORF]
EQADC_FISRx[RFOF]
EQADC_FISRx[CFUF]

eQADC combined overrun interrupt request s from
all of the FIFOs:
Trigger Overrun, Receive FIFO Overflow, and
command FIFO Underflow

0x0650 101 EQADC_FISR0[NCF] eQADC command FIFO 0 Non-Coherency Flag

0x0660 102 EQADC_FISR0[PF] eQADC command FIFO 0 Pause Flag

0x0670 103 EQADC_FISR0[EOQF] eQADC command FIFO 0 command queue End of
Queue Flag

0x0680 104 EQADC_FISR0[CFFF] eQADC Command FIFO 0 Fill Flag

0x0690 105 EQADC_FISR0[RFDF] eQADC Receive FIFO 0 Drain Flag

0x06A0 106 EQADC_FISR1[NCF] eQADC command FIFO 1 Non-Coherency Flag

0x06B0 107 EQADC_FISR1[PF] eQADC command FIFO 1 Pause Flag

0x06C0 108 EQADC_FISR1[EOQF] eQADC command FIFO 1 command queue End of
Queue Flag

0x06D0 109 EQADC_FISR1[CFFF] eQADC Command FIFO 1 Fill Flag

0x06E0 110 EQADC_FISR1[RFDF] eQADC Receive FIFO 1 Drain Flag

0x06F0 111 EQADC_FISR2[NCF] eQADC command FIFO 2 Non-Coherency Flag

0x0700 112 EQADC_FISR2[PF] eQADC command FIFO 2 Pause Flag

Table 10-9. INTC: Interrupt Request Sources (continued)

Hardware Vector
Mode Offset

Vector Source1 Description

Interrupt Controller (INTC)

MPC5534 Microcontroller Reference Manual, Rev. 2

10-18 Freescale Semiconductor

0x0710 113 EQADC_FISR2[EOQF] eQADC command FIFO 2 command queue End of
Queue Flag

0x0720 114 EQADC_FISR2[CFFF] eQADC Command FIFO 2 Fill Flag

0x0730 115 EQADC_FISR2[RFDF] eQADC Receive FIFO 2 Drain Flag

0x0740 116 EQADC_FISR3[NCF] eQADC command FIFO 3 Non-Coherency Flag

0x0750 117 EQADC_FISR3[PF] eQADC command FIFO 3 Pause Flag

0x0760 118 EQADC_FISR3[EOQF] eQADC command FIFO 3 command queue End of
Queue Flag

0x0770 119 EQADC_FISR3[CFFF] eQADC Command FIFO 3 Fill Flag

0x0780 120 EQADC_FISR3[RFDF] eQADC Receive FIFO 3 Drain Flag

0x0790 121 EQADC_FISR4[NCF] eQADC command FIFO 4 Non-Coherency Flag

0x07A0 122 EQADC_FISR4[PF] eQADC command FIFO 4 Pause Flag

0x07B0 123 EQADC_FISR4[EOQF] eQADC command FIFO 4 command queue End of
Queue Flag

0x07C0 124 EQADC_FISR4[CFFF] eQADC Command FIFO 4 Fill Flag

0x07D0 125 EQADC_FISR4[RFDF] eQADC Receive FIFO 4 Drain Flag

0x07E0 126 EQADC_FISR5[NCF] eQADC command FIFO 5 Non-Coherency Flag

0x07F0 127 EQADC_FISR5[PF] eQADC command FIFO 5 Pause Flag

0x0800 128 EQADC_FISR5[EOQF] eQADC command FIFO 5 command queue End of
Queue Flag

0x0810 129 EQADC_FISR5[CFFF] eQADC Command FIFO 5 Fill Flag

0x0820 130 EQADC_FISR5[RFDF] eQADC Receive FIFO 5 Drain Flag

DSPI B, DSPI C, DSPI D

0x0830 131 DSPI_BSR[TFUF]
DSPI_BSR[RFOF]

DSPI B combined overrun interrupt requests:
Transmit FIFO Underflow and Receive FIFO
Overflow

0x0840 132 DSPI_BSR[EOQF] DSPI B transmit FIFO End of Queue Flag

0x0850 133 DSPI_BSR[TFFF] DSPI B Transmit FIFO Fill Flag

0x0860 134 DSPI_BSR[TCF] DSPI B Transfer Complete Flag

0x0870 135 DSPI_BSR[RFDF] DSPI B Receive FIFO Drain Flag

0x0880 136 DSPI_CSR[TFUF]
DSPI_CSR[RFOF]

DSPI C combined overrun interrupt requests:
Transmit FIFO Underflow and Receive FIFO
Overflow

0x0890 137 DSPI_CSR[EOQF] DSPI C transmit FIFO End of Queue Flag

0x08A0 138 DSPI_CSR[TFFF] DSPI C Transmit FIFO Fill Flag

Table 10-9. INTC: Interrupt Request Sources (continued)

Hardware Vector
Mode Offset

Vector Source1 Description

Interrupt Controller (INTC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 10-19

0x08B0 139 DSPI_CSR[TCF] DSPI C Transfer Complete Flag

0x08C0 140 DSPI_CSR[RFDF] DSPI C Receive FIFO Drain Flag

0x08D0 141 DSPI_DSR[TFUF]
DSPI_DSR[RFOF]

DSPI D combined overrun interrupt requests:
Transmit FIFO Underflow and Receive FIFO
Overflow

0x08E0 142 DSPI_DSR[EOQF] DSPI D transmit FIFO End of Queue Flag

0x08F0 143 DSPI_DSR[TFFF] DSPI D Transmit FIFO Fill Flag

0x0900 144 DSPI_DSR[TCF] DSPI D Transfer Complete Flag

0x0910 145 DSPI_DSR[RFDF] DSPI D Receive FIFO Drain Flag

eSCI

0x0920 146 ESCIA_SR[TDRE]
 ESCIA_SR[TC]
 ESCIA_SR[RDRF]
 ESCIA_SR[IDLE]
 ESCIA_SR[OR]
ESCIA_SR[NF]
ESCIA_SR[FE]
ESCIA_SR[PF]

 ESCIA_SR[BERR]
 ESCIA_SR[RXRDY]
 ESCIA_SR[TXRDY]
 ESCIA_SR[LWAKE]
 ESCIA_SR[STO]
 ESCIA_SR[PBERR]
 ESCIA_SR[CERR]
 ESCIA_SR[CKERR]
 ESCIA_SR[FRC]
 ESCIA_SR[OVFL]

Combined Interrupt Requests of ESCI Module A:
Transmit Data Register Empty, Transmit
Complete, Receive Data Register Full, Idle line,
Overrun, Noise Flag, Framing Error Flag, and
Parity Error Flag interrupt requests, SCI Status
Register 2 Bit Error interrupt request, LIN Status
Register 1 Receive Data Ready, Transmit Data
Ready, Received LIN Wakeup Signal, Slave
TimeOut, Physical Bus Error, CRC Error,
Checksum Error, Frame Complete interrupts
requests, and LIN Status Register 2 Receive
Register Overflow

0x0930 147 Reserved Reserved

0x0940 148 Reserved Reserved

Table 10-9. INTC: Interrupt Request Sources (continued)

Hardware Vector
Mode Offset

Vector Source1 Description

Interrupt Controller (INTC)

MPC5534 Microcontroller Reference Manual, Rev. 2

10-20 Freescale Semiconductor

0x0950 149 ESCIB_SR[TDRE]
ESCIB_SR[TC]
ESCIB_SR[RDRF]
ESCIB_SR[IDLE]
ESCIB_SR[OR]
ESCIB_SR[NF]
ESCIB_SR[FE]
ESCIB_SR[PF]
ESCIB_SR[BERR]
ESCIB_SR[RXRDY]
ESCIB_SR[TXRDY]
ESCIB_SR[LWAKE]
ESCIB_SR[STO]
ESCIB_SR[PBERR]
ESCIB_SR[CERR]
ESCIB_SR[CKERR]
ESCIB_SR[FRC]
ESCIB_SR[OVFL]

Combined Interrupt Requests of ESCI Module B:
Transmit Data Register Empty, Transmit
Complete, Receive Data Register Full, Idle line,
Overrun, Noise Flag, Framing Error Flag, and
Parity Error Flag interrupt requests, SCI Status
Register 2 Bit Error interrupt request, LIN Status
Register 1 Receive Data Ready, Transmit Data
Ready, Received LIN Wakeup Signal, Slave
TimeOut, Physical Bus Error, CRC Error,
Checksum Error, Frame Complete interrupts
requests, and LIN Status Register 2 Receive
Register Overflow

0x0960 150 Reserved Reserved

0x0970 151 Reserved Reserved

FlexCAN A and FlexCAN C

0x0980 152 CANA_ESR[BOFF_INT] FLEXCAN A Bus Off Interrupt

0x0990 153 CANA_ESR[ERR_INT] FLEXCAN A Error Interrupt

0x09A0 154 Reserved Reserved

0x09B0 155 CANA_IFRL[BUF0] FLEXCAN A Buffer 0 Interrupt

0x09C0 156 CANA_IFRL[BUF1] FLEXCAN A Buffer 1 Interrupt

0x09D0 157 CANA_IFRL[BUF2] FLEXCAN A Buffer 2 Interrupt

0x09E0 158 CANA_IFRL[BUF3] FLEXCAN A Buffer 3 Interrupt

0x09F0 159 CANA_IFRL[BUF4] FLEXCAN A Buffer 4 Interrupt

0x0A00 160 CANA_IFRL[BUF5] FLEXCAN A Buffer 5 Interrupt

0x0A10 161 CANA_IFRL[BUF6] FLEXCAN A Buffer 6 Interrupt

0x0A20 162 CANA_IFRL[BUF7] FLEXCAN A Buffer 7 Interrupt

0x0A30 163 CANA_IFRL[BUF8] FLEXCAN A Buffer 8 Interrupt

0x0A40 164 CANA_IFRL[BUF9] FLEXCAN A Buffer 9 Interrupt

0x0A50 165 CANA_IFRL[BUF10] FLEXCAN A Buffer 10 Interrupt

0x0A60 166 CANA_IFRL[BUF11] FLEXCAN A Buffer 11 Interrupt

0x0A70 167 CANA_IFRL[BUF12] FLEXCAN A Buffer 12 Interrupt

0x0A80 168 CANA_IFRL[BUF13] FLEXCAN A Buffer 13 Interrupt

0x0A90 169 CANA_IFRL[BUF14] FLEXCAN A Buffer 14 Interrupt

Table 10-9. INTC: Interrupt Request Sources (continued)

Hardware Vector
Mode Offset

Vector Source1 Description

Interrupt Controller (INTC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 10-21

0x0AA0 170 CANA_IFRL[BUF15] FLEXCAN A Buffer 15 Interrupt

0x0AB0 171 CANA_IFRL[BUF31I:BUF16] FLEXCAN A Buffers 31–16 Interrupts

0x0AC0 172 CANA_IFRH[BUF63I:BUF32] FLEXCAN A Buffers 63–32 Interrupts

0x0AD0 173 CANC_ESR[BOFF_INT] FLEXCAN C Bus Off Interrupt

0x0AE0 174 CANC_ESR[ERR_INT] FLEXCAN C Error Interrupt

0x0AF0 175 Reserved Reserved

0x0B00 176 CANC_IFRL[BUF0] FLEXCAN C Buffer 0 Interrupt

0x0B10 177 CANC_IFRL[BUF1] FLEXCAN C Buffer 1 Interrupt

0x0B20 178 CANC_IFRL[BUF2] FLEXCAN C Buffer 2 Interrupt

0x0B30 179 CANC_IFRL[BUF3] FLEXCAN C Buffer 3 Interrupt

0x0B40 180 CANC_IFRL[BUF4] FLEXCAN C Buffer 4 Interrupt

0x0B50 181 CANC_IFRL[BUF5] FLEXCAN C Buffer 5 Interrupt

0x0B60 182 CANC_IFRL[BUF6] FLEXCAN C Buffer 6 Interrupt

0x0B70 183 CANC_IFRL[BUF7] FLEXCAN C Buffer 7 Interrupt

0x0B80 184 CANC_IFRL[BUF8] FLEXCAN C Buffer 8 Interrupt

0x0B90 185 CANC_IFRL[BUF9] FLEXCAN C Buffer 9 Interrupt

0x0BA0 186 CANC_IFRL[BUF10] FLEXCAN C Buffer 10 Interrupt

0x0BB0 187 CANC_IFRL[BUF11] FLEXCAN C Buffer 11 Interrupt

0x0BC0 188 CANC_IFRL[BUF12] FLEXCAN C Buffer 12 Interrupt

0x0BD0 189 CANC_IFRL[BUF13] FLEXCAN C Buffer 13 Interrupt

0x0BE0 190 CANC_IFRL[BUF14] FLEXCAN C Buffer 14 Interrupt

0x0BF0 191 CANC_IFRL[BUF15] FLEXCAN C Buffer 15 Interrupt

0x0C00 192 CANC_IFRL[BUF31:BUF16] FLEXCAN C Buffers 31–16 Interrupts

0x0C10 193 CANC_IFRH[BUF63:BUF32] FLEXCAN C Buffers 63–32 Interrupts

eMIOS

0x0CA0 202 EMIOS_GFR[F16] eMIOS channel 16 Flag

0x0CB0 203 EMIOS_GFR[F17] eMIOS channel 17 Flag

0x0CC0 204 EMIOS_GFR[F18] eMIOS channel 18 Flag

0x0CD0 205 EMIOS_GFR[F19] eMIOS channel 19 Flag

0x0CE0 206 EMIOS_GFR[F20] eMIOS channel 20 Flag

0x0CF0 207 EMIOS_GFR[F21] eMIOS channel 21 Flag

0x0D00 208 EMIOS_GFR[F22] eMIOS channel 22 Flag

Table 10-9. INTC: Interrupt Request Sources (continued)

Hardware Vector
Mode Offset

Vector Source1 Description

Interrupt Controller (INTC)

MPC5534 Microcontroller Reference Manual, Rev. 2

10-22 Freescale Semiconductor

NOTE
The INTC has no spurious vector support. If an asserted peripheral or
software settable interrupt request:

• Has a PRIn value (INTC_PSR0–INTC_PSR211) higher than the PRI value in
INTC_CPR; and

• Negates before the processor for that interrupt request acknowledges it

the IRQ to the processor can assert or remain asserted for that peripheral or
software settable interrupt request. In this case, the interrupt vector for the
peripheral or software settable IRQ remains, and the PRI value in the
INTC_CPR is updated to the PRIn value in INTC_PSRn.

Clearing the peripheral interrupt request enable bit, or setting its mask bit has the same consequences as
clearing its flag bit. Setting its enable bit or clearing its mask bit while its FLAG bit is asserted has the
same effect on the INTC as an interrupt event setting the flag bit.

10.4.1.1 Peripheral Interrupt Requests

An interrupt event in a peripheral’s hardware sets a flag bit which resides in that peripheral. The interrupt
request from the peripheral is driven by that flag bit.

The time from when the peripheral starts to drive its peripheral interrupt request to the INTC to the time
that the INTC starts to drive the interrupt request to the processor is three clocks.

10.4.1.2 Software Settable Interrupt Requests

The software set and clear interrupt registers (INTC_SSCIRx_x) support the setting or clearing of
software-settable interrupt requests. These registers contain eight independent sets of bits to set and clear
a corresponding flag bit by software. With the exception of being set by software, this flag bit operates the
same as a flag bit set within a peripheral. This flag bit generates an interrupt request within the INTC just
like a peripheral interrupt request.

An interrupt request is triggered by software writing a 1 to the SETn bit in INTC software set/clear
interrupt registers (INTC_SSCIR0–INTC_SSCIR7). This write sets the corresponding CLRn bit, which is
a flag bit, resulting in the interrupt request. The interrupt request is cleared by writing a 1 to the CLRn bit.
Specific operations includes the following:

• Writing a 1 to SETn leaves SETn unchanged at '0' but sets the flag bit (which is the CLRn bit).

0x0D10 209 EMIOS_GFR[F23] eMIOS channel 23 Flag

0x0D20 210 Reserved Reserved

0x0D30 211 Reserved Reserved

1 Interrupt requests from the same module location are ORed together.

Table 10-9. INTC: Interrupt Request Sources (continued)

Hardware Vector
Mode Offset

Vector Source1 Description

Interrupt Controller (INTC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 10-23

• Writing a 0 to SETn has no effect.

• Writing a 1 to CLRn clears the flag (CLRx) bit.

• Writing a 0 to CLRn has no effect.

• If a 1 is written to a pair of SETn and CLRn bits at the same time, the flag (CLRx) is set, regardless
of whether CLRn was asserted before the write.

The time from the write to the SETn bit to the time that the INTC starts to drive the interrupt request to the
processor is four clocks.

10.4.1.3 Unique Vector for Each Interrupt Request Source

Each peripheral and software settable interrupt request is assigned a hardwired unique 9-bit vector.
Software settable interrupts 0–7 are assigned vectors 0–7, respectively. The peripheral interrupt requests
are assigned vectors 8 to as high as needed to cover all of the peripheral interrupt requests.

10.4.2 Priority Management

The asserted interrupt requests are compared to each other based on their PRIn values in INTC priority
select registers (INTC_PSR0–INTC_PSR211). The result of that comparison also is compared to PRI in
INTC current priority register (INTC_CPR). The results of those comparisons are used to manage the
priority of the ISR being executed by the processor. The LIFO also assists in managing that priority.

10.4.2.1 Current Priority and Preemption

The priority arbitrator, selector, encoder, and comparator submodules shown in Figure 10-1 are used to
compare the priority of the asserted interrupt requests to the current priority. If the priority of any asserted
peripheral or software settable interrupt request is higher than the current priority, then the interrupt request
to the processor is asserted. Also, a unique vector for the preempting peripheral or software settable
interrupt request is generated for INTC interrupt acknowledge register (INTC_IACKR), and if in hardware
vector mode, for the interrupt vector provided to the processor.

10.4.2.1.1 Priority Arbitrator Submodule

The priority arbitrator submodule compares all the priorities of all of the asserted interrupt requests, both
peripheral and software settable. The output of the priority arbitrator submodule is the highest of those
priorities. Also, any interrupt requests which have this highest priority are output as asserted interrupt
requests to the request selector submodule.

10.4.2.1.2 Request Selector Submodule

If only one interrupt request from the priority arbitrator submodule is asserted, then it is passed as asserted
to the vector encoder submodule. If multiple interrupt requests from the priority arbitrator submodule are
asserted, then only the one with the lowest vector is passed as asserted to the vector encoder submodule.
The lower vector is chosen regardless of the time order of the assertions of the peripheral or software
settable interrupt requests.

Interrupt Controller (INTC)

MPC5534 Microcontroller Reference Manual, Rev. 2

10-24 Freescale Semiconductor

10.4.2.1.3 Vector Encoder Submodule

The vector encoder submodule generates the unique 9-bit vector for the asserted interrupt request from the
request selector submodule.

10.4.2.1.4 Priority Comparator Submodule

The priority comparator submodule compares the highest priority output from the priority arbitrator
submodule with PRI in INTC_CPR. If the priority comparator submodule detects that this highest priority
is higher than the current priority, then it asserts the interrupt request to the processor. This interrupt request
to the processor asserts whether this highest priority is raised above the value of PRI in INTC_CPR or the
PRI value in INTC_CPR is lowered below this highest priority. This highest priority then becomes the new
priority, which is written to PRI in INTC_CPR when the interrupt request to the processor is
acknowledged. Interrupt requests with the PRIn in INTC_PSRn set to zero do not cause a preemption
because their PRIn are not higher than PRI in INTC_CPR.

10.4.2.2 LIFO

The LIFO stores the preempted PRI values from the INTC_CPR. Therefore, because these priorities are
stacked within the INTC, if interrupts need to be enabled during the ISR, at the beginning of the interrupt
exception handler the PRI value in the INTC_CPR does not need to be loaded from the INTC_CPR and
stored onto the context stack. Likewise at the end of the interrupt exception handler, the priority does not
need to be loaded from the context stack and stored into the INTC_CPR.

The PRI value in the INTC_CPR is pushed onto the LIFO when the INTC_IACKR is read in software
vector mode or the interrupt acknowledge signal from the processor is asserted in hardware vector mode.
The priority is popped into PRI in the INTC_CPR whenever the INTC_EOIR is written.

Although the INTC supports 16 priorities, an ISR executing with PRI in the INTC_CPR equal to 15 is not
preempted. Therefore, the LIFO supports the stacking of 15 priorities. However, the LIFO is only 14
entries deep. An entry for a priority 0 is not needed because of how pushing onto a full LIFO and popping
an empty LIFO operate.

• If the LIFO is pushed 15 or more times than it is popped, the priorities first pushed are overwritten
(priority 0 is overwritten).

• If the LIFO pops more times than it is pushed, the popped priorities are 0.

Therefore, although a priority 0 was overwritten, it is regenerated with the popping of an empty LIFO.

The LIFO is not memory mapped.

Interrupt Controller (INTC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 10-25

10.4.3 Details on Handshaking with Processor

10.4.3.1 Software Vector Mode Handshaking

10.4.3.1.1 Acknowledging Interrupt Request to Processor

A timing diagram of the interrupt request and acknowledge handshaking in software vector mode, along
with the handshaking near the end of the interrupt exception handler, is shown in Figure 10-14. The INTC
examines the peripheral and software settable interrupt requests. When it finds an asserted peripheral or
software settable interrupt request with a higher priority than PRI in INTC current priority register
(INTC_CPR), it asserts the interrupt request to the processor. The INTVEC field in INTC interrupt
acknowledge register (INTC_IACKR) is updated with the preempting interrupt request’s vector when the
interrupt request to the processor is asserted. The INTVEC field retains that value until the next time the
interrupt request to the processor is asserted. The rest of the handshaking is described in Section 10.1.4.1,
“Software Vector Mode.”

10.4.3.1.2 End-of-Interrupt Exception Handler

Before the interrupt exception handling completes, INTC end-of-interrupt register (INTC_EOIR) must be
written. When it is written, the LIFO is popped so that the preempted priority is restored into PRI of the
INTC_CPR. Before it is written, the peripheral or software settable flag bit must be cleared so that the
peripheral or software settable interrupt request is negated.

NOTE
To ensure proper operation across all devices, execute an MBAR or MSYNC
instruction between the access to clear the flag bit and the write to the
INTC_EOIR.

When returning from the preemption, the INTC does not search for the peripheral or software settable
interrupt request whose ISR was preempted. Depending on how much the ISR progressed, that interrupt
request can be asserted. When PRI in INTC_CPR is decreased to the priority of the preempted ISR, the
interrupt request for the preempted ISR or any other asserted peripheral or software settable interrupt
request at or less than that priority does not cause a preemption. Instead, after the restoration of the
preempted context, the processor returns to the instruction address for the next ISR to execute before it is
preempted. This next instruction is part of the preempted ISR or the interrupt exception handler’s prolog
or epilog.

Interrupt Controller (INTC)

MPC5534 Microcontroller Reference Manual, Rev. 2

10-26 Freescale Semiconductor

Figure 10-14. Software Vector Mode Handshaking Timing Diagram

10.4.3.2 Hardware Vector Mode Handshaking

A timing diagram of the interrupt request and acknowledge handshaking in hardware vector mode, along
with the handshaking near the end of the interrupt exception handler, is shown in Figure 10-15. As in
software vector mode, the INTC examines the peripheral and software settable interrupt requests, and
when it finds an asserted one with a higher priority than PRI in INTC_CPR, it asserts the interrupt request
to the processor. The INTVEC field in the INTC_IACKR is updated with the preempting peripheral or
software settable interrupt request’s vector when the interrupt request to the processor is asserted. The
INTVEC field retains that value until the next time the interrupt request to the processor is asserted. In
addition, the value of the interrupt vector to the processor matches the value of the INTVEC field in the
INTC_IACKR. The rest of the handshaking is described in Section 10.1.4.2, “Hardware Vector Mode.”

The handshaking near the end of the interrupt exception handler, that is the writing to the INTC_EOIR, is
the same as in software vector mode. See Section 10.4.3.1.2, “End-of-Interrupt Exception Handler.”

Clock

Interrupt Request
to Processor

Hardware Vector
Enable

Interrupt
Acknowledge

Interrupt Vector

Read
INTC_IACKR

Write
INTC_EOIR

INTVEC in
INTC_IACKR

PRI in
INTC_CPR

Peripheral Interrupt
Request 100

0

0

0

108

1 0

Interrupt Controller (INTC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 10-27

Figure 10-15. Hardware Vector Mode Handshaking Timing Diagram

10.5 Initialization/Application Information

10.5.1 Initialization Flow

After exiting reset, all of the PRIn fields in INTC priority select registers (INTC_PSR0–INTC_PSR211)
are zero, and PRI in INTC current priority register (INTC_CPR) is 15. These reset values prevent INTC
from asserting the interrupt request to the processor. The enable or mask bits in the peripherals are reset
such that the peripheral interrupt requests are negated. An initialization sequence that allows peripheral
and software settable interrupt requests to generate an interrupt request to the processor follows:

Interrupt request initialization

1. Configure the VTES and HVEN fields in the master control register INTC_MCR

2. Configure the VTBA field in INTC_IACKR

3. Raise the PRIn fields in INTC_PSRn

4. Set the enable bits or clear the mask bits for the peripheral interrupt requests

5. Clear the PRI field in INTC_CPR to zero

6. Enable processor recognition of interrupts

Clock

Interrupt Request
to Processor

Hardware Vector
Enable

Interrupt
Acknowledge

Interrupt Vector

Read
INTC_IACKR

Write
INTC_EOIR

INTVEC in
INTC_IACKR

PRI in
INTC_CPR

Peripheral Interrupt
Request 100

0

0 108

0

108

0 1

Interrupt Controller (INTC)

MPC5534 Microcontroller Reference Manual, Rev. 2

10-28 Freescale Semiconductor

10.5.2 Interrupt Exception Handler

These example interrupt exception handlers use PowerPC Book E assembly code.

10.5.2.1 Software Vector Mode
interrupt_exception_handler:
code to create stack frame, save working register, and save SRR0 and SRR1

lis r3,INTC_IACKR@ha # form adjusted upper half of INTC_IACKR address
lwz r3,INTC_IACKR@l(r3) # load INTC_IACKR, which clears request to processor
lwz r3,0x0(r3) # load address of ISR from vector table
wrteei 1 # enable processor recognition of interrupts

code to save rest of context required by e500 EABI

mtlr r3 # move address of ISR into link register
blrl # branch to ISR; link register updated with epilog

address

epilog:
code to restore most of context required by e500 EABI

Popping the LIFO after the restoration of most of the context and the disabling of processor
recognition of interrupts eases the calculation of the maximum stack depth at the cost of
postponing the servicing of the next interrupt request.
mbar # ensure store to clear flag bit has completed
lis r3,INTC_EOIR@ha # form adjusted upper half of INTC_EOIR address
li r4,0x0 # form 0 to write to INTC_EOIR
wrteei 0 # disable processor recognition of interrupts
stw r4,INTC_EOIR@l(r3) # store to INTC_EOIR, informing INTC to lower priority

code to restore SRR0 and SRR1, restore working registers, and delete stack frame

rfi

vector_table_base_address:
address of ISR for interrupt with vector 0
address of ISR for interrupt with vector 1

.

.

.
address of ISR for interrupt with vector 510
address of ISR for interrupt with vector 511

ISRx:
code to service the interrupt event
code to clear flag bit which drives interrupt request to INTC

blr # return to epilog

Interrupt Controller (INTC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 10-29

10.5.2.2 Hardware Vector Mode

This interrupt exception handler is useful with processor and system bus implementations that support a
hardware vector. This example assumes that each interrupt_exception_handlerx only has space for
four instructions, and therefore a branch to interrupt_exception_handler_continuedx is needed.
interrupt_exception_handlerx:
b interrupt_exception_handler_continuedx# 4 instructions available, branch to continue

interrupt_exception_handler_continuedx:
code to create stack frame, save working register, and save SRR0 and SRR1

wrteei 1 # enable processor recognition of interrupts

code to save rest of context required by e500 EABI

bl ISRx # branch to ISR for interrupt with vector x

epilog:
code to restore most of context required by e500 EABI

Popping the LIFO after the restoration of most of the context and the disabling of processor
recognition of interrupts eases the calculation of the maximum stack depth at the cost of
postponing the servicing of the next interrupt request.
mbar # ensure store to clear flag bit has completed
lis r3,INTC_EOIR@ha # form adjusted upper half of INTC_EOIR address
li r4,0x0 # form 0 to write to INTC_EOIR
wrteei 0 # disable processor recognition of interrupts
stw r4,INTC_EOIR@l(r3) # store to INTC_EOIR, informing INTC to lower priority

code to restore SRR0 and SRR1, restore working registers, and delete stack frame

rfi

ISRx:
code to service the interrupt event
code to clear flag bit which drives interrupt request to INTC

blr # branch to epilog

10.5.3 ISR, RTOS, and Task Hierarchy

The RTOS and all of the tasks under its control typically execute with PRI in INTC current priority register
(INTC_CPR) having a value of 0. The RTOS executes the tasks according to the its current priority
scheme, but that priority scheme is independent and has a lower priority of execution than the priority
scheme of the INTC. In other words, the ISRs execute above INTC_CPR priority 0 and outside the control
of the RTOS, the RTOS executes at INTC_CPR priority 0, and while the tasks execute at different priorities
under the control of the RTOS, they also execute at INTC_CPR priority 0.

If a task shares a resource with an ISR and the PCP is being used to manage that shared resource, then the
task’s priority can be elevated in the INTC_CPR while the shared resource is being accessed.

Interrupt Controller (INTC)

MPC5534 Microcontroller Reference Manual, Rev. 2

10-30 Freescale Semiconductor

An ISR whose PRIn in INTC priority select registers (INTC_PSR0–INTC_PSR211) has a value of 0 does
not cause an interrupt request to the processor, even if its peripheral or software settable interrupt request
is asserted. For a peripheral interrupt request, not setting its enable bit or disabling the mask bit causes it
to remain deasserted, which does not cause an interrupt request to the processor. Since the ISRs are outside
the control of the RTOS, this ISR is not run unless called by another ISR or the interrupt exception handler,
perhaps after executing another ISR.

10.5.4 Order of Execution

An ISR with a higher priority can preempt an ISR with a lower priority, regardless of the unique vectors
associated with each of their peripheral or software settable interrupt requests. However, if multiple
peripheral or software settable interrupt requests are asserted, more than one has the highest priority, and
that priority is high enough to cause preemption, the INTC selects the one with the lowest unique vector
regardless of the order in time that they asserted. However, the ability to meet deadlines with this
scheduling scheme is no less than if the ISRs execute in the time order that their peripheral or software
settable interrupt requests asserted.

The example in Table 10-10 shows the order of execution of both ISRs with different priorities and the
same priority.

Table 10-10. Order of ISR Execution Example

Step Step Description

Code Executing At End of Step
PRI in

INTC_CPR
at End of

Step
RTOS ISR1081 ISR208 ISR308 ISR408

Interrupt
Exception
Handler

1 RTOS at priority 0 is executing. X 0

2 Peripheral interrupt request 100 at
priority 1 asserts. Interrupt taken.

X 1

3 Peripheral interrupt request 400 at
priority 4 is asserts. Interrupt taken.

X 4

4 Peripheral interrupt request 300 at
priority 3 is asserts.

X 4

5 Peripheral interrupt request 200 at
priority 3 is asserts.

X 4

6 ISR408 completes. Interrupt
exception handler writes to
INTC_EOIR.

X 1

7 Interrupt taken. ISR208 starts to
execute, even though peripheral
interrupt request 300 asserted first.

X 3

8 ISR208 completes. Interrupt
exception handler writes to
INTC_EOIR.

X 1

9 Interrupt taken. ISR308 starts to
execute.

X 3

Interrupt Controller (INTC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 10-31

10.5.5 Priority Ceiling Protocol

10.5.5.1 Elevating Priority

The PRI field in INTC current priority register (INTC_CPR) is elevated in the OSEK PCP to the ceiling
of all of the priorities of the ISRs that share a resource. This protocol therefore allows coherent accesses
of the ISRs to that shared resource.

For example, ISR1 has a priority of 1, ISR2 has a priority of 2, and ISR3 has a priority of 3. They all share
the same resource. Before ISR1 or ISR2 can access that resource, they must raise the PRI value in
INTC_CPR to 3, the ceiling of all of the ISR priorities. After they release the resource, they must lower
the PRI value in INTC_CPR to prevent further scheduling inefficiencies. If they do not raise their priority,
then ISR2 can preempt ISR1, and ISR3 can preempt ISR1 or ISR2, possibly corrupting the shared
resource. Another possible failure mechanism is deadlock if the higher priority ISR needs the lower
priority ISR to release the resource before it can continue, but the lower priority ISR can not release the
resource until the higher priority ISR completes and execution returns to the lower priority ISR.

Using the PCP instead of disabling processor recognition of all interrupts reduces the time used by
scheduling inefficiencies when accessing a shared resource. For example, while ISR3 can not preempt
ISR1 while it is accessing the shared resource, all of the ISRs with a priority higher than 3 can preempt
ISR1.

10.5.5.2 Ensuring Coherency

A scenario can exist that can cause non-coherent accesses to the shared resource. As an example, ISR1 and
ISR2 both share a resource. ISR1 has a lower priority than ISR2. ISR1 is executing, and it writes to the
INTC_CPR. The instruction following this store is a store to a value in a shared coherent data block. Either
just before or at the same time as the first store, the INTC asserts the interrupt request to the processor
because the peripheral interrupt request for ISR2 has asserted. As the processor is responding to the
interrupt request from the INTC, and as it is terminating transactions and flushing its pipeline, it is possible

10 ISR308 completes. Interrupt
exception handler writes to
INTC_EOIR.

X 1

11 ISR108 completes. Interrupt
exception handler writes to
INTC_EOIR.

X 0

12 RTOS continues execution. X 0

1 ISR108 executes for peripheral interrupt request 100 because the first eight ISRs are for software settable interrupt
requests.

Table 10-10. Order of ISR Execution Example (continued)

Step Step Description

Code Executing At End of Step
PRI in

INTC_CPR
at End of

Step
RTOS ISR1081 ISR208 ISR308 ISR408

Interrupt
Exception
Handler

Interrupt Controller (INTC)

MPC5534 Microcontroller Reference Manual, Rev. 2

10-32 Freescale Semiconductor

for both of these stores to execute. ISR2 attempts to access the data block coherently, but the data block
has been corrupted.

OSEK uses the GetResource and ReleaseResource system services to manage access to a shared resource.
To prevent corrupting a coherent data block, use these same system services with the following code to
modify the PRI in INTC_CPR. Interrupts must be enabled before executing the following the GetResource
code sequence.

GetResource:
raise PRI
mbar
isync

ReleaseResource:
mbar
lower PRI

10.5.6 Selecting Priorities According to Request Rates
and Deadlines

The selection of the priorities for the ISRs can be made using rate monotonic scheduling (RMS) or a
superset of it, deadline monotonic scheduling (DMS). In RMS, the ISRs with the higher request rates have
higher priorities.

In DMS, if the ISR deadline is set to occur before the next request for the ISR, then the ISR priority is
assigned according to the time from the request for the IRS to the deadline, not from the time of the ISR
request to the next ISR request for it. For example, ISR1 executes every 100 μs, ISR2 executes every 200
μs, and ISR3 executes every 300 μs. ISR1 has a higher priority than ISR2, which has a higher priority than
ISR3. However, if ISR3 has a deadline of 150 μs, then its priority is higher than ISR2.

The INTC has 16 priorities, which can be less than the number of ISRs. In this case, group the priority
ISRs with other ISRs that have similar deadlines. For example, a priority can be allocated every time the
request rate doubles. ISRs with the same approximate request rates can share a priority:

• ISRs with request rates of approximately 1 ms

• ISRs with request rates of approximately 500 μs

• ISRs with request rates of approximately 250 μs

Using this approach, a 216 range of ISR request rates can be prioritized, regardless of the number of ISRs.

Reducing the number of priorities can cause scheduling inefficiencies which reduces the processor’s
ability to meet its deadlines. It also allows easier management of ISRs with similar deadlines that share a
resource. They can be placed at the same priority without any further scheduling inefficiencies, and they
do not need to use the PCP to access the shared resource.

10.5.7 Software Settable Interrupt Requests

The software settable interrupt requests can be used in two ways. They can be used to schedule a lower
priority portion of an ISR and for processors to interrupt other processors in a multiple processor system.

Interrupt Controller (INTC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 10-33

10.5.7.1 Scheduling a Lower Priority Portion of an ISR

A portion of an ISR needs to be executed at the PRIn value in INTC priority select registers
(INTC_PSR0–INTC_PSR211), which becomes the PRI value in INTC current priority register
(INTC_CPR) with the interrupt acknowledgement. The ISR, however, can have a portion of it which does
not need to be executed at this higher priority. Therefore, executing this later portion which does not need
to be executed at this higher priority can block the execution of ISRs which do not have a higher priority
than the earlier portion of the ISR but do have a higher priority than what the later portion of the ISR needs.
These scheduling inefficiencies reduce the processor’s ability to meet its deadlines.

One option is for the ISR to complete the earlier higher priority portion, but then schedule through the
RTOS a task to execute the later lower priority portion. However, some RTOSs can require a large amount
of time for an ISR to schedule a task. Therefore, a second option is for the ISR, after completing the higher
priority portion, to set a SETn bit in INTC software set/clear interrupt registers
(INTC_SSCIR0–INTC_SSCIR7). Writing a 1 to SETn causes a software settable interrupt request. This
software settable interrupt request, which usually has a lower PRIn value in the INTC_PSRn, does not
cause scheduling inefficiencies.

10.5.7.2 Scheduling an ISR on Another Processor

Since the SETn bits in the INTC_SSCIRn are memory mapped, processors in multiple processor systems
can schedule ISRs on the other processors. One application is that one processor simply wants to command
another processor to perform a piece of work, and the initiating processor does not need to use the results
of that work. If the initiating processor is concerned that processor executing the software settable ISR has
not completed the work before asking it to again execute that ISR, it can check if the corresponding CLRn
bit in INTC_SSCIRn is asserted before again writing a 1 to the SETn bit.

Another application is the sharing of a block of data. For example, a first processor has completed
accessing a block of data and wants a second processor to then access it. Furthermore, after the second
processor has completed accessing the block of data, the first processor again wants to access it. The
accesses to the block of data must be done coherently. The procedure is that the first processor writes a 1
to a SETn bit on the second processor. The second processor, after accessing the block of data, clears the
corresponding CLRn bit and then writes 1 to a SETn bit on the first processor, informing it that it now can
access the block of data.

10.5.8 Lowering Priority Within an ISR

In implementations without the software-settable interrupt requests in the INTC software set/clear
interrupt registers (INTC_SSCIR0–INTC_SSCIR7), the only way—besides scheduling a task through an
RTOS—to prevent scheduling inefficiencies with an ISR whose work spans multiple priorities (as
described in Section 10.5.7.1, “Scheduling a Lower Priority Portion of an ISR,”) is to lower the current
priority. However, the INTC has a LIFO whose depth is determined by the number of priorities.

Interrupt Controller (INTC)

MPC5534 Microcontroller Reference Manual, Rev. 2

10-34 Freescale Semiconductor

NOTE
Lowering the PRI value in INTC current priority register (INTC_CPR)
within an ISR to less than the ISR corresponding PRI value in INTC priority
select registers (INTC_PSR0–INTC_PSR211) allows more preemptions
than the depth of the LIFO can support.

Therefore, the INTC does not support lowering the current priority within an ISR as a way to avoid
scheduling inefficiencies.

10.5.9 Negating an Interrupt Request Outside of its ISR

10.5.9.1 Negating an Interrupt Request as a Side Effect of an ISR

Some peripherals have flag bits which can be cleared as a side effect of servicing a peripheral interrupt
request. For example, reading a specific register can clear the flag bits, and consequently their
corresponding interrupt requests too. This clearing as a side effect of servicing a peripheral interrupt
request can cause the negation of other peripheral interrupt requests besides the peripheral interrupt request
whose ISR presently is executing. This negating of a peripheral interrupt request outside of its ISR can be
a desired effect.

10.5.9.2 Negating Multiple Interrupt Requests in One ISR

An ISR can clear other flag bits besides its own flag bit. One reason that an ISR clears multiple flag bits
is because it serviced those other flag bits, and therefore the ISRs for these other flag bits do not need to
be executed.

10.5.9.3 Proper Setting of Interrupt Request Priority

Whether an interrupt request negates outside of its own ISR due to the side effect of an ISR execution or
the intentional clearing a flag bit, the priorities of the peripheral or software settable interrupt requests for
these other flag bits must be selected correctly. Their PRIn values in INTC priority select registers
(INTC_PSR0–INTC_PSR211) must be selected to be at or lower than the priority of the ISR that cleared
their flag bits. Otherwise, those flag bits still can cause the interrupt request to the processor to assert.
Furthermore, the clearing of these other flag bits also has the same timing relationship to the writing to
INTC end-of-interrupt register (INTC_EOIR) as the clearing of the flag bit that caused the present ISR to
be executed. See Section 10.4.3.1.2, “End-of-Interrupt Exception Handler,” for more information.

A flag bit whose enable bit or mask bit is negating its peripheral interrupt request can be cleared at any
time, regardless of the peripheral interrupt request’s PRIn value in INTC_PSRn.

Interrupt Controller (INTC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 10-35

10.5.10 Examining LIFO Contents

Normally you do not need to know the contents of the LIFO, or even how deep the LIFO is nested.
Although the LIFO contents are not memory mapped, you can read the contents by popping the LIFO and
reading the PRI field in the INTC current priority register (INTC_CPR). Disabling processor recognition
of interrupts while examining the LIFO contents provides a coherent view of the preempted priorities. The
code sequence is:

pop_lifo:
store to INTC_EOIR
load INTC_CPR, examine PRI, and store onto stack
if PRI is not zero or value when interrupts were enabled, branch to pop_lifo

When you are finished examining the LIFO contents, you can restore it in software vector mode using the
following code sequence. In hardware vector mode, reading the INTC_IACKR does not push the
INTC_CPR[PRI] onto the LIFO, therefore the LIFO contents cannot be restored in hardware vector mode.

push_lifo:
load stacked PRI value and store to INTC_CPR
load INTC_IACKR
if stacked PRI values are not depleted, branch to push_lifo

NOTE
Reading the INTC_IACKR acknowledges the interrupt request to the
processor and updates the INTC_CPR[PRI] with the priority of the
preempting interrupt request. If the processor recognition of interrupts is
disabled during the LIFO restoration, interrupt requests to the processor can
go undetected. However, since the peripheral or software settable interrupt
requests are not cleared, the peripheral interrupt request to the processor
re-asserts when INTC_CPR[PRI] is lower than the priorities of those
peripheral or software settable interrupt requests.

Interrupt Controller (INTC)

MPC5534 Microcontroller Reference Manual, Rev. 2

10-36 Freescale Semiconductor

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 11-1

Chapter 11
Frequency Modulated Phase Locked Loop and System
Clocks (FMPLL)

11.1 Introduction
This section describes the features and function of the FMPLL module.

11.1.1 Block Diagrams

This section contains block diagrams that illustrate the FMPLL, the clock architecture, and the various
FMPLL and clock configurations that are available. The following diagrams are provided:

• Figure 11-1, “FMPLL and Clock Architecture”

• Figure 11-2, “FMPLL Bypass Mode”

• Figure 11-3, “FMPLL External Reference Mode”

• Figure 11-4, “FMPLL Crystal Reference Mode Without FM”

• Figure 11-5, “FMPLL Crystal Reference Mode With FM”

• Figure 11-6, “FMPLL Dual-Controller (1:1) Mode”

Frequency Modulated Phase Locked Loop and System Clocks (FMPLL)

MPC5534 Microcontroller Reference Manual, Rev. 2

11-2 Freescale Semiconductor

11.1.1.1 FMPLL and Clock Architecture

Figure 11-1. FMPLL Block and Clock Architecture

EXTAL_EXTCLK

PFD/
charge Filter RFD

Bus interface

Control/status
registers

Successive
approximation

frequency

FM
control

1

0

pumps

Current
controlled
oscillator

(ICO)
XTAL

0

1

MFD

PLLCFG[0:1]

MDIS

DSPI

MCKO_EN
MCKO_GT

MCKO
divider

MCKO

MDIS

EBI

MDIS

eMIOS

MDIS

eTPU engine

MDIS

eSCI

MDIS

CAN interface CLK
FlexCAN

CLK_SRC

Message buffer CLK

ENGCLK
divider

CLKOUT
divider

ENGCLK

CLKOUT1

NPC

PLLREF

PLLSEL

MODE

Core, INTC, eDMA, SIU, BAM,
RAMs, eQADC, flash, XBAR,
PBRIDGE_A, PBRIDGE_B

Oscillator clock

SIU

System
clock

1

0

PLL

NOTE: The clock mode selection
and associated package pin settings

 and FMPLL_SYNSR settings are
displayed in Table 11-1.

OSC PREDIV

1 The 208 package does not
have a CLKOUT pin.

Frequency Modulated Phase Locked Loop and System Clocks (FMPLL)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 11-3

11.1.1.2 FMPLL Bypass Mode

Figure 11-2. FMPLL Bypass Mode

EXTAL_EXTCLK

PFD/
charge Filter RFD

Bus interface

Control/status
registers

Successive
approximation

frequency

FM
control

1

0

pumps

Current
controlled
oscillator

(ICO)
XTAL

MFD

PLLCFG[0:1]

MDIS

DSPI

MCKO_EN
MCKO_GT

MCKO
divider

MCKO

MDIS

EBI

MDIS

eMIOS

MDIS

eTPU engine

MDIS

eSCI

MDIS

CAN interface CLK
FlexCAN

CLK_SRC

Message buffer CLK

ENGCLK
divider

CLKOUT
divider

ENGCLK

CLKOUT1

NPC

PLLREF

PLLSEL

MODE

Core, INTC, eDMA, SIU, BAM,
RAMs, eQADC, Flash, XBAR,

PBRIDGE_A, PBRIDGE_B

Oscillator clock

SIU

System
clock

1

0

PLL

NOTE: The clock mode selection
and associated package pin settings

 and FMPLL_SYNSR settings are
displayed in Table 11-1.

PREDIVOSC

0

1

1 The 208 package does not
have a CLKOUT pin.

Frequency Modulated Phase Locked Loop and System Clocks (FMPLL)

MPC5534 Microcontroller Reference Manual, Rev. 2

11-4 Freescale Semiconductor

11.1.1.3 FMPLL External Reference Mode

Figure 11-3. FMPLL External Reference Mode

EXTAL_EXTCLK

Bus interface

Control/status
registers

FM
control

XTAL

PLLCFG[0:1]

MDIS

DSPI

MCKO_EN
MCKO_GT

MCKO
divider

MCKO

MDIS

EBI

MDIS

eMIOS

MDIS

eTPU engines

MDIS

eSCI

MDIS

CAN interface CLK
FlexCAN

CLK_SRC

Message buffer CLK

ENGCLK
divider

CLKOUT
divider

ENGCLK

CLKOUT1

NPC

PLLREF

PLLSEL

MODE

Core, INTC, eDMA, SIU, BAM,
RAMs, eQADC, Flash, XBAR,

PBRIDGE_A, PBRIDGE_B

Oscillator clock

SIU

System
clock

1

0

PLL

NOTE: The clock mode selection
and associated package pin settings

 and FMPLL_SYNSR settings are
displayed in Table 11-1.

Filter RFD

1

0
Current

controlled
oscillator

(ICO)OSC PREDIV

PFD/
charge
pumps

MFD

0

1

Successive
approximation

frequency

1 The 208 package does not
have a CLKOUT pin.

Frequency Modulated Phase Locked Loop and System Clocks (FMPLL)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 11-5

11.1.1.4 FMPLL Crystal Reference Mode Without FM

Figure 11-4. FMPLL Crystal Reference Mode without FM

EXTAL_EXTCLK

Bus interface

Control/status
registers

FM
control

XTAL

PLLCFG[0:1]

MDIS

DSPI

MCKO_EN
MCKO_GT

MCKO
divider

MCKO

MDIS

EBI

MDIS

eMIOS

MDIS

eTPU engine

MDIS

eSCI

MDIS

CAN interface CLK
FlexCAN

CLK_SRC

Message buffer CLK

ENGCLK
divider

CLKOUT
divider

ENGCLK

CLKOUT1

NPC

PLLREF

PLLSEL

MODE

Core, INTC, eDMA, SIU, BAM,
RAMs, eQADC, Flash, XBAR,

PBRIDGE_A, PBRIDGE_B

Oscillator clock

SIU

System
clock

1

0

PLL

NOTE: The clock mode selection
and associated package pin settings

 and FMPLL_SYNSR settings are
displayed in Table 11-1.

Filter RFD

1

0
Current

controlled
oscillator

(ICO)OSC PREDIV

PFD/
charge
pumps

MFD

0

1

Successive
approximation

frequency

(Not enabled)

1 The 208 package does not
have a CLKOUT pin.

Frequency Modulated Phase Locked Loop and System Clocks (FMPLL)

MPC5534 Microcontroller Reference Manual, Rev. 2

11-6 Freescale Semiconductor

11.1.1.5 FMPLL Crystal Reference Mode With FM

Figure 11-5. FMPLL Crystal Reference Mode with FM

EXTAL_EXTCLK

Bus interface

Control/status
registers

XTAL

PLLCFG[0:1]

MDIS

DSPI

MCKO_EN
MCKO_GT

MCKO
divider

MCKO

MDIS

EBI

MDIS

eMIOS

MDIS

eTPU engines

MDIS

eSCI

MDIS

CAN interface CLK
FlexCAN

CLK_SRC

Message buffer CLK

ENGCLK
divider

CLKOUT
divider

ENGCLK

CLKOUT1

NPC

PLLREF

PLLSEL

MODE

Core, INTC, eDMA, SIU, BAM,

RAMs, eQADC, Flash, XBAR,
PBRIDGE_A, PBRIDGE_B

Oscillator clock

SIU

System
clock

1

0

PLL

NOTE: The clock mode selection
and associated package pin settings

 and FMPLL_SYNSR settings are
displayed in Table 11-1.

Filter RFD

1

0
Current

controlled
oscillator

(ICO)OSC PREDIV

PFD/
charge
pumps

MFD

0

1

Successive
approximation

frequency

(Enabled) FM
control

1 The 208 package does not
have a CLKOUT pin.

Frequency Modulated Phase Locked Loop and System Clocks (FMPLL)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 11-7

11.1.1.6 FMPLL Dual-Controller Mode (1:1)

Figure 11-6. FMPLL Dual Controller (1:1) Mode

EXTAL_EXTCLK

Bus interface

Control/status
registers

Successive
approximation

frequency

FM
control

XTAL

MFD

PLLCFG[0:1]

MDIS

DSPI

MCKO_EN
MCKO_GT

MCKO
divider

MCKO

MDIS

EBI

MDIS

eMIOS

MDIS

eTPU engines

MDIS

eSCI

MDIS

CAN Interface CLK
FlexCAN

CLK_SRC

Message buffer CLK

ENGCLK
divider

CLKOUT
divider

ENGCLK

CLKOUT1

NPC

PLLREF

PLLSEL

MODE

Core, INTC, eDMA, SIU, BAM,
RAMs, eQADC, Flash, XBAR,
PBRIDGE_A, PBRIDGE_B

Oscillator clock

SIU

System
clock

1

0

PLL

NOTE: The clock mode selection
and associated package pin settings

 and FMPLL_SYNSR settings are
displayed in Table 11-1.

OSC

0

1

1

0

PREDIV

Filter RFD

Current
controlled
oscillator

(ICO)

PFD/
charge
pumps

1 The 208 package does not
have a CLKOUT pin.

Frequency Modulated Phase Locked Loop and System Clocks (FMPLL)

MPC5534 Microcontroller Reference Manual, Rev. 2

11-8 Freescale Semiconductor

11.1.2 Overview

The frequency modulated phase locked loop (FMPLL) allows you to generate high speed system clocks
from an 8–20 MHz crystal oscillator or from an external clock generator. Further, the FMPLL supports
programmable frequency modulation of the system clock. The FMPLL multiplication factor, reference
clock pre-divider factor, output clock divider ratio, modulation depth, and modulation rate are all
controllable through a bus interface.

11.1.3 Features

The FMPLL has the following major features:

• Input clock frequency from 8–20 MHz

• Current controlled oscillator (ICO) range from 48 MHz to maximum device frequency

• Reference frequency pre-divider (PREDIV) for finer frequency synthesis resolution

• Reduced frequency divider (RFD) for reduced frequency operation without forcing the FMPLL to
re-lock

• Four modes of operation:

— Bypass mode.

— Crystal reference mode. This is the default mode for the 324 package (with or without the 496
assembly). See Section 11.1.4.1, “Crystal Reference.”

— External reference mode. See Section 11.1.4.2, “External Reference Mode.”

— PLL dual-controller (1:1) mode for EXTAL_EXTCLK to CLKOUT skew minimization.

• Programmable frequency modulation

— Modulation enabled/disabled via bus interface

— Triangle wave modulation

— Register programmable modulation depth (±1% to ±2% deviation from center frequency)

— Register programmable modulation frequency dependent on reference frequency; limited to
100–250 MHz.

• Lock detect circuitry reports when the FMPLL has achieved frequency lock and continuously
monitors lock status to report loss of lock conditions

— User-selectable ability to generate an interrupt request upon loss of lock.
See Chapter 10, “Interrupt Controller (INTC),” for details.

— User-selectable ability to generate a system reset upon loss of lock.
See Chapter 4, “Reset,” for details.

• Loss-of-clock (LOC) detection for reference and feedback clocks

— User-selectable ability to generate an interrupt request upon loss of clock.
See Chapter 10, “Interrupt Controller (INTC),” for details.

— User-selectable ability to generate a system reset upon loss of clock
See Chapter 4, “Reset,” for details.

• Self-clocked mode (SCM) operation in event of input clock failure

Frequency Modulated Phase Locked Loop and System Clocks (FMPLL)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 11-9

11.1.4 FMPLL Modes of Operation

The FMPLL operational mode is configured during reset. Table 11-1 shows clock mode selection during
reset configuration. Additional information on reset configuration options for the FMPLL are in Chapter 4,
“Reset.”

11.1.4.1 Crystal Reference

In crystal reference mode, the FMPLL receives an input clock frequency (Fref_crystal) from the crystal
oscillator circuit (EXTAL_EXTCLK) and the pre-divider, and multiplies the frequency to create the
FMPLL output clock. You must supply a crystal oscillator that is within the device input frequency range,
the crystal manufacturer’s recommended external support circuitry, and a short signal route from the MCU
to the crystal.

The external support circuitry for the crystal oscillator is shown in Figure 11-7. Example component
values are shown as well. Review the actual circuit with the crystal manufacturer. A block diagram
illustrating crystal reference mode is shown in Figure 11-4.

Table 11-1. Clock Mode Selection

Clock Mode
Package Pins

Synthesizer Status Register
(FMPLL_SYNSR)1 Bits

1 See Section 11.3.1.2, “Synthesizer Status Register (FMPLL_SYNSR)” for more information.

RSTCFG2

2 Because the 208 package has no RSTCFG pin, the signal is internally asserted (driven to 0), therefore
the PLLCFG pins are always used to configure the FMPLL. After the device resets, the PLLCFG values
remain the same as before the reset. The device does not reset to the crystal reference mode. Bypass
mode is not enabled in the 208 package.

PLLCFG[0] PLLCFG[1] MODE PLLSEL PLLREF

Crystal reference
(324 package only)

1 PLLCFG pins ignored.
1 1 1

0 1 0

External reference 0 0 1 1 1 0

Bypass 0 0 0 0 0 0

Dual-controller 0 1 1 1 0 0

Frequency Modulated Phase Locked Loop and System Clocks (FMPLL)

MPC5534 Microcontroller Reference Manual, Rev. 2

11-10 Freescale Semiconductor

Figure 11-7. Crystal Oscillator Network

In crystal reference mode, the FMPLL can generate a frequency modulated clock or a non-modulated
clock (locked on a single frequency). The modulation rate, modulation depth, output clock divide ratio
(RFD), and whether the FMPLL is modulating or not can be programmed by writing to the FMPLL
registers. Crystal reference is the default clock mode for the 324 pin package. It is not necessary to force
PLLCFG[0:1] to enter this mode.

In the 208 package size, because it has no RSTCFG pin, the crystal reference mode can only be selected
through the PLLCFG pins.

11.1.4.2 External Reference Mode

The external reference mode functions the same as crystal reference mode except that EXTAL_EXTCLK
is driven by an external clock generator rather than a crystal oscillator. The input frequency range (Fref_ext)
in external reference mode is the same as the input frequency reference range (Fref-crystal) in the crystal
reference mode, and frequency modulation is also available. To enter external reference mode, follow the
procedure outlined in Section 11.1.4, “FMPLL Modes of Operation.” A block diagram illustrating external
reference mode is shown in Figure 11-3.

NOTE
In addition to supplying power for the CLKOUT signal, when the FMPLL
is configured for external reference mode of operation, the VDDE5 supply
voltage also controls the voltage level at which the signal presented to the
EXTAL_EXTCLK pin causes a switch in the clock logic levels. The
EXTAL_EXTCLK accepts a clock source with a voltage range of 1.6–3.6 V,
however the transition voltage is determined by VDDE5 supply voltage
divided by two. As an example, if VDDE5 is 3.3 V, then the clock transitions
at approximately 1.6 V. The VDDE5 supply voltage and the voltage level of
the external clock reference must be compatible, or the device does not
clock correctly.

VSSSYN

C2

EXTAL XTAL VSSSYN

C1

Crystal

RF1

On chip

Oscillator
1 For an 8–20 MHz crystal, the resistor must be 1–2.8 KΩ. The exact value depends on the crystal

characteristics. Consult the crystal manufacturer’s specifications.

Frequency Modulated Phase Locked Loop and System Clocks (FMPLL)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 11-11

11.1.4.3 Bypass Mode

In FMPLL bypass mode, the FMPLL is completely bypassed and you must supply an external clock on
the EXTAL_EXTCLK pin. The external clock is used directly to produce the internal system clocks. In
bypass mode, the analog portion of the FMPLL is disabled and no clocks are generated at the FMPLL
output. Consequently, frequency modulation is not available. In bypass mode the pre-divider is bypassed
and has no effect on the system clock. The frequency in bypass mode is Fref_ext.

To enter bypass mode, follow the procedure outlined in Section 11.1.4, “FMPLL Modes of Operation.” A
block diagram illustrating bypass mode is shown in Figure 11-2.

11.1.4.4 Dual-Controller Mode (1:1)

FMPLL dual-controller mode is used by the slave MCU device of a dual-controller system. The slave
FMPLL facilitates skew reduction between the input and output clock signals. To enter dual-controller
mode, follow the procedure outlined in Section 11.1.4, “FMPLL Modes of Operation.”

In this mode, the system clock runs at twice the frequency of the EXTAL_EXTCLK input pin and is phase
aligned. Crystal operation is not supported in dual-controller mode and an external clock must be provided.
In this mode, the frequency and phase of the signal at the EXTAL_EXTCLK pin and the CLKOUT pin of
the slave MCU are matched. A block diagram illustrating dual-controller mode (1:1) is shown in
Figure 11-6.

Frequency modulation is not available when configured for dual-controller mode for both the master and
slave devices. Enabling frequency modulation on the device supplying the reference clock to the slave in
dual-controller mode produces unreliable clocks on the slave.

NOTE
When using dual-controller mode, do not change the CLKOUT clock divider
on the slave device from its reset state of divide-by-two. Increasing or
decreasing this divide ratio can produce unpredictable results from the FMPLL.

11.2 External Signal Description
Table 11-2 lists external signals used by the FMPLL during normal operation.

Table 11-2. PLL External Pin Interface

Name I/O Type Function Pull

RSTCFG_GPIO[210]1

1 The 208 package does not have a RSTCFG pin, therefore the signal is internally asserted (driven to 0).

I/O Determines the configuration to use during reset. GPIO used
otherwise.

Up

PLLCFG[0]_GPIO[208] I/O Configures the mode during reset. GPIO used otherwise. Up

PLLCFG[1]_GPIO[209] I/O Configures the mode during reset. GPIO used otherwise. Up

XTAL Output Output drive for external crystal —

EXTAL_EXTCLK Input Crystal external clock input —

VDDSYN Power Analog power supply (3.3 V ±10%) —

VSSSYN Ground Analog ground —

Frequency Modulated Phase Locked Loop and System Clocks (FMPLL)

MPC5534 Microcontroller Reference Manual, Rev. 2

11-12 Freescale Semiconductor

11.3 Memory Map/Register Definition
Table 11-3 shows the FMPLL memory map locations.

11.3.1 Register Descriptions

The clock operation is controlled by the synthesizer control register (FMPLL_SYNCR) and status is
reported in the synthesizer status register (FMPLL_SYNSR). The following sections describe these
registers in detail.

11.3.1.1 Synthesizer Control Register (FMPLL_SYNCR)

The synthesizer control register (FMPLL_SYNCR) contains bits for defining the clock operation for the
system.

NOTE
To ensure proper operation for all MPC5500s, execute an mbar or msync
instruction between: the write to change the FMPLL_SYNCR[MFD], and the
read to check the lock status shown by FMPLL_SYNSR[LOCK].

Buffered writes to the FMPLL, as controlled by PBRIDGE_A_OPACR[BW0],
must be disabled.

Table 11-3. FMPLL Module Memory Map

Address Register Name Register Description Bits

Base (0xC3F8_0000) FMPLL_SYNCR Synthesizer control register 32

Base + 0x0004 FMPLL_SYNSR Synthesizer status register 32

(Base + 0x0008)–0xC3F8_3FFF — Reserved —

Address: Base + 0x0000 Access: User R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0
PREDIV MFD

0
RFD

LOC
EN

LOL
RE

LOC
REW

Reset 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R DIS
CLK

LOL
IRQ

LOC
IRQ

RATE DEPTH EXP
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 11-8. Synthesizer Control Register (FMPLL_SYNCR)

Frequency Modulated Phase Locked Loop and System Clocks (FMPLL)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 11-13

Table 11-4. FMPLL_SYNCR Field Descriptions

Field Description

0 Reserved

1–3
PREDIV

[0:2]

The PREDIV bits control the value of the divider on the input clock. The output of the pre-divider circuit
generates the reference clock (Fprediv) to the FMPLL analog loop. When the PREDIV bits are changed, the
FMPLL immediately loses lock. To prevent an immediate reset, the LOLRE bit must be cleared before writing
the PREDIV bits. In 1:1 (dual-controller) mode, the PREDIV bits are ignored and the input clock is fed directly
to the analog loop.
000 Divide by 1
001 Divide by 2
010 Divide by 3
011 Divide by 4
100 Divide by 5
101–111 Invalid values

Note: Programming a PREDIV value such that the ICO operates outside its specified range causes
unpredictable results and the FMPLL does not lock. See the device Data Sheet for details on the ICO
range.

Note: To avoid unintentional interrupt requests, disable LOLIRQ before changing PREDIV and then reenable
it after acquiring lock.

Note: When using crystal reference mode or external reference mode, The PREDIV value must not be set
to any value that causes the phase/frequency detector to go below 4 MHz. That is, the crystal
(Fref_crystal) or external clock (Fref_ext) frequency divided by the PREDIV value creates the Fprediv
frequency that must be greater than or equal to 4 MHz. See the device Data Sheet for Fprediv values.

Note: To use the 8–20 MHz OSC, the PLL predivider must be configured for divide-by-two operation by tying
PLLCFG[2] low (set PREDIV to 0b000).

4–8
MFD
[0:4]

Multiplication factor divider. The MFD bits control the value of the divider in the FMPLL feedback loop. The
value specified by the MFD bits establish the multiplication factor applied to the reference frequency. The
decimal equivalent of the MFD binary number is substituted into the equation from Table 11-9 for Fsys to
determine the equivalent multiplication factor.
When the MFD bits are changed, the FMPLL loses lock. At this point, if modulation is enabled, the calibration
sequence is reinitialized. To prevent an immediate reset, the LOLRE bit must be cleared before writing the
MFD bits. In dual-controller mode, the MFD bits are ignored and the multiplication factor is equivalent to 2X.
In bypass mode the MFD bits have no effect.
Note: Programming an MFD value such that the ICO operates outside its specified range causes

unpredictable results and the FMPLL does not lock. See the device Data Sheet for details on the ICO
range.

Note: To avoid unintentional interrupt requests, disable LOLIRQ before changing MFD and then reenable it
after acquiring lock.

9 Reserved

Frequency Modulated Phase Locked Loop and System Clocks (FMPLL)

MPC5534 Microcontroller Reference Manual, Rev. 2

11-14 Freescale Semiconductor

10–12
RFD
[0:2]

Reduced frequency divider. The RFD bits control a divider at the output of the FMPLL. The value specified
by the RFD bits establish the divisor applied to the FMPLL frequency.

Changing the RFD bits does not affect the FMPLL; hence, no re-lock delay is incurred. Resulting changes in
clock frequency are synchronized to the next falling edge of the current system clock. However these bits
must only be written when the lock bit (LOCK) is set, to avoid exceeding the allowable system operating
frequency. In bypass mode, the RFD bits have no effect.

13
LOCEN

Loss-of-clock enable. The LOCEN bit determines whether the loss of clock function is operational. See
Section 11.4.2.6, “Loss-of-Clock Detection” and Section 11.4.2.6.1, “Alternate and Backup Clock Selection”
for more information.
In bypass mode, this bit has no effect.
LOCEN does not affect the loss of lock circuitry.
0 Loss of clock disabled.
1 Loss of clock enabled.

14
LOLRE

Loss-of-lock reset enable. The LOLRE bit determines how the system integration module (the SIU) handles
a loss of lock indication. When operating in crystal reference, external reference, or dual-controller mode, the
FMPLL must be locked before setting the LOLRE bit. Otherwise reset is immediately asserted. The LOLRE
bit has no effect in bypass mode.
0 Ignore loss of lock, reset not asserted.
1 Assert reset on loss of lock. Reset remains asserted, regardless of the source of reset, until after the

FMPLL has locked.

15
LOCRE

Loss-of-clock reset enable. The LOCRE bit determines how the system integration module (the SIU) handles
a loss of clock condition when LOCEN = 1. LOCRE has no effect when LOCEN = 0. If the LOCF bit in the
SYNSR indicates a loss of clock condition, setting the LOCRE bit causes an immediate reset. In bypass
mode LOCRE has no effect.
0 Ignore loss of clock, reset not asserted.
1 Assert reset on loss of clock.

16
DISCLK

Disable CLKOUT. The DISCLK bit determines whether CLKOUT is active. When CLKOUT is disabled it is
driven low.
0 CLKOUT driven normally
1 CLKOUT driven low

Table 11-4. FMPLL_SYNCR Field Descriptions (continued)

Field Description

RFD[0:2] Output Clock Divide Ratio

000 Divide by 1

001 Divide by 2

010 Divide by 4

011 Divide by 8

100 Divide by 16

101 Divide by 32

110 Divide by 64

111 Divide by 128

Frequency Modulated Phase Locked Loop and System Clocks (FMPLL)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 11-15

17
LOLIRQ

Loss-of-lock interrupt request. The LOLIRQ bit enables an interrupt request for LOLF when it (LOLIRQ) is
asserted and when LOLF is asserted. If either LOLF or LOLIRQ is negated, the interrupt request is negated.
When operating in crystal reference, external reference, or dual-controller mode, the FMPLL must be locked
before setting the LOLIRQ bit. Otherwise an interrupt is immediately requested. The LOLIRQ bit has no effect
in bypass mode.
0 Ignore loss of lock, interrupt not requested
1 Request interrupt

18
LOCIRQ

Loss-of-clock interrupt request. The LOCIRQ bit determines how the system integration module (the SIU)
handles a loss of clock condition when LOCEN = 1. LOCIRQ has no effect when LOCEN = 0. If the LOCF
bit in the SYNSR indicates a loss of clock condition, setting (or having previously set) the LOCIRQ bit causes
an interrupt request. In bypass mode LOCIRQ has no effect.
0 Ignore loss of clock, interrupt not requested
1 Request interrupt on loss of clock.

19
RATE

Modulation rate. Controls the rate of frequency modulation applied to the system frequency. The allowable
modulation rates are shown below. Changing the rate by writing to the RATE bit initiates the FM calibration
sequence.

Note: To prevent unintentional interrupt requests, clear LOLIRQ before changing RATE.

Note: Fmod must be between 100–250 MHz. See Section , “Changing the MFD or PREDIV values causes
the FMPLL to perform a search for the lock frequency that results in the system clock frequency
changing rapidly across the complete frequency range. All MCU peripherals, including the external
bus are subjected to this frequency sweep. Operation of timers and serial communications during this
search sequence produces unpredictable results..”

20–21
DEPTH

[0:1]

Controls the frequency modulation depth and enables the frequency modulation. When programmed to a
value other than 0x0000, the frequency modulation is automatically enabled. The programmable frequency
deviations from the system frequency are shown below. If the depth is changed to a value other than 0x0000,
the calibration sequence is reinitialized.

Note: To prevent unintentional interrupt requests, clear LOLIRQ before changing DEPTH.

22–31
EXP
[0:9]

Expected difference value. Holds the expected value of the difference of the reference and the feedback
counters. See Section 11.4.3.3, “FM Calibration Routine” to determine the value of these bits. This field is
written by the application before entering calibration mode.

Table 11-4. FMPLL_SYNCR Field Descriptions (continued)

Field Description

RATE Modulation Rate (Hz)

0
Fmod = Fref_crystal ÷ [(PREDIV +1) × 80]

Fmod = Fref_ext ÷ [(PREDIV +1) × 80]

1
Fmod = Fref_crystal ÷ [(PREDIV +1) × 40]

Fmod = Fref_ext ÷ [(PREDIV +1) × 40]

DEPTH[1] DEPTH[0] Modulation Depth (% of Fsys)

0 0 0

0 1 1.0 ± 0.2

1 0 2.0 ± 0.2

1 1 Invalid value

Frequency Modulated Phase Locked Loop and System Clocks (FMPLL)

MPC5534 Microcontroller Reference Manual, Rev. 2

11-16 Freescale Semiconductor

11.3.1.2 Synthesizer Status Register (FMPLL_SYNSR)

The synthesizer status register (FMPLL_SYNSR) is a 32-bit register. Only the LOLF and LOCF flag bits
are writable in this register. Writes to bits other than the LOLF and LOCF have no effect.

Address: Base + 0x0004 Access: User R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
0 0 0 0 0 0 LOLF LOC MODE

PLL
SEL

PLL
REF

LOCKS LOCK LOCF
CALD
ONE

CAL
PASS

W w1c w1c

Reset 0 0 0 0 0 0 0 0 —1 —1 —1 —1 —2 0 0 0
1 Reset state determined during reset configuration. (See Section 11.1.4, “FMPLL Modes of Operation,” for more

information.)
2 Reset state determined during reset.

Note: “w1c” signifies that this bit is cleared by writing a 1 to it.

Figure 11-9. Synthesizer Status Register (FMPLL_SYNSR)

Table 11-5. FMPLL_SYNSR Field Descriptions

Field Description

0–21 Reserved

22
LOLF

Loss-of-lock flag. Provides the interrupt request flag. This is a write 1 to clear (w1c) bit; to clear the flag, you
must write a 1 to the bit. Writing 0 has no effect. This flag is not set and an interrupt is not requested, if the
loss-of-lock condition was caused by:
 • a system reset
 • a write to the FMPLL_SYNCR which modifies the MFD bits
 • enabling frequency modulation

If the flag is set due to a system failure, writing the MFD bits or enabling FM does not clear the flag. Asserting
reset clears the flag. This flag bit is sticky; if lock is reacquired, the bit remains set until either a write of 1 or
reset is asserted.
0 Interrupt service not requested
1 Interrupt service requested
Note: Upon a loss-of-lock that is not generated by:

 •System reset
 •Write to the FMPLL_SYNCR that modifies the MFD or PREDIV bits
 •Enabling of frequency modulation

the LOLF is set only if LOLIRQ is set. If the FMPLL reacquires lock and any of the previous conditions
in the bulleted list occurs, the LOLF is set again. To avoid generating an unintentional interrupt, clear
LOLIRQ before changing MFD or PREDIV, or before enabling FM after a previous interrupt and relock
occurred.

Frequency Modulated Phase Locked Loop and System Clocks (FMPLL)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 11-17

23
LOC

Loss-of-clock status. Indicates whether a loss-of-clock condition is present when operating in crystal
reference, external reference, or dual-controller mode, If LOC = 0, the system clocks are operating normally.
If LOC = 1, the system clocks have failed due to a reference failure or a FMPLL failure. If the read of the LOC
bit and the loss-of-clock condition occur simultaneously, the bit does not reflect the current loss of clock
condition. If a loss-of-clock condition occurs which sets this bit and the clocks later return to normal, this bit
is cleared. A loss of clock condition can only be detected if LOCEN = 1. LOC is always 0 in bypass mode.
0 Clocks are operating normally
1 Clocks are not operating normally.

24
MODE

Clock mode. This bit is read only and the value is determined at reset. The value of this bit combined with the
values of the PLLSEL and PLLREF bits, set the system clocking mode used. See Chapter 4, “Reset,” for
details on how to configure the system clock mode during reset.
0 PLL bypass mode used.
1 PLL clock mode used.

25
PLLSEL

PLL mode select. This bit is read only and the value is determined at reset. The value of this bit combined
with the values of the MODE and PLLREF bits, indicates the system clocking mode used. This bit indicates
the FMPLL operating mode used: dual controller or reference mode. This bit is cleared in dual-controller and
bypass mode. See Chapter 4, “Reset,” for details on how to configure the system clock mode during reset.
See Table 11-1 and Table 11-2 for more information.
0 Dual-controller mode used.
1 Crystal reference or external reference mode used.

26
PLLREF

PLL clock reference source. This bit is read only and the value is determined at reset. The value of this bit
combined with the values of the MODE and PLLSEL bits, indicates the system clocking mode used. This bit
determines whether an external clock or a crystal reference is used as a the PLL reference source. This bit
is cleared in dual controller mode and bypass mode. See Chapter 4, “Reset,” for details on how to configure
the system clock mode during reset.
0 External clock reference used.
1 Crystal clock reference used.

27
LOCKS

Sticky FMPLL lock status bit. This bit is a read-only sticky bit that indicates the FMPLL lock status. LOCKS is
set by the lock detect circuitry when the FMPLL acquires lock after one of the following:
 • System reset
 • Write to the FMPLL_SYNCR that modifies the MFD and PREDIV bits
 • Enable frequency modulation
Whenever the FMPLL loses lock, LOCKS is cleared. LOCKS remains cleared even after the FMPLL relocks,
until one of the three previously-stated conditions occurs. Furthermore, if the LOCKS bit is read when the
FMPLL simultaneously loses lock, the bit does not reflect the current loss of lock condition.
If operating in bypass mode, LOCKS remains cleared after reset. In crystal reference, external reference, and
dual-controller mode, LOCKS is set after reset.
0 PLL has lost lock since last system reset, a write to FMPLL_SYNCR to modify the MFD and PREDIV bit

fields, or frequency modulation enabled.
1 PLL has not lost lock since last system reset, a write to FMPLL_SYNCR to modify the MFD and PREDIV

bit fields, or frequency modulation enabled.

28
LOCK

PLL lock status bit. This bit is a read-only bit that indicates whether the FMPLL has acquired lock. If the LOCK
bit is read when the FMPLL simultaneously loses lock or acquires lock, the bit does not reflect the current
condition of the FMPLL.
If operating in bypass mode, LOCK remains cleared after reset. See the frequency as defined in the MPC5534
Microcontroller Data Sheet for the lock/unlock range.
0 PLL is unlocked.
1 PLL is locked.

Table 11-5. FMPLL_SYNSR Field Descriptions (continued)

Field Description

Frequency Modulated Phase Locked Loop and System Clocks (FMPLL)

MPC5534 Microcontroller Reference Manual, Rev. 2

11-18 Freescale Semiconductor

11.4 Functional Description
This section explains clock architecture, clock operation, and clock configuration.

11.4.1 Clock Architecture

This section describes the clocks and clock architecture in the MCU.

The system clocks are generated from one of four FMPLL modes: crystal reference mode, external
reference mode, dual-controller (1:1) mode, and bypass mode. See Section 11.1, “Introduction” for
information on the different clocking modes available in the FMPLL.

The MCU has three clock output pins that are driven by programmable clock dividers. The clock dividers
divide the system clock down by even integer values. The three clock output pins are the following:

• CLKOUT – External address/data bus clock

• MCKO – Nexus auxiliary port clock

• ENGCLK – Engineering clock

The MCU has been designed so that the oscillator clock can be selected as the clock source for the CAN
interface in the FlexCAN blocks resulting in very low jitter performance.

Figure 11-1 shows a block diagram of the FMPLL and the system clock architecture.

29
LOCF

Loss-of-clock flag. This bit provides the interrupt request flag. This is a write 1 to clear (w1c) bit; to clear the
flag, you must write a 1 to the bit. Writing 0 has no effect. Asserting reset clears the flag. This flag is sticky in
the sense that if clocks return to normal after the flag has been set, the bit remains set until cleared by either
writing 1 or asserting reset.
0 Interrupt service not requested
1 Interrupt service requested

30
CALDONE

Calibration complete. Indicates whether the calibration sequence has been completed since the last time
modulation was enabled. If CALDONE = 0 then the calibration sequence is either in progress or modulation
is disabled. If CALDONE = 1 then the calibration sequence has been completed, and frequency modulation
is operating.
0 Calibration not complete.
1 Calibration complete.
Note: FM relocking does not start until calibration is complete.

31
CALPASS

Calibration passed. Indicates whether the calibration routine was successful. If CALPASS = 1 and
CALDONE = 1 then the routine was successful. If CALPASS = 0 and CALDONE = 1, then the routine was
unsuccessful. When the calibration routine is initiated the CALPASS is asserted. CALPASS remains asserted
until either modulation is disabled by clearing the DEPTH bits in the FMPLL_SYNCR or a failure occurs within
the FMPLL calibration sequence.
0 Calibration unsuccessful.
1 Calibration successful.
If calibration is unsuccessful, then actual depth is not guaranteed to match the desired depth.

Table 11-5. FMPLL_SYNSR Field Descriptions (continued)

Field Description

Frequency Modulated Phase Locked Loop and System Clocks (FMPLL)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 11-19

11.4.1.1 Software Controlled Power Management/Clock Gating

The peripheral IP modules are designed to let software gate the clocks to the non-memory-mapped logic
of the modules.

Some of the IP modules on this device support software controlled power management/clock gating
whereby the application software can disable the non-memory-mapped portions of the modules by writing
to module disable (MDIS) bits in registers within the modules. The memory-mapped portions of the
modules are clocked by the system clock when they are being accessed. The Nexus Port Controller (NPC)
can be configured to disable the MCKO signal when there are no Nexus messages pending. The flash array
can be disabled by writing to a bit in the flash register map.

The modules that implement software controlled power management and clock gating are listed in
Table 11-6 along with the registers and bits that disable each module. The software controlled clocks are
enabled when the MCU comes out of reset.

11.4.1.2 Clock Dividers

Each of the CLKOUT, MCKO, and ENGCLK dividers provides a nominal 50% duty cycle clock to an
output pin. There is no guaranteed phase relationship between CLKOUT, MCKO, and ENGCLK.
ENGCLK is not synchronized to any I/O pins.

11.4.1.2.1 External Bus Clock (CLKOUT)

The external bus clock (CLKOUT) divider can be programmed to divide the system clock by two or four
based on the settings of the EBDF bit field in the SIU external clock control register (SIU_ECCR). The
reset value of the EBDF selects a CLKOUT frequency of one half of the system clock frequency. The EBI

Table 11-6. Software Controlled Power Management/Clock Gating Support

Module Name Register Name Bit Names

DSPI B DSPI_B_MCR MDIS

DSPI C DSPI_C_MCR MDIS

DSPI D DSPI_D_MCR MDIS

EBI EBI_MCR MDIS

eTPU engine A ETPU_ECR_1 MDIS

FlexCAN A CAN_A_MCR MDIS

FlexCAN C CAN_C_MCR MDIS

eMIOS EMIOS_MCR MDIS

eSCI A ESCI_A_CR2 MDIS

eSCI B ESCI_B_CR2 MDIS

Nexus port controller (NPC) NPC_PCR MCKO_EN, MCKO_GT 1

1 See Chapter 24, “Nexus Development Interface.”

Flash array FLASH_MCR STOP 2

2 See Chapter 13, “Flash Memory.”

Frequency Modulated Phase Locked Loop and System Clocks (FMPLL)

MPC5534 Microcontroller Reference Manual, Rev. 2

11-20 Freescale Semiconductor

supports gating of the CLKOUT signal when there are no external bus accesses in progress. See the
Chapter 6, “System Integration Unit (SIU)” for more information on CLKOUT.

The hold-time for the external bus pins can be changed by writing to the external bus tap select (EBTS)
bit in the SIU_ECCR. See Chapter 6, “System Integration Unit (SIU)” for more information.

11.4.1.2.2 Nexus Message Clock (MCKO)

The Nexus message clock (MCKO) divider can be programmed to divide the system clock by two, four or
eight based on the MCKO_DIV bit field in the port configuration register (PCR) in the Nexus port
controller (NPC). The reset value of the MCKO_DIV selects an MCKO clock frequency one half of the
system clock frequency. The MCKO divider is configured by writing to the NPC through the JTAG port.
See Chapter 24, “Nexus Development Interface” for more information.

11.4.1.2.3 Engineering Clock (ENGCLK)

The engineering clock (ENGCLK) divider can be programmed to divide the system clock by factors from
2 to 126 in increments of two. The ENGDIV bit field in the SIU_ECCR determines the divide factor. The
reset value of ENGDIV selects an ENGCLK frequency of system clock divided by 32.

11.4.1.2.4 FlexCAN_x Clock Domains

The FlexCAN modules have two distinct software controlled clock domains. One of the clock domains is
always derived from the system clock. This clock domain includes the message buffer logic. The source
for the second clock domain can be either the system clock or a direct feed from the oscillator pin
EXTAL_EXTCLK. The logic in the second clock domain controls the CAN interface pins. The CLK_SRC
bit in the FlexCAN CTRL register selects between the system clock and the oscillator clock as the clock
source for the second domain. Selecting the oscillator as the clock source ensures very low jitter on the
CAN bus. System software can gate both clocks by writing to the MDIS bit in the FlexCAN MCR register.
Figure 11-1 shows the two clock domains in the FlexCAN modules.

See Chapter 21, “FlexCAN2 Controller Area Network” for more information on the FlexCAN modules.

11.4.2 Clock Operation

11.4.2.1 Input Clock Frequency

The FMPLL is designed to operate over an input clock frequency range as determined by the operating
mode. The operating ranges for each mode are given in Table 11-7.

Co

Table 11-7. Input Clock Frequency

Mode Symbol Input Frequency Range

Crystal reference
External reference

Fref_crystal
Fref_ext

8–20 MHz

Bypass Fextal 0–132 MHz

Dual-controller (1:1) Fref_1:1 25–66 MHz

Frequency Modulated Phase Locked Loop and System Clocks (FMPLL)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 11-21

11.4.2.2 Reduced Frequency Divider (RFD)

The RFD can be used for reducing the FMPLL system clock frequency. To protect the system from
frequency overshoot during the PLL lock detect phase, the RFD must be programmed to be greater than
or equal to 1 when changing MFD or PREDIV or when enabling frequency modulation.

11.4.2.3 Programmable Frequency Modulation

The FMPLL provides for frequency modulation of the system clock. The modulation is applied as a
triangular waveform with modulation depth and rate controlled by fields in the FMPLL_SYNCR. The
modulation depth can be set to ±1% or ±2% of the system frequency. The modulation rate is dependent on
the reference clock frequency.

Complete details for configuring the programmable frequency modulation is given in Section 11.4.3,
“Clock Configuration.” Changing the MFD or PREDIV values causes the FMPLL to perform a search for
the lock frequency that results in the system clock frequency changing rapidly across the complete
frequency range. All MCU peripherals, including the external bus are subjected to this frequency sweep.
Operation of timers and serial communications during this search sequence produces unpredictable results.

11.4.2.4 FMPLL Lock Detection

A pair of counters monitor the reference and feedback clocks to determine when the system has acquired
frequency lock. After the FMPLL has locked, the counters continue to monitor the reference and feedback
clocks and reports if/when the FMPLL has lost lock. The FMPLL_SYNCR provides the flexibility to
select whether to generate an interrupt, assert system reset, or do nothing in the event that the FMPLL loses
lock. See Section 11.3.1.1, “Synthesizer Control Register (FMPLL_SYNCR) for details.

When the frequency modulation is enabled, the loss of lock continues to function as described but with the
lock and loss of lock criteria reduced to ensure that false loss of lock conditions are not detected.

In bypass mode, the FMPLL cannot lock since the FMPLL is disabled.

11.4.2.5 FMPLL Loss-of-Lock Conditions

After the FMPLL acquires lock after reset, the FMPLL_SYNSR[LOCK] and FMPLL_SYNSR[LOCKS]
status bits are set. If the MFD is changed or if an unexpected loss of lock condition occurs, the LOCK and
LOCKS status bits are negated. While the FMPLL is in an unlocked condition, the system clocks continue
to be sourced from the FMPLL as the FMPLL attempts to re-lock. Consequently, during the re-locking
process, the system clock frequency is not well defined and can exceed the maximum system frequency
thereby violating the system clock timing specifications (when changing MFD and PREDIV, this is
avoided by following the procedure detailed in Section 11.4.3, “Clock Configuration”). Because this
condition can arise during unexpected loss of lock events, it is recommended to use the loss of lock reset
functionality, See Section 11.4.2.5.1, “FMPLL Loss-of-Lock Reset,” below. However, LOLRE must be
cleared while changing the MFD otherwise a reset occurs.

After the FMPLL has relocked, the LOCK bit is set. The LOCKS bit remains cleared if the loss of lock
was unexpected. The LOCKS bit is set to 1 when the loss of lock was caused by changing the MFD.

Frequency Modulated Phase Locked Loop and System Clocks (FMPLL)

MPC5534 Microcontroller Reference Manual, Rev. 2

11-22 Freescale Semiconductor

11.4.2.5.1 FMPLL Loss-of-Lock Reset

The FMPLL provides the ability to assert reset when a loss of lock condition occurs by programming the
FMPLL_SYNCR[LOLRE] bit. Reset is asserted if LOLRE is set and loss-of-lock occurs. Because the
FMPLL_SYNSR[LOCK] and FMPLL_SYNSR[LOCKS] bits are reinitialized after reset, the system reset
status register (SIU_RSR) must be read to determine that a loss of lock condition occurred.

To exit reset, the reference must be present and the FMPLL must acquire lock. In bypass mode, the FMPLL
cannot lock. Therefore a loss of lock condition cannot occur, and LOLRE has no effect.

11.4.2.5.2 FMPLL Loss-of-Lock Interrupt Request

The FMPLL provides the ability to request an interrupt when a loss of lock condition occurs by
programming the FMPLL_SYNCR[LOLIRQ] bit. An interrupt is requested by the FMPLL if LOLIRQ is
set and loss-of-lock occurs.

In bypass mode, the FMPLL cannot lock. Therefore a loss of lock condition cannot occur, and the LOLIRQ
bit has no effect.

11.4.2.6 Loss-of-Clock Detection

The FMPLL continuously monitors the reference and feedback clocks. In the event either of the clocks fall
below a threshold frequency, the system reports a loss of clock condition. You can enable a feature to have
the FMPLL switch the system clocks to a backup clock in the event of such a failure. Additionally, you
can enter a system RESET, assert an interrupt request, or do nothing if the FMPLL reports this condition.

11.4.2.6.1 Alternate and Backup Clock Selection

If you enable loss-of-clock by setting FMPLL.SYNCR[LOCEN] = 1, then the FMPLL transitions system
clocks to a backup clock source in the event of a clock failure as per Table 11-8.

If loss of clock is enabled and the reference clock is the source of the failure, the FMPLL enters self-clock
mode (SCM). The exact frequency during self-clock mode operation is indeterminate due to process,
voltage, and temperature variation but is guaranteed to be below the maximum system frequency. If the
FMPLL clocks have failed, the FMPLL transitions the system clock source to the reference clock.

The FMPLL remains in SCM until the next reset. If the FMPLL is operated in SCM, writes to
FMPLL_SYNCR[RFD] have no effect on clock frequency. The SCM system frequency stated in the
device Data Sheet assumes that the RFD has been programmed to 0x0.

If loss of clock is enabled and the loss-of-clock is due to a FMPLL failure (for example, loss of feedback
clock), the FMPLL reference becomes the system clock’s source until the next reset, even if the FMPLL
regains itself and re-locks.

Frequency Modulated Phase Locked Loop and System Clocks (FMPLL)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 11-23

A special loss of clock condition occurs when both the reference and the FMPLL fail. The failures can be
simultaneous or the FMPLL can fail first. In either case, the reference clock failure takes priority and the
FMPLL attempts to operate in SCM. If successful, the FMPLL remains in SCM until the next reset. During
SCM, modulation is always disabled. If the FMPLL cannot operate in SCM, the system remains static until
the next reset. Both the reference and the FMPLL must be functioning correctly to exit reset.

11.4.2.6.2 Loss-of-Clock Reset

When a loss-of-clock condition is recognized, reset is asserted if the FMPLL_SYNCR[LOCRE] bit is set.
The LOCF and LOC bits in FMPLL_SYNSR are cleared after reset, therefore, the SIU_RSR must be read
to determine that a loss of clock condition occurred. LOCRE has no effect in bypass mode.

To exit reset, the reference must be present and the FMPLL must acquire lock.

11.4.2.6.3 Loss-of-Clock Interrupt Request

When a loss-of-clock condition is recognized, the FMPLL requests an interrupt if the
FMPLL_SYNCR[LOCIRQ] bit is set. The LOCIRQ bit has no effect in bypass mode or if
FMPLL_SYNCR[LOCEN] = 0.

11.4.3 Clock Configuration

In crystal reference and external reference clock mode, the default system frequency is determined by the
MFD, RFD, and PREDIV reset values. See Section 11.3.1.1, “Synthesizer Control Register
(FMPLL_SYNCR).” The frequency multiplier is determined by the RFD, PREDIV, and multiplication
frequency divisor (MFD) bits in FMPLL_SYNCR.

Table 11-9 shows the clock-out to clock-in frequency relationships for the possible clock modes.

Table 11-8. Loss-of-Clock Summary

Clock Mode
System Clock
Source before

Failure

REFERENCE FAILURE
Alternate Clock Selected by LOC

Circuitry until Reset

PLL FAILURE
Alternate Clock Selected by LOC

Circuitry until Reset

Crystal Reference
External Reference

PLL PLL self-clocked mode PLL reference

Bypass External clock(s) None —

Table 11-9. Clock-out vs. Clock-in Relationships

Clock Mode PLL Option

Crystal Reference Mode

External Reference Mode

Fsys = Fref_crystal ×
(MFD + 4)

[(PREDIV + 1) × 2 RFD]

Fsys = Fref_ext ×
(MFD + 4)

[(PREDIV + 1) × 2 RFD]

Frequency Modulated Phase Locked Loop and System Clocks (FMPLL)

MPC5534 Microcontroller Reference Manual, Rev. 2

11-24 Freescale Semiconductor

When programming the FMPLL, do not violate the maximum system clocks frequency, or maximum and
minimum ICO frequency specifications. For determining the MFD value, use a value of zero for the RFD
(translates to divide-by-one). This ensures that the FMPLL does not try to synthesize a frequency out of
its range. See the device Data Sheet for more information.

11.4.3.1 Programming System Clock Frequency Without Frequency Modulation

The following steps are required to accommodate the frequency overshoot that can occur when the
PREDIV or MFD bits are changed. If frequency modulation is going to be enabled, the maximum
allowable frequency must be reduced by the programmed ΔFm.

NOTE
Following these steps produces immediate changes in supply current,
therefore make sure the power supply is decoupled with low ESR
capacitors.

The following steps program the clock frequency without frequency modulation:

1. Determine the value for the PREDIV, MFD, and RFD fields in the synthesizer control register
(FMPLL_SYNCR). Remember to include the ΔFm if frequency modulation is enabled. The
amount of jitter in the system clocks can be minimized by selecting the maximum MFD factor that
can be paired with an RFD factor to provide the desired frequency. The maximum MFD value that
can be used is determined by the ICO range. See the Data Sheet for the maximum frequency of the
ICO.

2. Change the following in FMPLL_SYNCR:

a) Make sure frequency modulation is disabled (FMPLL_SYNCR[DEPTH] = 00). A change to
PREDIV, MFD, or RATE while modulation is enabled invalidates the previous calibration
results.

b) Clear FMPLL_SYNCR[LOLRE]. If this bit is set, the MCU goes into reset when MFD is
written.

Dual Controller (1:1) Mode

Bypass Mode

NOTES:
Fsys = system frequency

Fprediv = clock frequency after PREDIV.
Fref_crystal and Fref_ext = clock frequencies at the EXTAL_EXTCLK signal. (See Figure 11-1).
MFD ranges from 0–31.
RFD ranges from 0–7.
PREDIV normal reset value is 0. Caution: Programming a PREDIV value such that the ICO operates
outside its specified range causes unpredictable results and the FMPLL does not lock. See the
device Data Sheet for details on the ICO range.

Table 11-9. Clock-out vs. Clock-in Relationships (continued)

Clock Mode PLL Option

Fsys = 2 × Fref_1:1

Fsys = Fref_ext

Frequency Modulated Phase Locked Loop and System Clocks (FMPLL)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 11-25

c) Initialize the FMPLL for less than the desired final system frequency (done in one single write
to FMPLL_SYNCR):

– Disable LOLIRQ.

– Write FMPLL_SYNCR[PREDIV] to a desired final value.

– Write FMPLL_SYNCR[MFD] to a desired final value.

– Write the RFD control field value to a desired final RFD value plus one. RFD must be set
to greater than one to protect from overshoot.

3. Wait for the FMPLL to lock by monitoring the FMPLL_SYNSR[LOCK] bit. See Section 11.3.1.1,
“Synthesizer Control Register (FMPLL_SYNCR),” for memory synchronization between
changing FMPLL_SYNCR[MFD] and monitoring the lock status.

4. Initialize the FMPLL to the desired final system frequency by changing FMPLL_SYNCR[RFD].
The FMPLL does not need to re-lock if only the RFD changes.

5. Re-enable LOLIRQ.

When using crystal reference mode or external reference mode, do not set the PREDIV value to any value
that causes the phase and frequency detector to go below 4 MHz. That is, the crystal or external clock
frequency divided by the PREDIV value must be in the range of 4–20 MHz.

This first register write causes the FMPLL to switch to an initial system frequency which is less than the
final one. Keeping the change of frequency to a lower initial value helps minimize the current surge to the
external power supply caused by the change in frequency. The last step changes the RFD to get the desired
final frequency.

Changing the MFD or PREDIV values causes the FMPLL to perform a search for the lock frequency that
results in the system clock frequency changing rapidly across the complete frequency range. All MCU
peripherals, including the external bus are subjected to this frequency sweep. Operation of timers and
serial communications during this search sequence produces unpredictable results.

11.4.3.2 Programming System Clock Frequency with Frequency Modulation

In crystal reference and external reference clock modes, the default mode is without frequency modulation
enabled. When frequency modulation is enabled, however, three parameters must be set to generate the
desired level of modulation: the RATE, DEPTH, and EXP bit fields of the FMPLL_SYNCR. RATE and
DEPTH determine the modulation rate and the modulation depth. The EXP field controls the FM
calibration routine. Section 11.4.3.3, “FM Calibration Routine,” shows how to obtain the values to be
programmed for EXP. Figure 11-10 illustrates the effects of the parameters and the modulation waveform
built into the modulation hardware. The modulation waveform is always a triangle wave and its shape is
not programmable.

The modulation rates given are specific to a reference frequency of 8 MHz. Fprediv is the frequency after
the predivider.

 Fmod = Fref_crystal or Fref_ext ÷ [(PREDIV + 1) x Q]

where:

Q = 40 or 80. This gives modulation rates of 200 kHz and 100 kHz, respectively.

Frequency Modulated Phase Locked Loop and System Clocks (FMPLL)

MPC5534 Microcontroller Reference Manual, Rev. 2

11-26 Freescale Semiconductor

NOTE
The following relationship between Fmod and modulation rates must be
maintained:

Therefore, the use of a non 8 MHz reference results in scaled modulation rates.

100 KHz ≤ Fmod ≤ 250 KHz

Frequency Modulated Phase Locked Loop and System Clocks (FMPLL)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 11-27

The steps to program the clock frequency with frequency modulation ensure the calibration routine
operates correctly and prevents frequency overshoot:

1. Change the following in FMPLL_SYNCR:

a) Make sure frequency modulation is disabled (FMPLL_SYNCR[DEPTH] = 00). A change to
PREDIV, MFD, or RATE while modulation is enabled invalidates the previous calibration
results.

b) Clear FMPLL_SYNCR[LOLRE]. If this bit is set, the MCU goes into reset when MFD is
written.

c) Initialize the FMPLL for less than the desired final frequency:

— Disable LOLIRQ.

— Write FMPLL_SYNCR[PREDIV] to the desired final value.

— Write FMPLL_SYNCR[MFD] to the desired final value.

— Write FMPLL_SYNCR[EXP] to the desired final value.

— Write FMPLL_SYNCR[RATE] to the desired final value.

— Write the RFD control field to 1 plus the desired final RFD value (RFD must be greater than
one to protect from overshoot).

2. Wait for the FMPLL to lock by monitoring the FMPLL_SYNSR[LOCK] bit. See Section 11.3.1.1,
“Synthesizer Control Register (FMPLL_SYNCR),” for memory synchronization between
changing FMPLL_SYNCR[MFD] and monitoring the lock status.

3. If using the frequency modulation feature, then:

a) Enable FM by setting FMPLL_SYNCR[DEPTH] = 1 or 2.

b) Also set FMPLL_SYNCR[RATE] if not done previously in step 2.

4. Calibration starts. After calibration is done, then the FMPLL re-locks. Wait for the FMPLL to
re-lock by monitoring the FMPLL_SYNSR[LOCK] bit.

5. Verify FM calibration completed and was successful by testing the FMPLL_SYNSR[CALDONE]
and FMPLL_SYNSR[CALPASS] bitfields.

6. If FM calibration did not complete or was not successful, attempt again by going back to step 1.

7. Initialize the FMPLL to the desired final system frequency by changing FMPLL_SYNCR[RFD].
The FMPLL does not need to re-lock when only changing the RFD.

8. Re-enable LOLIRQ.

NOTE
This first register write causes the FMPLL to switch to an initial frequency
which is less than the final one. Keeping the change of frequency to a lower
initial value helps minimize the current surge to the external power supply
caused by change of frequency. The last step changes the RFD to get the
final frequency.

Frequency Modulated Phase Locked Loop and System Clocks (FMPLL)

MPC5534 Microcontroller Reference Manual, Rev. 2

11-28 Freescale Semiconductor

NOTE
Changing the MFD or PREDIV values causes the FMPLL to perform a
search for the lock frequency that results in the system clock frequency
changing rapidly across the complete frequency range. All MCU
peripherals, including the external bus, are subjected to this frequency
sweep. Operation of timers and serial communications during this search
sequence produces unpredictable results.

The frequency modulation system is dependent upon several the accuracies of these factors:

• VDDSYN and VSSSYN voltages

• Crystal oscillator frequency

• Manufacturing variation

For example, if a 5% accurate supply voltage is used, then a 5% modulation depth error results. If the
crystal oscillator frequency is skewed from 8 MHz, the resulting modulation frequency is proportionally
skewed. Finally, the error due to the manufacturing and environment variation alone can cause the
frequency modulation depth error to be greater than 20%.

Figure 11-10. Frequency Modulation Waveform

11.4.3.3 FM Calibration Routine

Upon enabling frequency modulation, a new calibration routine is performed. This routine tunes a
reference current into the modulation D/A so that the modulation depth (Fmax and Fmin) remains within
specification.

Entering the FM calibration mode requires you to program SYNCR[EXP]. The EXP is the expected value
of the difference between the reference and feedback counters used in the calibration of the FM equation:

Fmax = Fsys + {1%, 2%}
Fmin = Fsys – {1%, 2%}
Fmod = Fref_crystal or Fref_ext ÷ [(PREDIV + 1) × Q] where Q = 40 or 80

Fmax

ΔFm

t

Fmin

f

Δt =
1

Fmod

ΔFm

Frequency Modulated Phase Locked Loop and System Clocks (FMPLL)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 11-29

For example, if 80 MHz is the desired final frequency and an 8 MHz crystal is used, the final values of
MFD = 6 and RFD = 0 produces the desired 80 MHz. For a desired frequency modulation with a 1% depth,
then EXP is calculated using P = 1, MFD = 6 and M = 480. See Table 11-10 for a complete list of values
to be used for the variable (M) based on MFD setting. To obtain a percent modulation (P) of 1%, the EXP
field must be set at:

Rounding this value to the closest integer yields 48, which is entered into the EXP field for this example.

This routine corrects for process variations, but because temperature can change after calibration is
performed, the variation caused by temperature drift remains. This frequency modulation calibration
system is also voltage dependent, so if the supply changes after the sequence occurs, errors incurred are
not corrected. The calibration system reuses the two counters in the lock detect circuit, and the reference
and feedback counters. The reference counter remains clocked by the reference clock, but the feedback
counter is clocked by the ICO clock.

When the calibration routine is initiated by writing to the DEPTH bits, the CALPASS status bit is
immediately set and the CALDONE status bit is immediately cleared.

When calibration is induced, the ICO is given time to settle. Then both the feedback and reference counters
start counting. Full ICO clock cycles are counted by the feedback counter during this time to give the initial
center frequency count. When the reference counter has counted to the programmed number of reference
count cycles, the input to the feedback counter is disabled and the result is placed in the COUNT0 register.
The calibration system then enables modulation at programmed ΔFm. The ICO is given time to settle. Both
counters are reset and restarted. The feedback counter begins to count full ICO clock cycles again to obtain
the delta-frequency count. When the reference counter has counted to the new programmed number of
reference count cycles, the feedback counter is stopped again.

The delta-frequency count minus the center frequency count (COUNT0) results in a delta count
proportional to the reference current into the modulation D/A. That delta count is subtracted from the
expected value given in the EXP field of the FMPLL_SYNCR resulting in an error count. The sign of this
error count determines the direction taken by the calibration D/A to update the calibration current. After
obtaining the error count for the present iteration, both counters are cleared. The stored count of COUNT0

Table 11-10. Multiplied Factor Dividers with M Values

MFD M

0–2 960

3–5 640

6–8 480

9–14 320

15–20 240

21–31 160

EXP
MFD 4+() M× P×()

100
--=

EXP 6 4+() 480× 1×() 100÷ 48= =

Frequency Modulated Phase Locked Loop and System Clocks (FMPLL)

MPC5534 Microcontroller Reference Manual, Rev. 2

11-30 Freescale Semiconductor

is preserved while a new feedback count is obtained, and the process to determine the error count is
repeated. The calibration system repeats this process eight times, once for each bit of the calibration D/A.

After the last decision is made, the CALDONE bit of the SYNSR is written to a one. If an error occurs
during the calibration routine, then CALPASS is immediately written to a zero. If the routine completed
successfully then CALPASS remains a one.

Figure 11-11 shows a block diagram of the calibration circuitry and its associated registers. Figure 11-12
shows a flow chart showing the steps taken by the calibration circuit.

Figure 11-11. FM Auto-Calibration Data Flow

Reference
counter

ICO
counter

10

13

Count 0

10

Expected
(EXP)

Error
(ERR)

13 13 10 10

A B

C D

Control

A – B = Delta count

C – D = Error count

Frequency Modulated Phase Locked Loop and System Clocks (FMPLL)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 11-31

Figure 11-12. FM Auto-Calibration Flow Chart

Count M reference clock cycles.
CALX = value in feedback counter

Allow system 3 x 384 reference
counts to settle

CAL[N] = 1

Enable FM where N = 7

Count M reference clock cycles.
Store value of feedback

Counter in CAL[0]

Enter calibration mode;
Set PCALPASS = 1

Let DIFF = CALX - CAL0

DIFF > 0
?

Yes

Let ERR = DIFF - EXP

ERR > 0
?

No

A

CAL[N] = 0
Yes

PCALPASS = 0
No

A

N = 0
?

No

Yes

N = N - 1

CALDONE = 1

DONE

For MFD = 0 to 2: M = 960
For MFD = 3 to 5: M = 640
For MFD = 6 to 8: M = 480
For MFD = 9 to 14: M = 320
For MFD = 15 to 20: M = 240
For MFD = 21 to 31: M = 160

Frequency Modulated Phase Locked Loop and System Clocks (FMPLL)

MPC5534 Microcontroller Reference Manual, Rev. 2

11-32 Freescale Semiconductor

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 12-1

Chapter 12
External Bus Interface (EBI)

NOTE
The 208 package does not have an external bus interface. This chapter
pertains to devices in the 324 package, with and without the 496 assembly.

12.1 Introduction
This chapter describes the external bus interface (EBI) that manages the transfer of information between
the internal buses and the memories or peripherals in the external address space and enables an external
master to access internal address space.

This device has a 16-bit data bus only—it does not have a 32-bit data bus (internally or externally).

The EBI includes a memory controller that generates interface signals to support a variety of external
memories. This includes single data rate (SDR) burst mode flash, external SRAM, and asynchronous
memories. It supports up to four regions (via chip selects), each with its own programmed attributes.

See Section 12.5.6, “Summary of Differences from MPC500,” for an overview of how the MPC5500 EBI
differs from the EBI used in MPC500 devices.

12.1.1 Block Diagram

Figure 12-1 is a block diagram of the EBI. The signals shown are external pins to the MCU.

NOTE
See Chapter 2, “Signals,” as not all signals are implemented in all device
packages.

External Bus Interface (EBI)

MPC5534 Microcontroller Reference Manual, Rev. 2

12-2 Freescale Semiconductor

Figure 12-1. EBI Block Diagram

External Bus
Interface

Memory
Controller

External Master
Controller

Bus
Monitor

Registers

Arbiter

Slave
Interface/

CLKOUT Driver CLKOUT

Crossbar Switch
(XBAR)

Master
Interface/

Crossbar Switch
(XBAR)

Peripheral
Bridge

CS[1:3]_ADDR[9:11]

TS

OE

 RD_WR

BDIP

TA

ADDR[12:31]

WE/BE[0:1]

(PBridge_A)

System Bus

System Bus

DATA[0:15]

1 The MPC5534 calibration bus and calibration signals are only available on the 496 VertiCal assembly.

CAL_CS[0, 2:3]

CAL_TS

CAL_OE

CAL_WE/BE[0:1]

CAL_RD_WR

CAL_DATA[0:15]

CAL_ADDR[10:30] 1

Available on the VertiCAL
only.assembly

CS[0]_ADDR[8]

External Bus Interface (EBI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 12-3

12.1.2 Features

The device is designed with the following features:

• 1.8–3.3 V I/O

• Address bus—32-bit internal address bus with transfer size indication

— 20 bits is the default EBI size for the 324 package (ADDR[12:31]).

— 24 bits available: ADDR[12:31] is the default pin set, then CS[0:3]_ADDR[8:11]_GPIO [0:3]
must be configured by PCR to ADDR[8:11] to attain the 24-bit size.

• Data bus—16-bit data bus for both external memory accesses and transactions involving an
external master. Although the device is designed to support a 32-bit internal data bus, the 324
package only supplies 16 balls for the external (EBI) data bus (DATA[0:15]).

• Support for external master accesses to internal addresses

• Memory controller with support for various memory types:

— Standard SRAM

— Synchronous burst SDR (flash or SRAM)

— Asynchronous/legacy memory (flash or SRAM)

• Burst support (this device has no cache, therefore only the DMA can generate a burst transfer to
the EBI—the core cannot.)

• Bus monitor

• Configurable wait states

• Four chip select (CS[0:3]) signals in the 324 package

• Two WE/BE signals (WE/BE[0:1])

• Calibration support is only available using the 496 VertiCal assembly:

— Up to three calibration chip selects (CAL_CS[0, 2:3])

— Calibration address bus is 19 bits muxed with CAL_ADDR[12:30]. You can use the muxed
signals CAL_ADDR[10:11] of the primary function CAL_CS[2:3] to maximize the calibration
bus width to 21 bits.

• Configurable bus speed modes (½ or ¼ of system clock frequency)

• Optional automatic CLKOUT gating to save power and reduce EMI

• Compatible with MPC500 external bus
See Section 12.4.1.14, “Compatible with MPC500 External Bus (with Some Limitations).”

External Bus Interface (EBI)

MPC5534 Microcontroller Reference Manual, Rev. 2

12-4 Freescale Semiconductor

12.1.3 Modes of Operation

The mode of the EBI is determined by the MDIS and EXTM bits in the EBI_MCR. Configurable bus speed
modes and debug mode are modes that the MCU can enter, in parallel to the EBI being configured in one
of its module-specific modes.

See Section 12.3.1.3, “EBI Module Configuration Register (EBI_MCR)” for details.

12.1.3.1 Single Master Mode

In single master mode, the EBI responds to internal requests matching one of its regions, but ignores all
externally-initiated bus requests. The MCU is the only master allowed to initiate transactions on the
external bus in this mode; therefore, it acts as a parked master and does not have to arbitrate for the bus
before starting each cycle. Single master mode is entered when EXTM = 0 and MDIS = 0 in the
EBI_MCR.

12.1.3.2 External Master Mode

When the MCU is in external master mode, the EBI responds to internal requests matching one of its
regions, and to external master accesses to internal address space. External master mode is entered when
EXTM = 1 and MDIS = 0 in the EBI_MCR register.

Dual-master operation (multiple masters initiating external bus cycles) is not supported. A multi-MCU
system with one master and one slave is supported. In a dual-controller system, the EBI is configured to
internal arbitration (EARB=0 in EBI_MCR) and must be the system master.

Use the SIZEN and SIZE fields in the EBI_MCR for MCU-to-MCU transfers to indicate transfer size.

See Section 12.5.5, “Dual-MCU Operations.”

Section 12.4.2.10, “Bus Operation in External Master Mode” describes external master mode operation.

12.1.3.3 Module Disable Mode

The module disable mode is used for MCU power management. The clock to the non-memory mapped
logic in the EBI is stopped while in module disable mode. Do not make requests (other than to
memory-mapped logic) to the EBI while it is in module disable mode—even if the clocks are not stopped.
In this case, the operation is undefined. Module disable mode is entered when MDIS = 1 in the EBI_MCR.

12.1.3.4 Configurable Bus Speed Modes

In configurable bus speed modes, the external CLKOUT frequency is scaled to 1/2 or 1/4 of the internal
system clock frequency, which remains unchanged. The EBI drives and samples signals at the scaled
CLKOUT frequency rate rather than the internal system clock. This mode is selected by writing to the
external clock control register in the system integration module (SIU_ECCR).

External Bus Interface (EBI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 12-5

12.1.3.5 16-Bit Data Bus Mode

The EBI is limited to a 16-bit data bus, therefore, the EBI supports the 16-bit data bus mode only
DATA[0:15].

To enter 16-bit data bus mode, set the data bus mode field [DBM] in the EBI master control register
(EBI_MCR[DBM], EBI_BRn[PS] = x) to one. The reset value of DBM is 0.

External master accesses and EBI-mastered non-chip select accesses of exactly 32-bits are supported using
a two (16-bit) beat transfer for both reads and writes. Data transfers that are not chip select transfers and
exactly 32-bits wide are supported in standard non-burst fashion.

See Section 12.4.2.11, “Non-Chip-Select Burst in 16-bit Data Bus Mode.”

12.1.3.6 Debug Mode

When the MCU is in debug mode, the EBI remains operational.

12.2 External Signal Description
Table 12-1 alphabetically lists the external signals used by the EBI and Calibration bus. See Chapter 2,
“Signals,” as not all signals are implemented in all device packages.

NOTE
The 208 package does not have an external bus interface. This chapter
pertains only to the 324 package, with and without the 496 assembly.

Table 12-1. Signal Properties

Name I/O Type Function Pull1
Package and

Assembly

ADDR[8:11] I/O Address Bus — 496

ADDR[12:31] I/O Address Bus — 496, 324

BDIP Output Burst Data in Progress Up 496, 324

CAL_CS[0, 2:3] Output Calibration Chip Selects Up 496

CAL_ADDR[10:11] 2 Output Calibration address bus (output) Up 496

CAL_ADDR[12:30] Output Calibration address bus (output) Up 496

CAL_DATA[0:15] I/O Calibration data bus Up 496

CAL_RD_WR I/O Calibration read/write Up 496

CAL_OE Output Calibration output enable Up 496

CAL_TS Output Calibration transfer start Up 496

CAL_WE/BE[0:1] I/O Calibration write/byte enables Up 496

CLKOUT3 Output Clockout — 496, 324

CS[0] Output Chip Selects Up 496, 324

External Bus Interface (EBI)

MPC5534 Microcontroller Reference Manual, Rev. 2

12-6 Freescale Semiconductor

12.2.1 Detailed Signal Descriptions

See Chapter 2, “Signals,” as not all signals are implemented in all device packages.

12.2.1.1 Address Lines 8–31 (ADDR[8:31])

The ADDR[8:31] signals specify the physical address of the bus transaction. The 24 address lines are bits
8–31 of the EBI 32-bit internal address bus. Bits 0–7 are internally driven by the EBI for externally
initiated accesses depending on the internal slave accessed.

See Section 12.4.2.10.1, “Address Decoding for External Master Accesses,” for more details.

ADDR[8:31] is driven by the EBI or an external master depending on which device controls the external
bus. The 324 BGA packaged devices use ADDR[12:31] (24 bits available if CS[0:3] are configured to
ADDR[8:11].

See Section 6.4.1.12.1, “Pad Configuration Registers 0–3 (SIU_PCR0–SIU_PCR3)”).

12.2.1.2 Burst Data in Progress (BDIP)

BDIP is asserted by a master requesting the next data beat to follow the current data beat.

BDIP is driven by the EBI or an external master depending on which one is in control of the external bus.
This signal is driven by the EBI on all EBI-mastered external burst cycles, but is only sampled by burst
mode memories that have a burst pin.

See Section 12.4.2.5, “Burst Transfer.”

CS[1:3] Output Chip Selects Up 496, 324

DATA[0:15] I/O Data Bus — 496, 324

OE Output Output Enable Up 496, 324

RD_WR I/O Read/Write Up 496, 324

TA I/O Transfer Acknowledge Up 496, 324

TS I/O Transfer Start Up 496, 324

WE/BE[0:1] Output Write/Byte Enables Up 496, 324

1 This column shows signals that require a weak pull (up or down) on the pin. The weak pullup/pulldown
mechanisms are not available in the EBI module. Use the pad configuration registers in the system
integration module (SIU_PCRs) to set the weak pullup or pulldown characteristic for each pin.

2 CAL_ADDR[10:11] are separate signals from the EBI block, and are muxed onto CAL_CS[2:3] pins on
MCU.

3 The CLKOUT signal is driven by the FMPLL module.

Table 12-1. Signal Properties (continued)

Name I/O Type Function Pull1
Package and

Assembly

External Bus Interface (EBI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 12-7

12.2.1.3 Clockout (CLKOUT)

CLKOUT is a general-purpose clock output signal to connect to the clock input of SDR external memories
and in some cases to the input clock of another MCU in multi-master configurations.

12.2.1.4 Chip Selects 0–3 (CS[0:3])

CS[n] is asserted by the master to indicate that this transaction is targeted for a particular memory bank.

The chip selects are driven by the EBI or an external master depending on which module controls the
external bus. The chip select is driven in the same clock as the assertion of TS and valid address, and is
kept valid until the cycle is terminated.

See Section 12.4.1.4, “Memory Controller with Support for Various Memory Types” for details on chip
select operation.

12.2.1.5 Calibration Chip Selects (CAL_CS[0, 2:3]) — 496 Assembly Only

CAL_CS[n] is asserted by the master to indicate the transaction is targeted for a memory bank on the
calibration external bus.

The calibration chip selects are driven only by the EBI. External master accesses on the calibration bus are
not supported. In all other aspects, the calibration chip selects operate exactly as the primary chip selects.
See Section 12.4.1.4, “Memory Controller with Support for Various Memory Types for details on chip
select operation.

12.2.1.6 Calibration Signals

Calibration signals are only available using the 496 VertiCal assembly and the 324 package for this device.

DATA is not driven by the EBI during a calibration bus access. During a calibration bus access, the
non-calibration bus signals (other than DATA) are held in a negated state, with the exception of RD_WR
and ADDR, which reflect the same values shown on the calibration version of those signals. Because the
TS and CS signals are held negated on the EBI (non-calibration bus) during calibration accesses, no
transfer occurs on the EBI.

During a EBI bus access, the calibration bus signals (other than CAL_DATA) are held in a negated state.
CAL_DATA is not driven during non-calibration accesses.

12.2.1.7 Data Lines 0–15 (DATA[0:15])

In the 324 BGA package, DATA[0:15] transmits the data for the current transaction.

DATA[0:15] is driven by the EBI when it owns the external bus and it initiates a write transaction to an
external device. The EBI also drives DATA[0:15] when an external master owns the external bus and
initiates a read transaction to an internal module.

DATA[0:15] is driven by an external device during a read transaction from the EBI. An external master
drives DATA[0:15] when it owns the bus and initiates a write transaction to an internal module or shared
external memory.

External Bus Interface (EBI)

MPC5534 Microcontroller Reference Manual, Rev. 2

12-8 Freescale Semiconductor

For 8-bit transactions, the byte lanes not selected for the transfer do not supply valid data.

12.2.1.8 Output Enable (OE)

OE is used to indicate when an external memory is permitted to drive back read data. External memories
must have their data output buffers off when OE is negated. OE is only asserted for chip select accesses.

OE is driven by the EBI or an external master depending on who owns the external bus.

• Read cycles—OE is asserted one clock after TS asserts, and is held until the transfer terminates.

• Write cycles—OE is negated throughout the cycle.

During a calibration bus access, OE is held negated.

12.2.1.9 Read/Write (RD_WR)

RD_WR indicates whether the current transaction is a read access or a write access.

RD_WR is driven by the EBI or an external master depending on who owns the external bus. RD_WR is
driven in the same clock as the assertion of TS and valid address, and is kept valid until the cycle is
terminated.

During a calibration bus access, RD_WR reflects the same value as the CAL_RD_WR signal.

12.2.1.10 Transfer Acknowledge (TA)

TA is asserted to indicate that the slave device has received the data (and completed the access) for a write
cycle, or returned data for a read cycle. If the transaction is a burst read, TA is asserted for each one of the
transaction beats. For write transactions, TA is only asserted once at access completion, even if more than
one write data beat is transferred.

TA is driven by the EBI when the access is controlled by the chip selects or when an external master
initiates the transaction to an internal module. Otherwise, TA is driven by the slave device to which the
current transaction was addressed.

During a calibration bus access, TA is held negated.

See Section 12.4.2.9, “Termination Signals Protocol” for more details.

12.2.1.11 Transfer Start (TS)

TS is asserted by the current bus owner to indicate the start of a transaction on the external bus.

TS is driven by the EBI or an external master depending on who owns the external bus. TS is only asserted
for the first clock cycle of the transaction, and is negated in the successive clock cycles until the end of the
transaction.

During a calibration bus access, TS is held negated.

External Bus Interface (EBI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 12-9

12.2.1.12 Write/Byte Enables (WE/BE)

Write and byte enables (WE/ BE[0:1]) are used to enable program operations to a particular memory. Write
enable is used for write operations only. Byte enable is used for read and write operations to configure the
byte lanes. These signals are set by the WEBS bit in the SIU_PCR registers. WE/BE are only asserted for
chip select accesses.

WE/BE signals are driven by the EBI or an external master depending on which one controls the external
bus. During a calibration bus access, WE/BE signals are held negated.

See Section 12.4.1.12, “Two Write/Byte Enable (WE/BE) Signals” for more details on WE/BE
functionality.

12.2.2 Signal Function and Direction by Mode

The EBI operating mode is configured using two fields in the EBI Master Control register (EBI_MCR):
EXTM and MDIS. Their settings determine which EBI signals are valid and the I/O direction. When a
signal is configured for non-EBI function in the EBI_MCR, the EBI always negates the signal if the EBI
controls the corresponding pad (determined by SIU configuration). Table 12-2 lists the function and
direction of the external signals in each of the EBI modes of operation. The clock signals are not included
because they are output only (from the FMPLL module) and are not affected by EBI modes.

See Section 12.3.1.3, “EBI Module Configuration Register (EBI_MCR)” for details on the EXTM and
MDIS bits.

Table 12-2. Signal Function According to EBI Mode Settings

Signal Name

Modes

Module Disable Function

EXTM = n, MDIS = 1

Single Master Function
I/O Direction

EXTM = 0, MDIS = 0

External Master Function
I/O Direction

EXTM = 1, MDIS = 0

ADDR[8:11] 1 non-EBI function Address bus (output) Address bus (I/O)2

ADDR[12:30] non-EBI function Address bus (output) Address bus (I/O)2

BDIP non-EBI function Burst data in progress (output)3

CS[0:3] 1 non-EBI function Chip selects (output)3

DATA[0:15] non-EBI function Data bus (I/O)

OE non-EBI function Output enable (output)

RD_WR non-EBI function Read/write (output) Read/write (I/O)

TA non-EBI function Transfer acknowledge (I/O)

TS non-EBI function Transfer start (output) Transfer start (I/O)

WE/BE[0:1] non-EBI function Write/byte enables (output)3

CAL_CS[0, 2:3] 4 non-EBI function Chip selects (output)

CAL_ADDR[12:30] 4 non-EBI function Calibrate the address bus (output)

External Bus Interface (EBI)

MPC5534 Microcontroller Reference Manual, Rev. 2

12-10 Freescale Semiconductor

NOTE
The open-drain mode of the pad configuration module is not used for any
EBI signals. For a description of how signals are driven by multiple devices
in external master mode, see Section 12.4.2.10, “Bus Operation in External
Master Mode.”

12.3 Memory Map and Register Definition
NOTE

The 208 package does not have an external bus interface. This chapter
pertains to the 324 and 496 packages only.

Table 12-3 is a memory map of the EBI registers.

CAL_DATA[0:15] 4 non-EBI function Calibrate the data bus (I/O)

CAL_OE 4 non-EBI function Calibrate the bus to enable output

CAL_TS 4 non-EBI function Calibrate the transfer start (output)

CAL_WE/BE[0:1] 4 non-EBI function Write/byte enables (output)3

1 These signals are muxed with the chip select (CS) signals on this device. Use the pad configuration
registers (PCR) in the system integration module (SIU) to configure the balls to use the address signals or
chip select signals–not both.

2 All I/O signals are tri-stated by the EBI when not actively involved in a transfer.
3 Although external master accesses can drive these pins, the EBI three-states the pins and does not sample

them for input.
4 The calibration signals for this device are available on the 324 package with the VertiCal assembly only.

Table 12-3. EBI Memory Map

Address Register Name Register Description Bits

Base (0xC3F8_4000) EBI_MCR EBI module configuration register 32

Base + 0x0004 — Reserved —

Base + 0x0008 EBI_TESR EBI transfer error status register 32

Base + 0x000C EBI_BMCR EBI bus monitor control register 32

Base + 0x0010 EBI_BR0 EBI base register bank 0 32

Base + 0x0014 EBI_OR0 EBI option register bank 0 32

Base + 0x0018 EBI_BR1 EBI base register bank 1 32

Base + 0x001C EBI_OR1 EBI option register bank 1 32

Table 12-2. Signal Function According to EBI Mode Settings (continued)

Signal Name

Modes

Module Disable Function

EXTM = n, MDIS = 1

Single Master Function
I/O Direction

EXTM = 0, MDIS = 0

External Master Function
I/O Direction

EXTM = 1, MDIS = 0

External Bus Interface (EBI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 12-11

Base + 0x0020 EBI_BR2 EBI base register bank 2 32

Base + 0x0024 EBI_OR2 EBI option register bank 2 32

Base + 0x0028 EBI_BR3 EBI base register bank 3 32

Base + 0x002C EBI_OR3 EBI option register bank 3 32

Calibration Registers

 Base + (0x0030–0x003C) — Reserved —

Base + 0x0040 EBI_CAL_BR0 EBI Calibration Base Register Bank 0 32

Base + 0x0044 EBI_CAL_OR0 EBI Calibration Option Register Bank 0 32

Base + 0x0048 EBI_CAL_BR1 EBI Calibration Base Register Bank 1 32

Base + 0x004C EBI_CAL_OR1 EBI Calibration Option Register Bank 1 32

Base + 0x0050 EBI_CAL_BR2 EBI Calibration Base Register Bank 2 32

Base + 0x0054 EBI_CAL_OR2 EBI Calibration Option Register Bank 2 32

Base + 0x0058 EBI_CAL_BR3 EBI Calibration Base Register Bank 3 32

Base + 0x005C EBI_CAL_OR3 EBI Calibration Option Register Bank 3 32

Table 12-3. EBI Memory Map (continued)

External Bus Interface (EBI)

MPC5534 Microcontroller Reference Manual, Rev. 2

12-12 Freescale Semiconductor

12.3.1 Register Descriptions

12.3.1.1 Writing EBI Registers While a Transaction is in Progress

When an EBI transaction is in progress, do not write to EBI registers except when the transaction is:

• From the internal or external master

• Within two CLKOUT cycles after a transaction completes, which allows the internal state
machines to enter the IDLE state.

Exceptions that can be written while an EBI transaction is in progress are:

• All bits in EBI_TESR

• SIZE, SIZEN fields in EBI_MCR

If you write to other fields in the EBI registers, or when an EBI transaction is in progress and is not one of
the exception cases described, the operations are indeterminable.

See Section 12.5.1, “Booting from External Memory,” for additional information.

12.3.1.2 Separate Input Clock for Registers

The EBI registers are accessed with a clock signal separate from the clock used by the rest of the EBI. In
module disable mode, the clock used by the non-register portion of the EBI is disabled to reduce power
consumption. The clock signal dedicated to the registers, however, allows access to the registers even
while the EBI is in the module disable mode. Flag bits in the EBI transfer error status register (EBI_TESR),
however, are set and cleared with the clock used by the non-register portion of the EBI. Consequently, in
module disable mode, the EBI_TESR does not have a clock signal and is therefore not writable.

12.3.1.3 EBI Module Configuration Register (EBI_MCR)

The EBI_MCR contains bits that configure various attributes associated with EBI operation.

Base (0xC3F8_4000) Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0
SIZEN SIZE

0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
ACGE EXTM EARB

0 0 0 0 0 0
MDIS

0 0 0 0 0
DBM

W

Reset 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

Figure 12-2. EBI Module Configuration Register (EBI_MCR)

External Bus Interface (EBI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 12-13

Table 12-4. EBI_MCR Field Descriptions

Field Description

0–4 Reserved

5
SIZEN

SIZE enable. The SIZEN bit enables the control of transfer size by the SIZE field for external master transactions to
internal address space. See Section 12.5.5.3, “Setting the transfer size.”
0 Invalid value
1 Enable transfer size controlled by SIZE field
Note: You must change this value to 1 to control the data transfer size.

6–7
SIZE

Transfer size. The SIZE field defines the transfer size of external master transactions to internal address space when
SIZEN=1. See Section 12.5.5.3, “Setting the transfer size.” This field is ignored when SIZEN=0. SIZE encoding:
00 Invalid value
01 Byte
10 16-bit
11 Invalid value

8–15 Reserved

16
ACGE

Automatic CLKOUT gating enable. Enables the EBI feature of turning off CLKOUT (holding it high) during idle periods
in-between external bus accesses.
0 Automatic CLKOUT gating is disabled
1 Automatic CLKOUT gating is enabled

17
EXTM

External master mode. Enables the external master mode of operation when MDIS = 0. When MDIS = 1, the EXTM
bit is not used, and is treated as 0. In external master mode, an external master on the external bus can access any
internal memory-mapped space while the internal e200z3 core is fully operational. When EXTM = 0, only internal
masters can access the internal memory space. See Section 12.5.5, “Dual-MCU Operations.“
0 External master mode is inactive (single master mode)
1 External master mode is active
Note: Only master/slave systems support the EXTM functionality.

18–24 Reserved

25
MDIS

Module disable mode. Allows the clock to be stopped to the non-memory mapped logic in the EBI, effectively putting
the EBI in a software controlled power-saving state. No external bus accesses can be performed when the EBI is in
module disable mode (MDIS = 1). Most registers remain accessible in this mode. See Section 12.1.3.3, “Module
Disable Mode,” for more information.
0 Module disable mode is inactive
1 Module disable mode is active

26–30 Reserved

31
DBM

Data bus mode. Sets the EBI to 16-bit data bus mode.
0 Invalid value
1 16-bit data bus mode is used

External Bus Interface (EBI)

MPC5534 Microcontroller Reference Manual, Rev. 2

12-14 Freescale Semiconductor

12.3.1.4 EBI Transfer Error Status Register (EBI_TESR)

The EBI_TESR contains a bit for each type of transfer error on the external bus. A bit set to logic 1
indicates what type of transfer error occurred since the last time the bits were cleared. Each bit can be
cleared by reset or by writing a 1 to it. Writing a 0 has no effect.

12.3.1.5 EBI Bus Monitor Control Register (EBI_BMCR)

The EBI_BMCR controls the timeout period of the bus monitor, and whether it is enabled or disabled.

Base + 0x0008 Access: R/W1c

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 BMTF

W w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 12-3. EBI Transfer Error Status Register (EBI_TESR)

Table 12-5. EBI_TESR Field Descriptions

Field Description

0–30 Reserved

31
BMTF

Bus monitor timeout flag. Set if the cycle was terminated by a bus monitor timeout.
0 No error
1 Bus monitor timeout occurred
This bit can be cleared by writing a 1 to it.

Base + 0x000C Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
BMT [0:7] BME

0 0 0 0 0 0 0

W

Reset 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

Figure 12-4. EBI Bus Monitor Control Register (EBI_BMCR)

External Bus Interface (EBI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 12-15

12.3.1.6 EBI Base Registers 0–3 (EBI_BRn) and EBI Calibration Base Registers
0–3 (EBI_CAL_BRn)

The EBI_BRn are used to define the base address and other attributes for the corresponding chip select.
The EBI_CAL_BRn are used to define the base address and other attributes for the corresponding
calibration chip select.

Table 12-6. EBI_BMCR Field Descriptions

Field Description

0–15 Reserved

16–23
BMT
[0:7]

Bus monitor timing. Defines the timeout period, in 8 external bus clock resolution, for the bus monitor. See
Section 12.4.1.6, “Bus Monitor,” for more details on bus monitor operation.

24
BME

Bus monitor enable. Controls whether the bus monitor is enabled for internal to external bus cycles. Regardless of
the BME value, the bus monitor is always disabled for chip select accesses, since these always use internal TA and
thus have no danger of hanging the system.
0 Disable bus monitor
1 Enable bus monitor (for non-chip select accesses only)

25–31 Reserved

Base + 0x0010 (EBI_BR0)
Base + 0x0018 (EBI_BR1)
Base + 0x0020 (EBI_BR2)
Base + 0x0028 (EBI_BR3)
Base + 0x0040 (EBI_CAL_BR0)
Base + 0x0048 (EBI_CAL_BR1)
Base + 0x0050 (EBI_CAL_BR2)
Base + 0x0058 (EBI_CAL_BR3)

Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 1
BA

W

Reset 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
BA

0 0 0
PS

0 0 0 0
BL WEBS TBDIP

0 0
BI V

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Figure 12-5. EBI Base Registers 0–3 (EBI_BRn) and EBI Calibration Base Registers 0–3 (EBI_CAL_BRn)

Timeout Period 2 + (8 BMT)×
External Bus Clock Frequency
--=

External Bus Interface (EBI)

MPC5534 Microcontroller Reference Manual, Rev. 2

12-16 Freescale Semiconductor

Table 12-7. EBI_BRn and EBI_CAL_BRn Field Descriptions

Field Description

0–16
BA

[0:16]

Base address. Compared to the corresponding unmasked address signals among ADDR[0:16] of the internal
address bus to determine if a memory bank controlled by the memory controller is being accessed by an internal
bus master.
Note: The upper 3 bits of the base address (BA) field, EBI_BRn[0:2], and EBI_CAL_BRn[0:2], are tied to a fixed

value of 001. These bits reset to their fixed value.

17–19 Reserved

20
PS

Port size. Determines the data bus width of transactions to this chip select bank.1

0 Invalid value
1 16-bit port. The calibration port size must be 16-bits wide.

1 The the value of PS bit in the EBI_MCR[DBM] register is not used and the value used is always 1.

21–24 Reserved

25
BL

Burst length. Determines the amount of data transferred in a burst for this chip select, measured in 32-bit words. The
number of beats in a burst is automatically determined by the EBI according to the port size bit (PS) so the burst
fetches the number of words chosen by BL.
0 Invalid value
1 4-word burst length
Note:

26
WEBS

Write enable/byte select. Controls the functionality of the WE/BE[0:1] signals.
0 The WE/BE[0:1] signals function as WE[0:1].
1 The WE/BE[0:1] signals function as BE[0:1].

27
TBDIP

Toggle burst data in progress. Determines how long the BDIP signal is asserted for each data beat in a burst cycle.
See Section 12.4.2.5.1, “TBDIP Effect on Burst Transfer,” for details.
0 Assert BDIP throughout the burst cycle, regardless of wait state configuration.
1 Only assert BDIP (BSCY + 1) external bus cycles before expecting subsequent burst data beats.

28–29 Reserved

30
BI

Burst inhibit. Determines whether or not burst read accesses are allowed for this chip select bank.
0 Enable burst accesses for this bank.
1 Disable burst accesses for this bank. This is the default value out of reset.

31
V

Valid bit. Indicates that the contents of this base register and option register pair are valid. The appropriate CS signal
does not assert unless the corresponding V-bit is set.
0 This bank is not valid.
1 This bank is valid.

Value Burst Length 1

1 Total amount of data fetched in a burst transfer.

PS # Beats in Burst 2

2 Number of external data beats used in external burst transfer.
The size of each beat is determined by PS value.

1 4-word 1 8

External Bus Interface (EBI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 12-17

12.3.1.7 EBI Option Registers 0–3 (EBI_ORn) and EBI Calibration Option
Registers 0–3 (EBI_CAL_ORn)

The EBI_ORn registers are used to define the address mask and other attributes for the corresponding chip
select. The EBI_CAL_ORn registers are used to define the address mask and other attributes for the
corresponding calibration chip select.

Base + 0x0014 (EBI_OR0)
Base + 0x001C (EBI_OR1)
Base + 0x0024 (EBI_OR2)
Base + 0x002C (EBI_OR3)
Base + 0x0044 (EBI_CAL_OR0)
Base + 0x004C (EBI_CAL_OR1)
Base + 0x0054 (EBI_CAL_OR2)
Base + 0x005C (EBI_CAL_OR3)

Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 1 1 1
AM

W

Reset 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
AM

0 0 0 0 0 0 0
SCY

0
BSCY

0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 12-6. EBI Option Registers 0–3 (EBI_ORn) and EBI Calibration Option Registers

Table 12-8. EBI_ORn and EBI_CAL_ORn Field Descriptions

Field Description

0–16
AM

[0:16]

Address mask. Allows masking of any corresponding bits in the associated base register. Masking the address
independently allows external devices of different size address ranges to be used. Any clear bit masks the
corresponding address bit. Any set bit causes the corresponding address bit to be used in comparison with the
address pins. Address mask bits can be set or cleared in any order in the field, allowing a resource to reside in more
than one area of the address map. This field can be read or written at any time.
Note: The upper 3 bits of the address mask (AM) field, EBI_ORx[0:2], and EBI_CAL_ORn[0:2], are tied to a fixed

value of 111. These bits reset to their fixed value.

17–23 Reserved

24–27
SCY
[0:3]

Cycle length in clocks. Represents the number of wait states (external bus cycles) inserted after the address phase
in the single cycle case, or in the first beat of a burst, when the memory controller handles the external memory
access. Values range from 0 to 15. This is the main parameter for determining the length of the cycle.
 • The total cycle length for the first beat (including the TS cycle):

See Section 12.5.3.1, “Example Wait State Calculation”.

(2 + SCY) external clock cycles

External Bus Interface (EBI)

MPC5534 Microcontroller Reference Manual, Rev. 2

12-18 Freescale Semiconductor

12.4 Functional Description
NOTE

The 208 package does not have an external bus interface. This chapter
pertains to the 324 package and 496 assembly only.

12.4.1 External Bus Interface Features

12.4.1.1 32-Bit Address Bus

The transfer size for an external transaction is indicated by the SIZE and SIZEN fields in the EBI_MCR
register during the clock when the address is valid. Valid transaction sizes are 8, 16, and 32 bits. The 324
package has 20 address lines pinned out externally (24 bits available if CS[0:3] are configured as
ADDR[8:11]). A full 32-bit decode is done internally to determine the target of the transaction and whether
to assert a chip select.

See Section 6.4.1.12.1, “Pad Configuration Registers 0–3 (SIU_PCR0–SIU_PCR3)”

12.4.1.2 16-Bit Data Bus

A 16-bit data bus mode is available using the DBM bit in EBI_MCR.

See Section 12.1.3.5, “16-Bit Data Bus Mode.”

12.4.1.3 Support for External Master Accesses to Internal Addresses

The EBI allows an external master to access internal address space when the EBI is configured for external
master mode in the EBI_MCR.

Section 12.4.2.10, “Bus Operation in External Master Mode” describes the external master operations.

28 Reserved

29–30
BSCY
[0:1]

Burst beats length in clocks. This field determines the number of wait states (external bus cycles) inserted in all burst
beats except the first, when the memory controller starts handling the external memory access and thus is using
SCY[0:3] to determine the length of the first beat.
 • Total memory access length for each beat:

 • Total cycle length (including the TS cycle):

Note: The number of beats (4, 8, 16) is determined by BL and PS bits in the base register.

00 0-clock cycle wait states (1 clock per data beat)
01 1-clock cycle wait states (2 clocks per data beat)
10 2-clock cycle wait states (3 clocks per data beat)
11 3-clock cycle wait states (4 clocks per data beat)

Table 12-8. EBI_ORn and EBI_CAL_ORn Field Descriptions (continued)

Field Description

(1 + BSCY) External Clock Cycles

(2 + SCY) + [(Number of Beats – 1) x (BSCY + 1)]

External Bus Interface (EBI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 12-19

12.4.1.4 Memory Controller with Support for Various Memory Types

The EBI contains a memory controller that supports a variety of memory types:

• Standard SRAM

• Synchronous burst mode to memory (flash or external SRAM)

• Asynchronous memory (flash or external SRAM) and peripherals

Each CS bank is configured with a pair of base and option registers. Each time an internal to external bus
cycle access is requested, the following occurs:

As shown in Figure 12-7, the internal address is compared with the base address of each valid base register
(17 bits are masked).

If a match occurs in one memory bank, the BR and OR bank attribute values control the memory access.

If a match occurs in more than one memory bank, the matched bank with the lowest bank address handles
the memory access. For example, bank 0 is selected over memory bank 1.

Figure 12-7. Bank Base Address and Match Structure

A match on a valid calibration chip select register overrides a match on any non-calibration chip select
register, with CAL_CS[0] having the highest priority. Thus the full priority of the chip selects is:
CAL_CS[0, 2, 3] and then CS[0, 1, 2, 3].

When a match occurs on one of the chip select banks, all its attributes (from the base and option registers)
are selected for the functional operation of the external memory access:

• Number of wait states for a single memory access, and for any beat in a burst access

• Burst enable

• Port size for the external accessed device

BA
[0]

Comp

BA
[1]

Comp

BA
[2]

Comp

BA
[3]

Comp

BA
[4]

Comp

• • •
BA
[15]

Comp

BA
[16]

Comp

AM
[0]

AM
[1]

AM
[2]

AM
[3]

AM
[4]

AM
[5] • • •

AM
[6]

AM
[16]

• • •

A[0:16]

AM[0:16]

Match

Address MaskBase Address

• • •

External Bus Interface (EBI)

MPC5534 Microcontroller Reference Manual, Rev. 2

12-20 Freescale Semiconductor

See the following sections for a full description of all chip select attributes:

Section 12.3.1.6, “EBI Base Registers 0–3 (EBI_BRn) and EBI Calibration Base Registers 0–3
(EBI_CAL_BRn),”

Section 12.3.1.7, “EBI Option Registers 0–3 (EBI_ORn) and EBI Calibration Option Registers 0–3
(EBI_CAL_ORn),”

When no match occurs on any of the chip select banks, the default transfer attributes shown in Table 12-9
are used.

NOTE
The port size (PS) value defaults to 32-bits. You must ensure the port size
(PS) is set to 16-bits before initiating the transfer.

12.4.1.5 Burst Support (Wrapped Only)

This device has no cache, therefore the core does not support burst transfers. The eDMA only can launch
a burst transfer to external memory.

The EBI supports burst read accesses to external burstable memory. The EBI in 16-bit data bus mode
(EBI_MCR[DBM] = 1) does not support burst writes, except for 32-bit two-beat non-chip select burst
writes to 32-bit. This allows 32-bit coherent accesses to another MCU.

Internal requests to write more than 32-bits externally are divided into separate 16-bit external transactions
according to the port size.

To enable bursts to a memory region, clear the BI (Burst Inhibit) bit in the base register. External burst
lengths of four and eight words are supported. Burst length is configured for each chip select by using the
BL bit in the base register.

See Section 12.4.2.5, “Burst Transfer” for more details.

In 16-bit data bus mode, a special two-beat burst case is supported for reads and writes for 32-bit non-chip
select accesses only.

Table 12-9. Default Attributes for Transfers Other than Chip Select

Chip Select
Attribute
(CS[0:3])

Default
Value

Comment

PS 0 32-bit port size

BL 0 BL = “don’t care” (burst is disabled)

WEBS 0 Write enables

TBDIP 0 TBDIP = “don’t care” (burst is disabled)

BI 1 Burst inhibited

SCY 0 SCY = “don’t care”

BSCY 0 BSCY = “don’t care”

External Bus Interface (EBI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 12-21

See Section 12.4.2.11, “Non-Chip-Select Burst in 16-bit Data Bus Mode”.

Burst writes are not supported except from a 32-bit non-chip-select writes in 16-bit data bus mode.
Internal requests to write more than 32 bits externally are divided into separate 16-bit external transactions
according to the port size.

See Section 12.4.2.6, “Small Accesses (Small Port Size and Short Burst Length)” for more detail on these
cases.

12.4.1.6 Bus Monitor

When enabled (via the BME bit in the EBI_BMCR), the bus monitor detects when no TA assertion is
received within a maximum timeout period for non-chip select accesses (accesses that use external TA).
The timeout for the bus monitor is specified by the BMT field in the EBI_BMCR. Each time a timeout
error occurs, the BMTF bit is set in the EBI_TESR. The timeout period is measured in external bus
(CLKOUT) cycles. Thus the effective real-time period is multiplied (by two or four) when a configurable
bus speed mode is used, even though the BMT field itself is unchanged.

12.4.1.7 Port Size Configuration per Chip Select (16 Bits)

The EBI supports memories with data widths of 16 bits. The port size (PS) for a chip select is configured
using the PS bit in the base register.

12.4.1.8 Port Size Configuration per Calibration Chip Select (16 Bits)

The port size for calibration must be 16 bits wide.

12.4.1.9 Configurable Wait States

From 0 to 15 wait states can be programmed for any cycle that the memory controller generates, using the
SCY bits in the option register. From zero to three wait states between burst beats can be programmed
using the BSCY bits in the option register.

12.4.1.10 Four Chip Select (CS[0:3]) Signals

The EBI contains four chip select signals, controlling four independent memory banks.

See Section 12.4.1.4, “Memory Controller with Support for Various Memory Types,” for more details on
chip select bank configuration.

12.4.1.11 Support for Dynamic Calibration with Up to Three Chip Selects

The EBI contains three calibration chip select signals (CAL_CS[0,2,3]), controlling three independent
memory banks on an optional second external bus for calibration.

See Section 12.4.2.12, “Calibration Bus Operation” for more details on using the calibration bus.

External Bus Interface (EBI)

MPC5534 Microcontroller Reference Manual, Rev. 2

12-22 Freescale Semiconductor

12.4.1.12 Two Write/Byte Enable (WE/BE) Signals

The functionality of the WE/BE[0:1] signals depends on the value of the WEBS bit in the corresponding
base register. Setting WEBS to 1 configures these pins as BE[0:1], while clearing it configures the pins as
WE[0:1]. WE[0:1] signals are asserted only during write accesses, while BE[0:1] signals are asserted for
both read and write accesses. The timing of the WE/BE[0:1] signals remains the same in both cases.

The upper write/byte enable (WE/BE[0]) indicates that the upper eight bits of the data bus (DATA[0:7])
contain valid data during a write/read cycle. The lower write/byte enable (WE/BE[1]) indicates that the
lower eight bits of the data bus (DATA[8:15]) contain valid data during a write/read cycle.

The write/byte enable lines affected in a transaction are shown in Table 12-10. Only big endian byte
ordering is supported by the EBI.

12.4.1.13 Optional Automatic CLKOUT Gating

The EBI can hold the external CLKOUT pin high when the EBI internal master state machine is idle and
no requests are pending. The EBI outputs a signal to the pads logic in the MCU to disable CLKOUT. This
feature is disabled out of reset, and can be enabled or disabled by the ACGE bit in the EBI_MCR.

12.4.1.14 Compatible with MPC500 External Bus (with Some Limitations)

The EBI is compatible with the external bus of the MPC500 parts, meaning that it supports most devices
supported by the MPC500 family of parts. However, there are some differences between this EBI and that
of the MPC500 parts that you must be aware of before assuming that an MPC500-compatible device works
with this EBI.

See Section 12.5.6, “Summary of Differences from MPC500,” for details.

NOTE
Due to testing and complexity concerns, master/slave operation between an
MPC55xx and MPC5xx is not guaranteed. Multi-master operations are not
supported on this device.

Table 12-10. Write/Byte Enable Signals Function -- 324 BGA

Transfer Size
Address 16-Bit Port Size1

1 Also applies when DBM =1 for 16-bit data bus mode.

A[30] A[31] WE/BE[0] WE/BE[1]

8 bits

0 0 0 1

0 1 1 0

1 0 0 1

1 1 1 0

16 bits
0 0 0 0

1 0 0 0

Burst 0 0 0 0

External Bus Interface (EBI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 12-23

12.4.2 External Bus Operations

The following sections provide a functional description of the external bus, the bus cycles provided for
data transfer operations, bus arbitration, and error conditions.

12.4.2.1 External Clocking

The CLKOUT signal sets the frequency of operation for the bus interface directly. Internally, the MCU
uses a phase-locked loop (PLL) circuit to generate a master clock for all of the MCU circuitry (including
the EBI) which is phase-locked to the CLKOUT signal. In general, all signals for the EBI are specified
with respect to the rising-edge of the CLKOUT signal, and they are guaranteed to be sampled as inputs or
changed as outputs with respect to that edge.

12.4.2.2 Reset

Upon detection of internal reset, the EBI immediately terminates all transactions.

12.4.2.3 Basic Transfer Protocol

The basic transfer protocol defines the sequence of actions that must occur on the external bus to perform
a complete bus transaction. A simplified scheme of the basic transfer protocol is shown in Figure 12-8.

Figure 12-8. Basic Transfer Protocol

In single-master mode, the EBI is the permanent bus owner.

The address transfer phase specifies the address for the transaction and the transfer attributes that describe
the transaction. The signals related to the address transfer phase are TS, ADDR, CS[0:3], RD_WR, and
BDIP. The address and its related signals (with the exception of TS, BDIP) are driven on the bus with the
assertion of the TS signal, and kept valid until the bus master receives TA asserted (the EBI holds them
one cycle beyond TA for writes and external TA accesses). For writes with internal TA, RD_WR is not
held one cycle past TA.

The data transfer phase transfers data from master to slave (on write cycles), or from slave to master
(on read cycles). The data phase can transfer a:

• Single beat of data (1–2 bytes) for non-burst operations; or

• A 2-, 4-, 8-, or 16-beat burst of data (EBI_MCR[DBM] = 1, at 2 bytes per beat) when burst is
enabled.

On a write cycle, the master must not drive write data until after the address transfer phase is complete.
This avoids electrical contentions when switching between drivers. The master must start driving write
data one cycle after the address transfer cycle. The master can stop driving the data bus as soon as it
samples the TA line asserted on the rising edge of CLKOUT.

Address transfer Data transfer Termination

External Bus Interface (EBI)

MPC5534 Microcontroller Reference Manual, Rev. 2

12-24 Freescale Semiconductor

For chip select accesses, use the output enable (OE) signal to indicate that the external device can drive
data onto the bus during an MCU read cycle. To prevent bus contentions for chip select accesses, you must
use OE to determine when the external device can drive the bus.

Read Timing—On a read cycle, the master accepts the data bus contents as valid on the rising edge of
CLKOUT when the TA signal asserts and is sampled. See Figure 12-10 for an example of read timing. The
termination phase completes by the assertion of TA (normal termination).

Write Timing—To facilitate asynchronous write support, the EBI keeps driving valid write data on the data
bus until one clock after the rising edge, when RD_WR (and WE for chip select accesses) are negated.
See Figure 12-15 for an example of write timing.

Section 12.4.2.9, “Termination Signals Protocol.” describes in detail the termination phase.

12.4.2.4 Single-Beat Transfer

The flow and timing diagrams in this section assume that the EBI is configured in single master mode.
Therefore, arbitration is not needed and is not shown in these diagrams.

See Section 12.4.2.10, “Bus Operation in External Master Mode,” to read how the flow and timing
diagrams change for external master mode.

12.4.2.4.1 Single-Beat Read Flow

The handshakes for a single-beat read cycle are illustrated in the following flow and timing diagrams.

Figure 12-9. Basic Flow Diagram of a Single-Beat Read Cycle

Yes

No

Receives address

Asserts transfer start (TS)
drives address and attributes

Master (EBI)

Drives Data

Asserts transfer
acknowledge (TA)

Asserts transfer
acknowledge (TA)

Receives data

Slave

CS access
?

External Bus Interface (EBI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 12-25

Figure 12-10. Single-Beat 16-bit Read Cycle, CS Access, Zero Wait States

Figure 12-11. Single-Beat 16-bit Read Cycle, CS Access, One Wait State

DATA is valid

CLKOUT

ADDR[8:31]

TS

DATA[0:15]

TA

RD_WR

BDIP

OE

CS[n]

DATA is valid

The EBI drives address and control signals an extra cycle because it uses a latched
version of the external TA (1 cycle delayed) to terminate the cycle.

*

CLKOUT

ADDR[8:31]

TS

DATA[0:15]

TA(input)

RD_WR

BDIP

OE

CS[n]

External Bus Interface (EBI)

MPC5534 Microcontroller Reference Manual, Rev. 2

12-26 Freescale Semiconductor

12.4.2.4.2 Single-beat Write Flow

The handshakes for a single-beat write cycle are illustrated in the following flow and timing diagrams.

Figure 12-12. Basic Flow Diagram of a Single-beat Write Cycle

12.4.2.4.3 Back-to-Back Accesses

Due to internal bus protocol, one dead cycle is necessary between back-to-back external bus accesses that
are not part of a set of small accesses. A dead cycle refers to a cycle between the TA of a previous transfer
and the TS of the next transfer.

See Section 12.4.2.6, “Small Accesses (Small Port Size and Short Burst Length)” for small access timing.

NOTE
In some cases, CS remains asserted during a dead cycle, such as the cases of
back-to-back writes or read-after-write to the same chip-select. See
Figure 12-16 and Figure 12-17.

Besides a dead cycle, in most cases, back-to-back accesses on the external bus do not cause any change in
the timing from that shown in the previous diagrams, and the two transactions are independent of each

Yes

No

Receives Address

Asserts Transfer Start (TS)
Drives Address and Attributes

Master

Receives Data

CS Access
?

Asserts Transfer
Acknowledge (TA)

Asserts Transfer
Acknowledge (TA)

Waits 1 Clock

Slave

Stops Driving Data

Drives Data

External Bus Interface (EBI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 12-27

other. Back-to-back accesses where the first access ends with an externally-driven TA. In these cases, an
extra cycle is required between the end of the first access and the TS assertion of the second access.

See Section 12.4.2.9, “Termination Signals Protocol,” for more details.

The following diagrams show a few examples of back-to-back accesses on the external bus.

Figure 12-13. Back-to-Back 16-bit Reads to the Same CS Bank

Figure 12-14. Back-to-Back 16-bit Reads to Different CS Banks

DATA is valid DATA is valid

CLKOUT

ADDR[8:31]

TS

DATA[0:15]

TA

RD_WR

BDIP

OE

CS[n]

DATA is valid

CLKOUT

ADDR[8:31]

TS

DATA[0:15]

TA

RD_WR

BDIP

OE

CS[y]

DATA is valid
CS[n]

External Bus Interface (EBI)

MPC5534 Microcontroller Reference Manual, Rev. 2

12-28 Freescale Semiconductor

Figure 12-15. Write After Read to the Same CS Bank

Figure 12-16. Back-to-Back 16-bit Writes to the Same CS Bank

CLKOUT

ADDR[8:31]

TS

DATA[0:15]

TA

RD_WR

BDIP

WE

CS[n]

DATA is valid

DATA is valid

CLKOUT

ADDR[8:31]

TS

DATA[0:15]

TA

RD_WR

BDIP

WE

CS[n]

DATA is valid DATA is valid

External Bus Interface (EBI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 12-29

Figure 12-17. Read After Write to the Same CS Bank

12.4.2.5 Burst Transfer

On all burst cycles, the EBI requires that addresses are aligned on a doubleword boundary. The EBI
supports burst wrapping for 32-byte critical-doubleword-first transfers. Bursting is supported for
internally-requested 32-byte read accesses to external devices that use:

• Chip select (CS) accesses only

• 32-bit non-chip select accesses using a two-beat 16-bit for each word

Other than these exceptions, all accesses from an external master to devices operating without a chip select
are always single beat. If an internal request to the EBI indicates a burst transfer less than 32 bytes, one or
more single-beat external transfers are used—not by an external burst transfer.

An 8-word wrapping burst reads eight 32-bit words by supplying a starting address that points to one of
the words (doubleword aligned), and requires the memory device to sequentially drive each word on the
data bus.

The selected slave device must internally increment ADDR[27:30] of the supplied address for each
transfer until the address of the 8-word boundary is reached, and then wraps the address to the beginning
of the 8-word boundary. The address and transfer attributes supplied by the EBI do not change during the
transfers, and the EBI terminates each beat transfer by asserting TA.

Table 12-11 shows the burst order of beats returned for an 8-word burst to a 32-bit memory interface using
two-beat 16-bit accesses.

CLKOUT

ADDR[8:31]

TS

DATA[0:15]

TA

RD_WR

BDIP

WE

CS[n]

DATA is valid

DATA is valid

External Bus Interface (EBI)

MPC5534 Microcontroller Reference Manual, Rev. 2

12-30 Freescale Semiconductor

Burst transfers default to external memory with a 32-bit bus and 8-word burst length. The EBI can burst
from 16-bit port size memories, using twice as many external beats to fetch the data. The EBI can also
burst from 16-bit or 32-bit memories that have a 4-word burst length (BL = 1 in the appropriate base
register). In this case, two external 4-word burst transfers (wrapping on 4-word boundary) are performed
to fulfill the internal 8-word request. This operation is considered atomic by the EBI, so the EBI does not
allow other master accesses to intervene between the transfers.

During burst cycles, the BDIP (burst data in progress) signal indicates the duration of the burst data.
During the data phase of a burst read cycle, the EBI receives data from the addressed slave. If the EBI
needs more than one data transfer, it asserts the BDIP signal. Upon receiving the word prior to the last
word, the EBI negates BDIP. Therefore, the slave stops driving new data on the rising edge of the clock
after BDIP negates.

Some slave devices internally configure burst length and timing, which does not support using the BDIP
signal. In this case, BDIP is driven by the EBI normally, but the output is ignored by memory and the burst
transfer mechanism is determined by the internal configuration of the EBI and slave device. When the
TBDIP bit is set in the base register, the timing for BDIP is altered.

See Section 12.4.2.5.1, “TBDIP Effect on Burst Transfer,” for this timing.

Burst writes are not supported by the EBI except for 32-bit non-chip select accesses in 16-bit data bus
mode. For all other burst writes, the EBI negates BDIP during write cycles.

Table 12-11. Wrap Bursts Order

Burst Starting Address
ADDR[27:30]

Burst Order
(two-beat 16-bit access = 1 word)

00 word0 −> word1 −> word2 −> word3 −> word4 −> word5 −> word6 −> word7

01 word2 −> word3 −> word4 −> word5 −> word6 −> word7 −> word0 −> word1

10 word4 −> word5 −> word6 −> word7 −> word0 −> word1 −> word2 −> word3

11 word6 −> word7 −> word0 −> word1 −> word2 −> word3 −> word4 −> word5

External Bus Interface (EBI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 12-31

Figure 12-18. Basic Flow Diagram of a Burst Read Cycle

No

Yes

Receives address

Asserts transfer start (TS)
Drives address and attributes

Master

Next -to-
last data beat

Slave

Drives data

Asserts transfer acknowledge (TA)
Receives data

?

Negate BDIP

Drives last data

Asserts transfer acknowledge (TA)
Receives last data

Assert BDIP

External Bus Interface (EBI)

MPC5534 Microcontroller Reference Manual, Rev. 2

12-32 Freescale Semiconductor

Figure 12-19. Burst 16-bit Read Cycle, Zero Wait States

Figure 12-20. Burst 16-bit Read Cycle, One Initial Wait State

12.4.2.5.1 TBDIP Effect on Burst Transfer

Some memories require different timing on the BDIP signal than the default to run burst cycles. Using the
default value of TBDIP = 0 in the appropriate EBI base register results in BDIP being asserted (SCY+1)
cycles after the address transfer phase, and being held asserted throughout the cycle regardless of the wait

CLKOUT

ADDR[8:31]

BDIP

DATA[0:15]

TA

RD_WR

TS

OE

CS[n]

Expects more data

ADDR[29:31] = ‘000’

DATA is valid

Wait state

CLKOUT

ADDR[8:31]

BDIP

DATA[0:15]

TA

RD_WR

TS

OE

CS[n]

Expects more data

ADDR[29:31] = ‘000’

DATA is valid

External Bus Interface (EBI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 12-33

states between beats (BSCY). Figure 12-21 shows an example of the TBDIP = 0 timing for a 4-beat burst
with BSCY = 1.

Figure 12-21. Burst 32-bit Read Cycle, One Wait State between Beats, TBDIP = 0

When using TBDIP = 1, the BDIP behavior changes to toggle between every beat when BSCY is a
non-zero value. Figure 12-22 shows an example of the TBDIP = 1 timing for the same four-beat burst
shown in Figure 12-21.

Figure 12-22. Burst 32-bit Read Cycle, One Wait State between Beats, TBDIP = 1

DATA is valid

Wait state
Wait state

CLKOUT

ADDR[8:31]

BDIP

DATA[0:15]

TA

RD_WR

TS

OE

CS[n]

Expects more data

ADDR[29:31] = ‘000’

Wait state Wait state

DATA is valid

Wait state
Wait state

CLKOUT

ADDR[8:31]

BDIP

DATA[0:15]

TA

RD_WR

TS

OE

CS[n]

Expects more data

ADDR[29:31] = ‘000’

Wait state Wait state

External Bus Interface (EBI)

MPC5534 Microcontroller Reference Manual, Rev. 2

12-34 Freescale Semiconductor

12.4.2.6 Small Accesses (Small Port Size and Short Burst Length)

In this context, a small access refers to an access whose burst length and port size are such that the number
of bytes requested by the internal master cannot all be fetched (or written) in one external transaction. This
is the case when the base register’s burst length bit (EBI_BRn[BL]) and port size bit (EBI_BRn[PS]) are
set such that one of two situations occur:

• Burst accesses are inhibited and the number of bytes requested by the master is greater than the
port size (16) can accommodate in a single access.

• Burst accesses are enabled and the number of bytes requested by the master is greater than the
selected burst length (8 words).

If this is the case, the EBI initiates multiple transactions until all the requested data is transferred. All the
transactions initiated to complete the data transfer are considered as an atomic transaction, so the EBI does
not allow other unrelated master accesses to intervene between the transfers.

Table 12-12 shows all the combinations of burst length, port size, and requested byte count that cause the
EBI to run multiple external transactions to fulfill the request.

In most cases, the timing for small accesses is the same as for normal single-beat and burst accesses, except
that multiple back-to-back external transfers are executed for each internal request. These transfers have
no additional dead cycles between external accesses that are not present for back-to-back stand-alone
transfers except for the case of writes with an internal request size greater than 64 bits.

See Section 12.4.2.6.2, “Small Access Example #2: 32-byte Write with External TA.”

The following sections show a few examples of small accesses. The timing for the remaining cases in
Table 12-12 can be extrapolated from these and the other timing diagrams in this document.

Table 12-12. Small Access Cases

Byte Count
Requested by Internal

Master
Burst Length Port Size

External Accesses
to Fulfill Request

Non-burstable Chip-Select Banks (BI = 1) or Non-Chip-Select Access

4 1 beat 16-bit 11

1 16-bit data bus mode (DBM = 1), one 2-beat burst access is performed and this is not considered a small
access case. See Section 12.4.2.11, “Non-Chip-Select Burst in 16-bit Data Bus Mode” for this special
DBM = 1 case.

8 1 beat 16-bit 4

32 1 beat 16-bit 16

Burstable Chip-Select Banks (BI = 0)

32 (8 words) 8 beats 16-bit 2

External Bus Interface (EBI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 12-35

12.4.2.6.1 Small Access Example #1: 32-bit Write to 16-bit Port

Figure 12-23 shows an example of a 32-bit write to a 16-bit port, requiring two 16-bit external transactions.

Figure 12-23. Single-beat 32-bit Write Cycle, 16-bit Port Size, Basic Timing

12.4.2.6.2 Small Access Example #2: 32-byte Write with External TA

Figure 12-24 shows an example of a 32-byte write to a non-chip select device, such as an external master,
using external TA, requiring eight 32-bit external transactions. Due to the use of external TA, RD_WR
does not toggle between the accesses unless that access is the end of a 64-bit boundary. In this case, an
extra cycle is required between TA and the next TS to get the next 64-bits of write data internally and
RD_WR negates during this extra cycle.

DATA is validDATA is valid

CLKOUT

ADDR[8:31]

TS

DATA[0:15]

TA

RD_WR

BDIP

WE

CS[n]

A A+2

ABCDXXXX EFGHXXXX

External Bus Interface (EBI)

MPC5534 Microcontroller Reference Manual, Rev. 2

12-36 Freescale Semiconductor

Figure 12-24. 32-Byte Write Cycle with External TA, Basic Timing

12.4.2.7 Size, Alignment, and Packaging on Transfers

Table 12-13 shows the allowed sizes that an internal or external master can request from the EBI. The
behavior of the EBI for request sizes not shown below is undefined. No error signal is asserted for these
erroneous cases.

Even though misaligned non-burst transfers from internal masters are supported, the EBI naturally aligns
the accesses when it sends them out to the external bus, splitting them into multiple aligned accesses if
necessary. Natural alignment for the EBI means:

• Byte access can have any address.

• 16-bit access, address bit 31 must be 0.

Table 12-13. Transaction Sizes Supported by EBI

Number of Bytes

Internal Master External Master

1 1

2 2

4 4

8

32

DATA is validDATA is valid

CLKOUT

ADDR[8:31]

TS

DATA[0:15]

TA

RD_WR

BDIP

WE

CS[n]

A A + 0x0004 A + 0x0008 A+0x000C

DATA is valid

This extra cycle is required after accesses 2, 4, and 6 to get the next 64-bits of internal write data.*
Four more external accesses (not shown) are required to complete the internal 32-byte request.
The timing of these is the same as accesses 1–4 shown in this diagram.

**

1 2 3 4***

External Bus Interface (EBI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 12-37

• 32-bit access, address bits 30–31 must be 0.

• For burst accesses of any size, address bits 29–31 must be 0.

The EBI never generates a misaligned external access, so a multi-master system with two MCUs can never
have a misaligned external access. In the erroneous case that an externally-initiated misaligned access does
occur, the EBI errors the access and does not initiate the access on the internal bus.

The EBI requires that the portion of the data bus used for a transfer to/from a particular port size be fixed.
A 16-bit port must reside on bits 0–15.

In the following figures and tables the following convention is adopted:

• The most significant byte of a 32-bit operand is OP0, and OP3 is the least significant byte.

• The two bytes of a 16-bit operand are OP0 (most significant) and OP1, or OP2 (most significant)
and OP3, depending on the address of the access.

• The single byte of a byte-length operand is OP0, OP1, OP2, or OP3, depending on the address of
the access.

The convention can be seen in Figure 12-25.

Figure 12-25. Internal Operand Representation

Table 12-14 lists the bytes required on the data bus for read cycles. The bytes indicated as ‘—’ are not
required during that read cycle.

0

31
16-bit

Byte OP0

OP1

OP2

OP3

OP0 OP1

OP2 OP3
0

31

15

16

External Bus Interface (EBI)

MPC5534 Microcontroller Reference Manual, Rev. 2

12-38 Freescale Semiconductor

Table 12-15 lists the patterns of the data transfer for write cycles when accesses are initiated by the MCU.
The bytes indicated as ‘—’ are not driven during that write cycle.

12.4.2.8 Arbitration

This device does not have arbitration pins, so multi-master operation with arbitration is not supported.
However, limited dual-MCU functionality is supported for the case of a Master and Slave configuration.

See Section 12.5.5, “Dual-MCU Operations.”

Table 12-14. Data Bus Requirements for Read Cycles

Transfer
Size

SIZE
[0:1]

Address 16-Bit Port Size

A[30] A[31] D[0:7] D[8:15]

8 bits 01 0 0 OP0 —

01 0 1 — OP1

01 1 0 OP2 —

01 1 1 — OP3

16 bits 10 0 0 OP0 OP1

10 1 0 OP2 OP3

32 bits 00 0 0 OP0 and OP2 1

1 This case consists of two 16-bit external transactions, the first fetching OP0 and OP1,
the second fetching OP2 and OP3.

OP1 and OP3

Table 12-15. Data Bus Contents for Write Cycles

Transfer
Size

SIZE[0:1]
Address 16-Bit Port Size1

1 DBM = 1 for 16-bit data bus mode.

A[30] A[31] D[0:7] D[8:15]

8 bits 01 0 0 OP0 —

01 0 1 — OP1

01 1 0 OP2 —

01 1 1 — OP3

16 bits 10 0 0 OP0 OP1

10 1 0 OP2 OP3

32 bits 00 0 0 OP0 and OP2 2

2 This case consists of two 16-bit external transactions, the first writing OP0 and OP1, the
second writing OP2 and OP3.

OP1 and OP3

External Bus Interface (EBI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 12-39

12.4.2.9 Termination Signals Protocol

The termination signals protocol was defined to avoid electrical contention on lines that can be driven by
various sources. To do that, a slave must not drive signals associated with the data transfer until the address
phase is completed and it recognizes the address as its own. The slave must disconnect from signals
immediately after it acknowledges the cycle and not later than the termination of the next address phase
cycle.

For EBI-mastered non-chip select accesses, the EBI requires assertion of TA from an external device to
signal that the bus cycle is complete. The EBI uses a latched version of TA (1 cycle delayed) for these
accesses to help make timing at high frequencies. This results in the EBI driving the address and control
signals 1 cycle longer than required, as seen in Figure 12-33. However, the DATA does not need to be held
1 cycle longer by the slave, because the EBI latches DATA every cycle during non-chip select accesses.
During these accesses, the EBI does not drive the TA signal, leaving it up to an external device (or weak
internal pull-up) to drive TA.

For EBI-mastered chip select accesses, the EBI drives TA the entire cycle, asserting according to internal
wait state counters to terminate the cycle. During idle periods on the external bus, the EBI drives TA
negated as long as it is granted the bus; when it no longer owns the bus it lets go of TA. When an external
master does a transaction to internal address space, the EBI only drives TA for the cycle it asserts TA to
return data and for 1 cycle afterwards to ensure fast negation.

Table 12-16 summarizes how the EBI recognizes the termination signals provided from an external device.

Figure 12-34 shows an example of the termination signals protocol for back-to-back reads to two different
slave devices that correctly take turns driving the termination signals. This assumes a system using slave
devices that drive termination signals.

12.4.2.10 Bus Operation in External Master Mode

External master mode enables an external master to access the internal address space of the MCU.
Figure 12-26 shows how to connect an MCU to an external master (a second MCU) and a shared SDR
memory to operate in external master mode. Limited support for external master accesses (master/slave
systems only) is available in this device.

See Section 12.5.5, “Dual-MCU Operations.”

Table 12-16. Termination Signals Protocol

TA1

1 Latched version (1 cycle delayed) used for externally driven TA.

Action

Negated No termination

X Transfer error termination

Asserted Normal transfer termination

External Bus Interface (EBI)

MPC5534 Microcontroller Reference Manual, Rev. 2

12-40 Freescale Semiconductor

Figure 12-26. MCU Connected to External Master and SDR Memory

When the external master requires external bus accesses, it takes ownership on the external bus, and the
direction of most of the bus signals is inverted, relative to its direction when the MCU owns the bus.

Most of the bidirectional signals shown in Figure 12-26 are only driven by the EBI when the EBI owns the
external bus. The only exception is the TA signal and the DATA bus, which are driven by the EBI for
external master reads to internal address space. As long as the external master device follows the same
protocol for driving signals as this EBI, there is no need to use the open drain mode of the pads
configuration module for any EBI pins.

See Section 12.4.2.9, “Termination Signals Protocol” for more information.

The Power Architecture storage reservation protocol is not supported by the EBI. Coherency between
multiple masters must be maintained via software techniques, such as event passing.

CLKOUT

CS[0]

TS

WE/BE[0]

ADDR[8:31]*

DATA[0:15]

BDIP

RD_WR

TA

CK

CS

ADV

BAA

WE

A[0:21]

DATA[0:15]

SDR
Memory

Master MCU

internal arbitration

EXTAL

CS[0]

TS

WE/BE[0]

ADDR[8:31]*

DATA[0:15]

BDIP

RD_WR

TA

Slave MCU

Configured for

external arbitration

* Only ADDR[8:29] are connected to the 32-bit SDR memory.

Configured for

External Bus Interface (EBI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 12-41

The EBI does not provide memory controller services to an external master that accesses shared external
memories. Each master must correctly configure its own memory controller and drive its own chip selects
when sharing a memory between two masters.

The EBI does not support burst accesses from an external master; only single accesses of 8-, 16-, or 32-bits
can be performed.1

12.4.2.10.1 Address Decoding for External Master Accesses

The EBI allows external masters to access internal address space when the EBI is configured for external
master mode. The external address is compared for any external master access, to determine if EBI
operation is required. Because only 24 address bits are available on the external bus, special decoding logic
is required to allow an external master to access on-chip locations whose upper eight address bits are
non-zero. This is done by using the upper four external address bits (ADDR[8:11]) as a code to determine
whether the access is on-chip and if so, for which internal slave it is targeted.

NOTE
External master accesses are not supported to the calibration bus.

The options for the address compare sequence are explained in the following bullets:

• External master access to another device — If ADDR[8] = 0, then the access is assumed to be to
another device and is ignored by the EBI.

• External master access to valid internal slave — If ADDR[8] = 1, then ADDR[9:11] are checked
versus a list of 3-bit codes to determine which internal slave to forward the access to. The upper 8
internal address bits are set appropriately by the EBI according to this 3-bit code, and internal
address bits [8:11] are set appropriately to match the internal slave selected.

• External master access to invalid internal slave — If the 3-bit code does not match a valid internal
slave, then the EBI responds with a bus error.

1. Except for the special case of a 32-bit non-chip select access in 16-bit data bus mode. See Section 12.4.2.11,
“Non-Chip-Select Burst in 16-bit Data Bus Mode”.

External Bus Interface (EBI)

MPC5534 Microcontroller Reference Manual, Rev. 2

12-42 Freescale Semiconductor

Table 12-17 shows the possible 3-bit codes that are associated with various slaves in the MCU, as well as
the resulting upper 12 address bits required to appropriately match up with the memory map of each
internal slave.

12.4.2.10.2 Bus Transfers Initiated by an External Master

The external master gets ownership of the bus and asserts TS to initiate an external master access. The
access is directed to the internal bus only if the input address matches to the internal address space. The
access is terminated with TA. If the access was successfully completed, the MCU asserts TA, and the
external master can proceed with another external master access, or relinquish the bus.

Table 12-17. EBI Internal Slave Address Decoding

Internal Slave External ADDR[8:11]1

1 Value on upper 4 bits of 24-bit external address bus ADDR[8:31]. ADDR[8] determines whether
the access is on or off chip.

Internal ADDR[0:7]2

2 Value on upper 8 bits of 32-bit internal address bus.

Internal ADDR[8:11]3

3 Value on bits 8:11 of 32-bit internal address bus.

(off-chip) 0b0xxx — —

Internal flash 0b10xx 0b0000_0000 0b00, ADDR[10:11]

Internal SRAM 0b1100 0b0100_0000 0b0000

Reserved 0b1101 0b0110_0000 0b0000

Bridge A
peripherals

0b1110 0b1100_0011 0b1111

Bridge B
peripherals

0b1111 0b1111_1111 0b1111

External Bus Interface (EBI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 12-43

Figure 12-27 and Figure 12-28 illustrate the basic flow of read and write external master accesses.

Figure 12-27. Basic Flow Diagram of an External Master Read Access (EARB = 1)

Figure 12-28. Basic Flow Diagram of an External Master Write Cycle (EARB = 1)

External Master EBI (Slave)

Receives address

No

Yes

Address
in internal memory

map
?Other shared device

Drives data
Asserts transfer acknowledge (TA)

Receives data

Drives data
Asserts transfer acknowledge (TA)

External Master EBI (Slave)

Receives address

No

Yes

Address
in internal memory

map
?Other shared device

asserts
transfer acknowledge (TA)

Receives data

Drives data

Receives data

Asserts
 transfer acknowledge (TA)

External Bus Interface (EBI)

MPC5534 Microcontroller Reference Manual, Rev. 2

12-44 Freescale Semiconductor

Figure 12-29 and Figure 12-30 describe read and write cycles from an external master accessing internal
space in the MCU. The minimal latency for an external master access is three clock cycles. The actual
latency of an external to internal cycle varies depending on which internal module is being accessed and
how much internal bus traffic is going on at the time of the access.

Figure 12-29. External Master Read from MCU

Figure 12-30. Basic Flow Diagram of an EBI Read Access in External Master Mode (EARB = 0)

CLKOUT

RD_WR

BDIP

ADDR[8:31]

DATA[0:15]

TS (input)

Minimum
2 wait states

DATA is valid

TA (output)

If the external master is another MCU with this EBI, then DATA remains valid as shown due to use
of latched TA internally. These extra data valid cycles (past TA) are not required by the slave EBI.

**

CLKOUT

RD_WR

BDIP

ADDR[8:31]

DATA[0:15]

TS (input)

Minimum
2 wait states

DATA is valid

TA (output)

DATA is valid

**

External Bus Interface (EBI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 12-45

Figure 12-31. Single-Beat CS Read Cycle in External Master Mode, Zero Wait States

12.4.2.11 Non-Chip-Select Burst in 16-bit Data Bus Mode

The timing diagrams in this section apply only to the special case of a non-chip select 32-bit access in
16-bit data bus mode. They specify the behavior for both the EBI-master and EBI-slave, as the external
master is expected to be another MCU with this EBI.

For this case, a special two-beat burst protocol is used for reads and writes, so that the EBI-slave can
internally generate one 32-bit read or write access (thus 32-bit coherent), as opposed to two separate 16-bit
accesses.

Figure 12-32 shows a 32-bit read from an external master in 16-bit data bus mode.

Figure 12-33 shows a 32-bit write from an external master in 16-bit data bus mode.

CLKOUT

RD_WR

BDIP

ADDR[8:31]

DATA[0:15]

TS

TA

CS[n]

OE

DATA is valid

External Bus Interface (EBI)

MPC5534 Microcontroller Reference Manual, Rev. 2

12-46 Freescale Semiconductor

Figure 12-32. External Master 32-bit Read from MCU with DBM = 1

Figure 12-33. External Master 32-bit Write to MCU with DBM=1

12.4.2.12 Calibration Bus Operation

The EBI has a second external bus, intended for calibration use. This bus consists of a second set of the
same signals present on the primary external bus, except that some signals are excluded. Both busses are
supported by the EBI by using the calibration chip selects to steer accesses to the calibration bus instead
of to the primary external bus.

Because the calibration bus has no arbitration signals, the arbitration on the primary bus controls accesses
on the calibration bus as well, and no external master accesses can be performed on the calibration bus.

CLKOUT

RD_WR

BDIP

ADDR[8:31]

DATA[0:15]

TS (Input)

Minimum
2 wait states DATA is valid

TA (Output)

DATA is valid

DATA is valid

CLKOUT

RD_WR

BDIP

ADDR[8:31]

DATA[0:15]

TS (Input)

Minimum
3 wait states

TA (Output)

DATA is valid

External Bus Interface (EBI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 12-47

Accesses cannot be performed in parallel on both external busses. However, back-to-back accesses can
switch from one bus to the other, as determined by the type of chip select each address matches.

See Appendix B, “Calibration” for more information on how to use the calibration bus.

The timing diagrams and protocol for the calibration bus are identical to those for the primary bus, except
that some signals are not available on the calibration bus.

There is an inherent dead cycle between a calibration chip select access and a non-calibration access (chip
select or non-chip select), just like the one between accesses to two different non-calibration chip selects
(described in Section 12.4.2.4.3, “Back-to-Back Accesses”).

Figure 12-34 shows an example of a non-calibration chip select read access followed by a calibration chip
select read access. This figure is identical to Figure 12-14, except the CS[y] is replaced by CAL_CS[y].
Timing for other cases on the calibration bus can similarly be derived from other figures in this document
(by replacing CS with CAL_CS).

Figure 12-34. Back-to-Back 32-bit Reads to CS, CAL_CS Banks

12.5 Initialization and Application Information
NOTE

The 208 package does not have an external bus interface. This chapter
pertains to the 324 package and 496 assembly only.

DATA is valid

CLKOUT

ADDR[8:31]

TS

DATA[0:15]

TA

RD_WR

BDIP

OE

CAL_CS[y]

DATA is valid

CS[n]

External Bus Interface (EBI)

MPC5534 Microcontroller Reference Manual, Rev. 2

12-48 Freescale Semiconductor

12.5.1 Booting from External Memory

The EBI block does not support booting directly from external memory (fetching the first instruction after
an external RESET). The MCU uses an internal boot assist module (BAM), which executes after each reset
and configures the EBI block, allowing for external boot if desired.

See Chapter 15, “Boot Assist Module (BAM),” for detail information about the boot modes supported by
the MCU.

You cannot boot from external memory on the calibration bus.

Do not modify the EBI registers during external accesses. If external memory must write to the EBI
registers, avoid modifying EBI registers:

• Copy the code that writes to the EBI registers (plus the return branches) to internal SRAM

• Branch to internal SRAM to run the code, ending with a branch back to external memory

12.5.2 Running with SDR (Single Data Rate) Burst Memories

This includes flash and external SRAM memories with a compatible burst interface. BDIP is required only
for some SDR memories. Figure 12-32 shows a block diagram of an MCU connected to a 32-bit SDR burst
memory.

Figure 12-35. MCU Connected to SDR Burst Memory

See Figure 12-19 for an example of the timing of a typical burst read operation to an SDR burst memory.
See Figure 12-20 for an example of the timing of a typical single write operation to SDR memory.

12.5.3 Using Asynchronous Memory

The EBI supports asynchronous memory, even though the EBI does not have an asynchronous mode.
Asynchronous memories do not support bursting, and do not require the CLKOUT, TS, and BDIP signals.
The EBI drives the output, and latches all signals at the positive edge of CLKOUT. The data timing is

CLKOUT

CS[0]
TS

WE/BE[0]

ADDR[8:29]

DATA[0:15]

BDIP

OE

MCU

CK

CE

ADV

BAA*

WE**

ADDR[0:21]

DATA[0:15]

OE

SDR burstable
flash or SRAM

* Connection depending on the type of memory.
Flash memories typically use one WE signal as shown, RAMs use 2 (16-bit).**

CAL_CS[0] ***

*** Not available on all devices, see the Signals chapter.

4M x 32

External Bus Interface (EBI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 12-49

controlled by setting the SCY bits in the option register to a valid number of wait states for the access time
to asynchronous memory.

12.5.3.1 Example Wait State Calculation

This example applies to any chip select memory, synchronous or asynchronous.

As an example, say we have a memory with 50 ns access time, and we are running the external bus at
66 MHz (CLKOUT period: 15.2 ns).

When the input data specification for the MCU is 4 ns:

Number of wait states = (access time) ÷ (CLKOUT period) + (0 or 1) (depending on setup time)

50 ÷ 15.2 = 3 with 4.4 ns remaining (minimum of three wait states, then check setup time)

15.2 - 4.4 = 10.8 ns (this is the achieved input data setup time)

Because actual input setup (10.8 ns) is greater than the input setup specification (4.0 ns), three wait states
is sufficient. If the input setup is less than 4.0 ns, use four wait states.

12.5.3.2 Timing and Connections for Asynchronous Memories

The connections to an asynchronous memory are the same as for a synchronous memory, except that the
CLKOUT, TS, and BDIP signals are not used. Figure 12-36 shows a block diagram of an MCU connected
to an asynchronous memory.

Figure 12-36. MCU Connected to Asynchronous Memory

Figure 12-37 shows a timing diagram of a read operation to a 16-bit asynchronous memory using three
wait states. Figure 12-38 shows a timing diagram of a write operation to a 16-bit asynchronous memory
using three wait states.

Flash memories typically use WE[0] signal as shown, RAMs use two (WE/BE[0:1]).1

WE/BE[0]

ADDR[9:30]

DATA[0:15]

OE

MCU

WE 1

A[0:21]

D[0:15]

OE

Asynchronous
Memory

CS[0]
CE

CAL_CS[0]

External Bus Interface (EBI)

MPC5534 Microcontroller Reference Manual, Rev. 2

12-50 Freescale Semiconductor

Figure 12-37. Read Operation to Asynchronous Memory, Three Initial Wait States

Figure 12-38. Write Operation to Asynchronous Memory, Three Initial Wait States

CLKOUT

CSn

OE

TS

ADDR[8:31]

DATA[0:15]

TA

WE[0:1]

3 wait states DATA is valid

CLKOUT

CSn

OE

TS

ADDR[8:31]

DATA[0:15]

TA

WE[0:1]

3 wait states

DATA is valid

External Bus Interface (EBI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 12-51

12.5.4 Connecting an MCU to Multiple Memories

The MCU can be connected to more than one memory at a time.

Figure 12-39 shows an example of how two memories could be connected to one MCU.

Figure 12-39. MCU Connected to Multiple Memories

12.5.5 Dual-MCU Operations

This section describes how to configure dual-MCU systems when a signal or pin is not available. More
than one section can apply if the signals or pins are not present on one or both MCUs.

12.5.5.1 Connecting 16-bit MCU to 32-bit MCU (Master and Slave)

Connect DATA[0:15] between both MCUs, and configure both for 16-bit data bus mode operation
(DBM=1 in EBI_MCR). Does not support 32-bit external memories.

12.5.5.2 Arbiting a Master and Slave configuration

A dual master system is not supported, because the two masters have no method to arbitrate access to the
external bus without conflicts. However, you can configure a master/slave system for arbitration.

CLKOUT

CS[0]

TS

WE/BE[0]

ADDR[8:29]

DATA[0:15]

BDIP

OE

MCU

CK

CE

ADV

WE**

ADDR[0:21]

DATA[0:15]

OE

BAA*

SDR
Memory

CK

CE

ADV

WE**

A[0:21]

DATA[0:15]

OE

BAA*

SDR
Memory

CS[1]

WE/BE[1]

* The connection depends on the memory used.
** Flash memories typically use WE[0] signal as shown, RAMs use two (WE/BE[0:1]).

External Bus Interface (EBI)

MPC5534 Microcontroller Reference Manual, Rev. 2

12-52 Freescale Semiconductor

To implement a master/slave system, you must configure the master MCU for internal arbitration
(EARB=0 in EBI_MCR) and the slave MCU for external arbitration (EARB=1). The slave MCU never
attempts to start an access on the external bus. The master MCU maintains control of the bus without
arbitration delays. If the slave MCU executes internal code to access an external address, the access never
completes and eventually times-out in the slave MCU.

12.5.5.3 Setting the transfer size

To set the block size the Master uses to access the slave device, set the SIZEN bit in the internal SIZE field
of the EBI_MCR for the slave MCU. To access the slave MCU using a different block size, the Master
MCU must first write the new transfer size to the slave MCU’s SIZE field before processing subsequent
transaction.

12.5.5.4 Acknowledging a transfer

You must configure the chip select and external memory to access valid chip select regions only. This
ensures the EBI latches the data to the correct cycle count for the valid chip region.

The EBI does not have built-in protection to prevent external accesses to invalid chip and memory regions.
Without logic to identify the valid chip region, the EBI cannot latch the data to the correct cycle.

12.5.5.5 Detecting a transfer error

If an access times out in the EBI bus monitor, the EBI (master) terminates the access early, but the MCU
does not detect the access termination. Therefore, the slave device can drive the data much later, colliding
with a subsequent access that is already underway. Therefore, disable the EBI bus monitor.

12.5.5.6 Detecting Burst Data in Progress

If an MCU does not have a BDIP signal, burst support is available if the memory does not require BDIP
to support data burst. Many external memories use a self-timed configurable burst mechanism that does
not require a dynamic burst indicator. Check the applicable external memory specification to see if BDIP
is required.

12.5.6 Summary of Differences from MPC500

The following summary lists of the significant differences between this EBI used in the MPC5500 devices
and that of the MPC500 devices:

• SETA feature not supported: chip select devices cannot use the external TA signal, instead must
use wait state configuration.

• No memory controller support for external masters: no support for multi-master system to drive its
own chip selects

• Changes in bit fields:

— Removed these variable timing attributes from the option register: CSNT, ACS, TRLX, EHTR

— Removed LBDIP base register bit, now late BDIP assertion is the default

External Bus Interface (EBI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 12-53

— The BL field of the base register has inverted logic from the MPC56x devices
(0 = 8-beat burst on the MPC5500, 1 = 8-beat burst on the MPC56x)

• Removed reservation support on external bus

• Removed address type (AT), write-protect (WP), and dual-mapping features because these
functions can be replicated by memory management unit (MMU) in e200z3 core

• Removed support for 8-bit ports

• Removed boot chip select operation: on-chip boot assist module (BAM) handles boot
(and configuration of EBI registers)

• Added support for 32-bit coherent read and write non-chip select accesses in 16-bit data bus mode

• Misaligned accesses are not supported

• Calibration features implemented by three calibration chip selects

• Removed support for 3-master systems

External Bus Interface (EBI)

MPC5534 Microcontroller Reference Manual, Rev. 2

12-54 Freescale Semiconductor

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 13-1

Chapter 13
Flash Memory

13.1 Introduction
This section provides information about the flash bus interface unit (FBIU) and the flash memory block.

13.1.1 Block Diagram

Figure 13-1 shows a block diagram of the flash memory module. The FBIU is addressed through the
system bus while the flash control and status registers are addressed through the slave (peripheral) bus.

Figure 13-1. Flash System Block Diagram

13.1.2 Overview

The flash module serves as electrically programmable and erasable non-volatile memory (NVM) that is
ideal for program and data storage for single-chip applications allowing for field reprogramming without
requiring external programming voltage sources. The module is a solid-state silicon memory device
consisting of blocks of single-transistor storage elements.

The device flash contains a flash bus interface unit (FBIU) and a flash memory array. The flash BIU
interfaces the system bus to a dedicated flash memory array controller. The FBIU supports a 64-bit data
bus width at the system bus port, and a 128-bit read data interface from the flash memory array. If enabled,
the flash BIU contains a four-entry prefetch buffer, each entry containing 128 bits of data, and an
associated controller that prefetches sequential lines of data from the flash array into the buffer. Prefetch

Flash Bus
Interface

Unit
(FBIU)

Flash Memory

Flash Memory Block

Flash Core

Control/Status
Registers

Interface
(MI)

VFLASH
1VSS VDD VPP

Slave
Bus

System
Bus

V
FLASH

 is not available on

the 208 package.

1

Flash Memory

MPC5534 Microcontroller Reference Manual, Rev. 2

13-2 Freescale Semiconductor

buffer hits support zero-wait responses. Normal flash array accesses (accesses that don’t go to the prefetch
buffers) are registered in the FBIU in a single cycle, and are forwarded to the system bus on the next cycle,
incurring at least two wait states (depending on the frequency). Additional wait states are indicated in
FLASH_BUICR[RWSC]. See Table 13-14 for more information.

The flash memory block is arranged as two functional units, the first being the flash core. The flash core
is composed of arrayed non-volatile storage elements, sense amplifiers, row selects, column selects, charge
pumps, ECC logic and redundancy logic. The arrayed storage elements in the flash core are subdivided
into physically separate units referred to as blocks.

The second functional unit of flash memory is the memory interface (MI). The MI contains the registers
and logic that control the operation of the flash core. The MI is also the interface between the flash module
and the FBIU. The FBIU connects the MCU system bus to the flash module, and provides all system level
customization and configuration functionality.

The flash array has three address spaces. Low address space (LAS) is 256-KB in size. Mid address space
(MAS) is also 256-KB in size. High address space (HAS) is 512 KB in size. Total address space is 1.0 MB.

Figure 13-2. Flash Array Diagram

Low Address Space

High Address Space

Mid Address Space

Flash Array Blocks

Low Address Space—256 KB

Mid Address Space—256 KB

High Address Space— 512 KB

Flash Memory

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 13-3

13.1.3 Features

The following list summarizes the key features of the FBIU:

• The FBIU system bus interface supports a 64-bit data bus. All byte, halfword, word, and
doubleword reads are supported. Only aligned word and doubleword writes are supported.

• The flash array interface supports a 128-bit read data bus and a 64-bit write data bus.

• The FBIU provides configurable read buffering and line prefetch support. Four line read buffers
(each 128 bits wide) and a prefetch controller are used to support single-cycle read responses (zero
wait-states) for hits in the buffers.

• The FBIU provides hardware and software configurable read and write access protections on a
per-master basis.

• The FBIU interface to the flash array is pipelined with a depth of 1.

• The FBIU allows configurable access timing.

• The FBIU provides multiple-mapping support and mapping-based block access timing allowing
use for emulation of other memory types.

The flash memory array has the following features:

• Software programmable block program/erase restriction control for low, mid, and high address
spaces.

• Erase of selected blocks.

• ECC with single-bit correction, double-bit detection.

• Page program size of 128 bits allows programming from one to two consecutive 64-bit
doublewords in a page.

• Embedded hardware program and erase algorithm.

• Read while write with multiple partitions.

• Stop mode for low power stand-by.

• Erase suspend, program suspend, and erase-suspended program.

• Automotive flash that meets automotive endurance and reliability requirements. Shadow
information is stored in a non-volatile shadow block.

• Independent program/erase of the shadow block.

13.1.4 Modes of Operation

13.1.4.1 User Mode

User mode is the default operating mode of the flash memory block. In this mode, you can read, write,
program, and erase the flash. See Section 13.4.2, “Flash Memory Array: User Mode.”

13.1.4.2 Stop Mode

In stop mode (FLASH_MCR[STOP] = 1), all DC current sources in the flash are disabled. See
Section 13.4.3, “Flash Memory Array: Stop Mode.”

Flash Memory

MPC5534 Microcontroller Reference Manual, Rev. 2

13-4 Freescale Semiconductor

13.2 External Signal Description
Table 13-1 shows a list of signals required for flash.

13.2.1 Voltage for Flash Only
VFLASH

VFLASH is a supply required for reads of the flash core. This voltage is specified as 3.3 V with a tolerance
of ± 0.3 V.

208 Package: The VFLASH pin is not available on the 208 package.

13.2.2 Program and Erase Voltage for Flash Only
VPP

VPP is a supply required for program and erase of the flash core. This voltage is specified as 5 V with a
tolerance of -0.5 V to +0.25 V during program and erase operations. VPP is required at all times, even
during normal reads of flash memory. During read operations, VPP can be as high as 5.3 V and as low as
3.0 V.

13.3 Memory Map/Register Description
The flash BIU occupies a 512-MB portion of the address space. The actual flash array is multiply-mapped
within this space.

The MCU internal flash has a feature that allows the internal flash timing to be modified to emulate an
external memory, hence the name, external emulation mode. The upper five address lines are used to
provide additional timing control that allows the FBIU response timing on the system bus (which must be
controlled to provide for timing emulation of alternate memory types). See Figure 13-3.

Figure 13-3. Flash BIU Address Scheme

This feature allows calibration parameters to be tested using an external memory; and then in production,
the internal flash access timing is modified to match timing of the external memory. The access time of the
internal flash is lengthened based on the address range being accessed. To access an area with a slower
access time, the address is modified per Table 13-2.

Table 13-1. Signal Properties

Name Function Reset State

VFLASH Flash read power supply —

VPP Flash program/erase power supply —

Flash array access or

0bYYYYY_0000_0000_0000_0000_0000_0000 –

flash shadow block access

0bYYYYY_1111_1111_1111_1111_1111_1111

YYYYY – Additional primary wait-states

Flash Memory

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 13-5

Table 13-2. Internal Flash External Emulation Mode

Address Range YYYYY Wait States

0x0000_0000 0x001F_FFFF 00000 0

0x0100_0000 0x011F_FFFF 01000 8

0x0200_0000 0x021F_FFFF 10000 16

0x0300_0000 0x031F_FFFF 11000 24

0x0400_0000 0x041F_FFFF 00001 1

0x0500_0000 0x051F_FFFF 01001 9

0x0600_0000 0x061F_FFFF 10001 17

0x0700_0000 0x071F_FFFF 11001 25

0x0800_0000 0x081F_FFFF 00010 2

0x0900_0000 0x091F_FFFF 01010 10

0x0A00_0000 0x0A1F_FFFF 10010 18

0x0B00_0000 0x0B1F_FFFF 11010 26

0x0C00_0000 0x0C1F_FFFF 00011 3

0x0D00_0000 0x0D1F_FFFF 01011 11

0x0E00_0000 0x0E1F_FFFF 10011 19

0x0F00_0000 0x0F1F_FFFF 11011 27

0x1000_0000 0x101F_FFFF 00100 4

0x1100_0000 0x111F_FFFF 01100 12

0x1200_0000 0x121F_FFFF 10100 20

0x1300_0000 0x131F_FFFF 11100 28

0x1400_0000 0x141F_FFFF 00101 5

0x1500_0000 0x151F_FFFF 01101 13

0x1600_0000 0x161F_FFFF 10101 21

0x1700_0000 0x171F_FFFF 11101 29

0x1800_0000 0x181F_FFFF 00110 6

0x1900_0000 0x191F_FFFF 01110 14

0x1A00_0000 0x1A1F_FFFF 10110 22

0x1B00_0000 0x1B1F_FFFF 11110 30

0x1C00_0000 0x1C1F_FFFF 00111 7

0x1D00_0000 0x1D1F_FFFF 01111 15

0x1E00_0000 0x1E1F_FFFF 10111 23

0x1F00_0000 0x1F1F_FFFF 11111 31

Flash Memory

MPC5534 Microcontroller Reference Manual, Rev. 2

13-6 Freescale Semiconductor

13.3.1 Flash Memory Map

Table 13-3 shows the flash array memory map and how it is mapped using byte addressing.

Base addresses for the device are the following:

• Shadow base address = 0x00FF_FC00

• Array base address = 0x0000_0000

• Control registers base address = 0xC3F8_8000

Table 13-4 shows how the array is partitioned into three address spaces — low, mid, and high — and into
partitions and blocks.

Table 13-3. Module Flash Array Memory Map

 Byte Address Type and Amount of Space Used Access

Shadow base (0x0000_0000–0x0000_03FF) Shadow block space (1024 bytes) User

Array base + (0x0000_0000–0x0003_FFFF) Low address space (256 KB) User

Array base + (0x0004_0000–0x0007_FFFF) Mid address space (256 KB) User

Array base + (0x0008_0000–0x000F_FFFF) High address space (512 KB) User

Table 13-4. Flash Partitions

Address (Array base + offset) Use Block Bytes Partition

Array Base + 0x0000_0000 Low address space Low 0 16 KB 1

Array Base + 0x0000_4000 Low 1 48 KB

Array Base + 0x0001_0000 Low 2 48 KB

Array Base + 0x0001_C000 Low 3 16 KB

Array Base + 0x0002_0000 Low 4 64 KB 2

Array Base + 0x0003_0000 Low 5 64 KB

Array Base + 0x0004_0000 Mid address space Med 0 128 KB 3

Array Base + 0x0006_0000 Med 1 128 KB

Array Base + 0x0008_0000 High address space High 0 128 KB 4

Array Base + 0x000A_0000 High 1 128 KB

Array Base + 0x000C_0000 High 2 128 KB 5

Array Base + 0x000E_0000 High 3 128 KB

Array Base + 0x00FF_FC00 Shadow block space Shadow 472 All 1

Array Base + 0x00FF_FDD8 Flash shadow block, serial passcode Shadow 8 All 1

Array Base + 0x00FF_FDE0 Flash shadow block, control word Shadow 4 All 1

Array Base + 0x00FF_FDE4 General use Shadow 4 All 1

Array Base + 0x00FF_FDE8 Flash shadow block, FLASH_LMLR reset configuration Shadow 4 All 1

Array base + 0x00FF_FDEC General use Shadow 4 All 1

Flash Memory

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 13-7

Table 13-5 shows the register set for the flash module.

13.3.2 Register Descriptions

The flash registers are detailed in the following sections.

13.3.2.1 Module Configuration Register
FLASH_MCR

A number of module configuration register (FLASH_MCR) bits are protected from a write while another
bit or set of bits are in a specific state. These locks are discussed in relationship to each bit in this section.
Simultaneously writing bits which lock each other out is discussed in Section 13.3.2.1.1, “MCR
Simultaneous Register Writes.” The MCR is always available to be read except when the flash module is
disabled.

Array base + 0x00FF_FDF0 Flash shadow block, FLASH_HLR reset configuration Shadow 4 All 1

Array base + 0x00FF_FDF4 General use Shadow 4 All 1

Array base + 0x00FF_FDF8 Flash shadow block, FLASH_SLMLR reset configuration Shadow 4 All 1

Array base + 0x00FF_FE00 Flash shadow block, FLASH_BIUCR2 reset
configuration

Shadow 4 All 1

Array base + 0x00FF_FE04–0x00FF_FFFF General use Shadow 508 All 1

1 The shadow block does not support RWW. See Section 13.4.2.5, “Flash Shadow Block.”

Table 13-5. Module Register Memory Map

Byte Address Register Name Register Description Bits

Register Base + 0x0000 FLASH_MCR Module configuration register 32

Register Base + 0x0004 FLASH_LMLR Low/mid address space block locking register 32

Register Base + 0x0008 FLASH_HLR High address space block locking register 32

Register Base + 0x000C FLASH_SLMLR Secondary low/mid address space block locking register 32

Register Base + 0x0010 FLASH_LMSR Low/mid address space block select register 32

Register Base + 0x0014 FLASH_HSR High address space block select register 32

Register Base + 0x0018 FLASH_AR Address register 32

Register Base + 0x001C FLASH_BIUCR Flash bus interface unit control register 32

Register Base + 0x0020 FLASH_BIUAPR Flash bus interface unit access protection register 32

Register Base + 0x0024 FLASH_BIUCR2 Flash bus interface unit control register 2 32

Register Base + (0x0028–0x7FFF) — Reserved —

Table 13-4. Flash Partitions (continued)

Address (Array base + offset) Use Block Bytes Partition

Flash Memory

MPC5534 Microcontroller Reference Manual, Rev. 2

13-8 Freescale Semiconductor

Address: Base (0xC3F8_8000) + 0x0000 Access: User R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 SIZE 0 LAS 0 0 0 MAS

W

Reset 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0

 16 17 18 19 20 21 22 238 24 25 26 27 28 29 30 31

R EER RWE 1 1 PEAS DONE PEG 0
PRD STOP

0
PGM PSUS ERS ESUS EHV

W w1c w1c

Reset 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0

Figure 13-4. Module Configuration Register (FLASH_MCR)

Table 13-6. FLASH_MCR Field Descriptions

Field Description

0–3 Reserved

4–7
SIZE[0:3]

Array space size. Dependent upon the size of the flash module. SIZE is read only.
0000–0010 Invalid value
0011 Total array size is 1.0 MB
0100–1111 Invalid value

8 Reserved

9–11
LAS[0:2]

Low address space. Corresponds to the configuration of the low address space. All possible values of LAS
and the configuration to which each value corresponds are shown below. LAS is read only.

110 The LAS value of 110 provides two 16-KB blocks, two 48-KB blocks, and two 64-KB blocks.

12–14 Reserved

15
MAS

Mid address space size. Corresponds to the configuration of the mid address space. MAS is read only.
0 Two 128-KB blocks are available1Invalid value

16
EER

ECC event error. Provides information on previous reads; if a double-bit detection occurred, the EER bit is
set to 1. This bit must then be cleared, or a reset must occur before this bit returns to a 0 state. This bit cannot
be set by the application. In the event of a single bit detection and correction, this bit is not set. If EER is not
set, or remains 0, this indicates that all previous reads (from the last reset, or clearing of EER) were correct.
Since this bit is an error flag, it must be cleared to a 0 by writing a 1 to the register location. A write of 0 has
no effect.
0 Reads are occurring normally.
1 An ECC Error occurred during a previous read.
Note: This bit can be set on speculative prefetches that cause double bit error detection. Therefore, use the

ECSM[FNCE] flag for detecting non-correctable ECC errors in the flash instead of using
FLASH_MCR[EER].

17
RWE

Read while write event error. Provides information on previous RWW reads. If a read while write error occurs,
this bit is set to 1. This bit must then be cleared, or a reset must occur before this bit returns to a 0 state. This
bit cannot be set to 1 by the application. If RWE is not set, or remains 0, this indicates that all previous RWW
reads (from the last reset, or clearing of RWE) were correct. Since this bit is an error flag, it must be cleared
to a 0 by writing a 1 to the register location. A write of 0 has no effect.
0 Reads are occurring normally.
1 A read while write error occurred during a previous read.

18–19 Reserved

Flash Memory

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 13-9

20
PEAS

Program/erase access space. Indicates which space is valid for program and erase operations, either main
array space or shadow space. PEAS is read only.
0 Shadow address space is disabled for program/erase and main address space enabled.
1 Shadow address space is enabled for program/erase and main address space disabled.

21
DONE

State machine status. Indicates if the flash module is performing a high voltage operation. DONE is set to a
1 on termination of the flash module reset and at the end of program and erase high voltage sequences.
0 Flash is executing a high voltage operation.
1 Flash is not executing a high voltage operation.

22
PEG

Program/erase good. Indicates the completion status of the last flash program or erase sequence for which
high voltage operations were initiated. The value of PEG is updated automatically during the program and
erase high voltage operations. Aborting a program/erase high voltage operation causes PEG to be cleared,
indicating the sequence failed. PEG is set to a 1 when the module is reset. PEG is read only.

The value of PEG is valid only when PGM = 1 and/or ERS = 1 and after DONE has transitioned from 0 to 1
due to an abort or the completion of a program/erase operation. PEG is valid until PGM/ERS makes a 1 to 0
transition or EHV makes a 0 to 1 transition. The value in PEG is not valid after a 0 to 1 transition of DONE
caused by PSUS or ESUS being set to logic 1. A diagram presenting PEG valid times is presented in
Figure 13-5. If PGM and ERS are both 1 when DONE makes a qualifying 0 to 1 transition the value of PEG
indicates the completion status of the PGM sequence. This happens in an erase-suspended program
operation.
0 Program or erase operation failed.
1 Program or erase operation successful.

23 Reserved

24
PRD

Pipelined Reads Disabled. PRD is used to allow pipelined reads to be disabled. By default PRD is 0, which
enables pipelined accesses. In systems with slower clocks (<30MHz), the pipelined read feature can be
disabled by writing this bit to a 1. This would allow single cycle clock accesses in systems with a slower clock.
In systems with faster clocks (>30MHz), accesses are multiple cycles, and the pipelined read feature can be
used to get faster throughput on successive reads (PRD = 0).
1 Pipelined Reads are disabled.
0 Pipelined Reads are enabled.
Note: PRD must be set before setting the flash wait states to 0 (done in FLASH_BIUCR)

25
STOP

Stop mode enabled. Puts the flash into stop mode. Changing the value in STOP from a 0 to a 1 places the
flash module in stop mode. A 1 to 0 transition of STOP returns the flash module to normal operation. STOP
can be written only when PGM and ERS are low. When STOP = 1, only the STOP bit in the MCR can be
written. In STOP mode all address spaces, registers, and register bits are deactivated except for the
FLASH_MCR[STOP] bit.
0 Flash is not in stop mode; the read state is active.
1 Flash is in stop mode.

26 Reserved

27
PGM

Program. Used to set up flash for a program operation. A 0 to 1 transition of PGM initiates an flash program
sequence. A 1 to 0 transition of PGM ends the program sequence. PGM can be set only under one of the
following conditions:
 • User mode read (STOP and ERS are low).
 • Erase suspend1 (ERS and ESUS are 1) with EHV low.
PGM can be cleared by you only when EHV are low and DONE is high. PGM is cleared on reset.
0 Flash is not executing a program sequence.
1 Flash is executing a program sequence.

Table 13-6. FLASH_MCR Field Descriptions (continued)

Field Description

Flash Memory

MPC5534 Microcontroller Reference Manual, Rev. 2

13-10 Freescale Semiconductor

28
PSUS

Program suspend. Indicates the flash module is in program suspend or in the process of entering a suspend
state. The flash module is in program suspend when PSUS = 1 and DONE = 1. PSUS can be set high only
when PGM and EHV are high. A 0 to 1 transition of PSUS starts the sequence which sets DONE and places
the flash in program suspend. PSUS can be cleared only when DONE and EHV are high. A 1 to 0 transition
of PSUS with EHV = 1 starts the sequence which clears DONE and returns the flash module to program. The
flash module cannot exit program suspend and clear DONE while EHV is low. PSUS is cleared on reset.
0 Program sequence is not suspended.
1 Program sequence is suspended.

29
ERS

Erase. Used to set up flash for an erase operation. A 0 to 1 transition of ERS initiates an flash erase
sequence. A 1 to 0 transition of ERS ends the erase sequence. ERS can be set only in a normal operating
mode read (STOP and PGM are low). ERS can be cleared by you only when ESUS and EHV are low and
DONE is high. ERS is cleared on reset.
0 Flash is not executing an erase sequence.
1 Flash is executing an erase sequence.

30
ESUS

Erase suspend. Indicates that the flash module is in erase suspend or in the process of entering a suspend
state. The flash module is in erase suspend when ESUS = 1 and DONE = 1. ESUS can be set high only when
ERS and EHV are high and PGM is low. A 0 to 1 transition of ESUS starts the sequence which sets DONE
and places the flash in erase suspend. ESUS can be cleared only when DONE and EHV are high and PGM
is low. A 1 to 0 transition of ESUS with EHV = 1 starts the sequence which clears DONE and returns the flash
module to erase mode. The flash module cannot exit erase suspend and clear DONE while EHV is low. ESUS
is cleared on reset.
0 Erase sequence is not suspended.
1 Erase sequence is suspended.

31
EHV

Enable high voltage. Enables the flash module for a high voltage program/erase operation. EHV is cleared
on reset. EHV must be set after an interlock write to start a program/erase sequence. EHV can be set,
initiating a program/erase, after an interlock write under one of the following conditions:
 • Erase (ERS = 1, ESUS = 0).
 • Program (ERS = 0, ESUS = 0, PGM = 1, PSUS = 0).
 • Erase-suspended program (ERS = 1, ESUS = 1, PGM = 1, PSUS = 0).
If a program operation is to be initiated while an erase is suspended you must clear EHV while in erase
suspend before setting PGM.
In normal operation, a 1 to 0 transition of EHV with DONE high, PSUS and ESUS low terminates the current
program/erase high voltage operation.

When an operation is aborted2, there is a 1 to 0 transition of EHV with DONE low and the suspend bit for the
current program/erase sequence low. An abort causes the value of PEG to be cleared, indicating a failed
program/erase; address locations being operated on by the aborted operation contain indeterminate data
after an abort.
A suspended operation cannot be aborted. EHV can be written during suspend. EHV must be high for the
flash to exit suspend. Do not write the EHV bit after a suspend bit is set high and before DONE has
transitioned high. Do not set the EHV bit low after the current suspend bit is set low and before DONE has
transitioned low.
0 Flash is not enabled to perform a high voltage operation.
1 Flash is enabled to perform a high voltage operation.

1 In an erase-suspended program, programming flash locations in blocks which were being operated on in the erase can
corrupt flash core data. Avoid this due to reliability implications.

2 Aborting a high voltage operation leaves flash core addresses in an indeterminate data state. This can be recovered by
executing an erase on the affected blocks.

Table 13-6. FLASH_MCR Field Descriptions (continued)

Field Description

Flash Memory

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 13-11

Figure 13-5. PEG Valid Times

13.3.2.1.1 MCR Simultaneous Register Writes

A number of MCR bits are protected against write when another bit or set of bits is in a specific state. These
write locks are covered on a bit by bit basis in Section 13.3.2.1, “Module Configuration Register
FLASH_MCR.” The write locks detailed in that section do not consider the effects of trying to write two
or more bits simultaneously. The effects of writing bits simultaneously which would put the flash module
in an illegal state are detailed here.

The flash does not allow you to write bits simultaneously which would put the device into an illegal state.
This is implemented through a priority mechanism among the bits. The bit changing priorities are detailed
in Table 13-7.

If you try to write two or more MCR bits simultaneously then only the bit with the highest priority level
is written. Setting two bits with the same priority level is prevented by existing write locks and does not
put the flash in an illegal state.

For example, setting FLASH_MCR[STOP] and FLASH_MCR[PGM] simultaneously results in only
FLASH_MCR[STOP] being set. Attempting to clear FLASH_MCR[EHV] while setting
FLASH_MCR[PSUS] results in FLASH_MCR[EHV] being cleared, while FLASH_MCR[PSUS]
remains unaffected.

Table 13-7. MCR Bit Set/Clear Priority Levels

Priority Level MCR Bits

1 STOP

2 ERS

3 PGM

4 EHV

5 ESUS, PSUS

FLASH_MCR[PGM/ERS]

FLASH_MCR[EHV]

FLASH_MCR[DONE]

FLASH_MCR[PEG]

PEG
Valid

PEG
Valid

PEG
Valid

Abort Program/Erase

Flash Memory

MPC5534 Microcontroller Reference Manual, Rev. 2

13-12 Freescale Semiconductor

13.3.2.2 Low/Mid Address Space Block Locking Register
FLASH_LMLR

The low and mid address block locking register provides a means to protect blocks from being modified.
These bits along with bits in the secondary LMLOCK field (FLASH_SLMLR), determine if the block is
locked from program or erase. An “OR”’ of FLASH_LMLR and FLASH_SLMLR determine the final
lock status. See Section 13.3.2.4, “Secondary Low/Mid Address Space Block Locking Register
FLASH_SLMLR” for more information on FLASH_SLMLR.

NOTE
In the event that blocks are not present (due to configuration or total
memory size), the LOCK bits defaults to locked, and are not writable. The
reset value is always 1 (independent of the shadow block), and register
writes have no effect.

Address: Base (0xC3F8_8000) + 0x0004 Access: User R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R LME 0 0 0 0 0 0 0 0 0 0
SLOCK

1 1
MLOCK

1 1 1 1 1 1 1 1 1 1
LLOCK

W

Reset 0 0 0 0 0 0 0 0 0 0 0 11

1 The reset value of these bits is determined by flash values in the shadow block. Erasing the array sets the reset value
to 1.

Figure 13-6. Low/Mid Address Space Block Locking Register (FLASH_LMLR)

Table 13-8. FLASH_LMLR Field Descriptions

Field Description

0
LME

Low and mid address lock enable. Enables the locking register fields (SLOCK, MLOCK and LLOCK) to be set or
cleared by register writes. This bit is a status bit only, and cannot be written or cleared, and the reset value is 0.
The method to set this bit is to write a password, and if the password matches, the LME bit is set to reflect the
status of enabled, and is enabled until a reset operation occurs. For LME, the password 0xA1A1_1111 must be
written to the FLASH_LMLR.
0 Low and mid address locks are disabled, and cannot be modified.
1 Low and mid address locks are enabled and can be written.

1–10 Reserved

11
SLOCK

Shadow lock. Locks the shadow block from programs and erases. The SLOCK bit is not writable if a high voltage
operation is suspended.
Upon reset, information from the shadow block is loaded into the SLOCK bit. The SLOCK bit can be written as a
register. Reset causes the bits to go back to their shadow block value. The default value of the SLOCK bit
(assuming the corresponding shadow block bit is erased) would be locked. SLOCK is not writable unless LME is
high.
0 Shadow block is available to receive program and erase pulses.
1 Shadow block is locked for program and erase.

12–13 Reserved

Flash Memory

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 13-13

13.3.2.3 High Address Space Block Locking Register (FLASH_HLR)

The high address space block locking register provides a means to protect blocks from being modified.

14–15
MLOCK[1:0]

Mid address block lock. A value of 1 in a bit of the lock register signifies that the corresponding block is locked for
program and erase. A value of 0 in the lock register signifies that the corresponding block is available to receive
program and erase pulses. Likewise the lock register is not writable if a high voltage operation is suspended.
Upon reset, information from the shadow block is loaded into the block registers. The LOCK bits can be written
as a register. Reset causes the bits to go back to their shadow block value. The default value of the LOCK bits
(assuming erased fuses) would be locked.

In the event that blocks are not present (due to configuration or total memory size), the LOCK bits default to
locked, and are not writable. The reset value is always 1 (independent of the shadow block), and register writes
have no effect.
MLOCK is not writable unless LME is high.

16–25 Reserved

26–31
LLOCK[5:0]

Low address block lock. These bits have the same description and attributes as MLOCK. As an example of how
the LLOCK bits are used, if a configuration has six 16-KB blocks in the low address space, the block residing at
address array base + 0, corresponds to LLOCK0. The next 16-KB block corresponds to LLOCK1, and so on up
to LLOCK5.

Address: Base (0xC3F8_8000) + 0x0008 Access: User R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R HBE 0 0 0 1
HLOCK

W

Reset 0 0 0 0 11

1 The reset value of these bits is determined by flash values in the shadow block. An erased array causes the reset value
to be 1.

Figure 13-7. High Address Space Block Locking Register (FLASH_HLR)

Table 13-9. FLASH_HLR Field Descriptions

Field Description

0
HBE

High address lock enable. Enables the locking field (HLOCK) to be set or cleared by register writes. This bit is a
status bit only, and cannot be written to or cleared, and the reset value is 0. The method to set this bit is to provide
a password, and if the password matches, the HBE bit is set to reflect the status of enabled, and is enabled until
a reset operation occurs. For HBE, the password 0xB2B2_2222 must be written to FLASH_HLR.
0 High address locks are disabled, and cannot be modified.
1 High address locks are enabled to be written.

1–27 Reserved

28–31
HLOCK[3:0]

High address space block lock. Has the same characteristics as MLOCK. See Section 13.3.2.2, “Low/Mid
Address Space Block Locking Register FLASH_LMLR” for more information. The block numbering for High
Address space starts with HLOCK[0] and continues until all blocks are accounted.
HLOCK is not writable unless HBE is set.
In the event that blocks are not present (due to configuration or total memory size), the HLOCK bits default to
locked, and are not writable.

Table 13-8. FLASH_LMLR Field Descriptions (continued)

Field Description

Flash Memory

MPC5534 Microcontroller Reference Manual, Rev. 2

13-14 Freescale Semiconductor

13.3.2.4 Secondary Low/Mid Address Space Block Locking Register
FLASH_SLMLR

The FLASH_SLMLR provides an alternative means to protect blocks from being modified. These bits
along with bits in the LMLOCK field (FLASH_LMLR), determine if the block is locked from program or
erase. An “OR” of FLASH_LMLR and FLASH_SLMLR determine the final lock status. See
Section 13.3.2.2, “Low/Mid Address Space Block Locking Register FLASH_LMLR” for more
information on FLASH_LMLR.

Address: Base (0xC3F8_8000) + 0x000C Access: User R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R SLE 0 0 0 0 0 0 0 0 0 0 SS
LOCK

1 1 SM
LOCK

1 1 1 1 1 1 1 1 1 1
SLLOCK

W

Reset 0 0 0 0 0 0 0 0 0 0 0 11 1 1 11 11 1 1 1 1 1 1 1 1 1 1 11 11 11 11 11 11

1 The reset value of these bits is determined by flash values in the shadow block. An erased array sets the reset value
to 1.

Figure 13-8. Secondary Low/Mid Address Space Block
Locking Register (FLASH_SLMLR)

Table 13-10. FLASH_SLMLR Field Descriptions

Field Description

0
SLE

Secondary low and mid address lock enable. Enables the secondary lock fields (SSLOCK, SMLOCK,
and SLLOCK) to be set or cleared by register writes. This bit is a status bit only, and cannot be written
to or cleared, and the reset value is 0. The method to set this bit is to provide a password, and if the
password matches, the SLE bit is set to reflect the status of enabled, and is enabled until a reset
operation occurs. For SLE, the password 0xC3C3_3333 must be written to the FLASH_SLMLR.
0 Secondary low and mid address locks are disabled, and cannot be modified.
1 Secondary low and mid address locks are enabled to be written.

1–10 Reserved

11
SSLOCK

Secondary shadow lock. An alternative method to lock the shadow block from programs and erases.
SSLOCK has the same description as SLOCK in Section 13.3.2.2, “Low/Mid Address Space Block
Locking Register FLASH_LMLR.” SSLOCK is not writable unless SLE is high.

12–13 Reserved

14–15
SMLOCK

[1:0]

Secondary mid address block lock. Alternative method to lock the mid address space blocks from
programs and erases. SMLOCK has the same description as MLOCK in section Section 13.3.2.2,
“Low/Mid Address Space Block Locking Register FLASH_LMLR.” SMLOCK is not writable unless SLE
is set.
In the event that blocks are not present (due to configuration or total memory size), the SMLOCK bits
default to locked, and are not writable.

16–25 Reserved

26–31
SLLOCK

[5:0]

Secondary low address block lock. These bits are an alternative method to lock the low address space
blocks from programs and erases. SLLOCK has the same description as LLOCK in Section 13.3.2.2,
“Low/Mid Address Space Block Locking Register FLASH_LMLR. SLLOCK is not writable unless SLE is
high.
In the event that blocks are not present (due to configuration or total memory size), the SLLOCK bits
default to locked, and are not writable.

Flash Memory

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 13-15

13.3.2.5 Low/Mid Address Space Block Select Register
FLASH_LMSR

The FLASH_LMSR provides a means to select blocks to be operated on during erase.

13.3.2.6 High Address Space Block Select Register
FLASH_HSR

The FLASH_HSR allows the application to select the high address flash blocks on which to operate.

Address: Base (0xC3F8_8000) + 0x0010 Access: User R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MSEL

0 0 0 0 0 0 0 0 0 0
LSEL

W

Reset 0

Figure 13-9. Low/Mid Address Space Block Select Register (FLASH_LMSR)

Table 13-11. FLASH_LMSR Field Descriptions

Field Description

0–13 Reserved

14–15
MSEL[1:0]

Mid address space block select. Values in the selected register signify that a block(s) is or is not selected
for erase. The reset value for the select registers is 0. The blocks must be selected (or unselected) before
doing an erase interlock write as part of the erase sequence. The select register is not writable after an
interlock write is completed or if a high voltage operation is suspended. In the event that blocks are not
present (due to configuration or total memory size), the corresponding SELECT bits default to unselected,
and are not writable. The reset value is always 0, and register writes have no effect. A description of how
blocks are numbered is detailed in Section 13.3.2.2, “Low/Mid Address Space Block Locking Register
FLASH_LMLR.”
0b0000 Mid address space blocks are not selected for erase
0b0001 One mid address space block is selected for erase
0b0011 Two mid address space blocks are selected for erase

16–25 Reserved

26–31
LSEL[5:0]

Low address space block select. Used to select blocks in the low address space; these have the same
description and attributes as the MSEL bits
0b0000 Low address space blocks are not selected for erase
0b0001 One low address space block is selected for erase
0b0011 Two low address space blocks are selected for erase
0b0111 Three low address space blocks are selected for erase
0b1111 Four low address space blocks are selected for erase
0b1_1111 Five low address space blocks are selected for erase
0b11_1111 Six low address space blocks are selected for erase

Address: Base (0xC3F8_8000) + 0x0014 Access: User R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0
HBSEL

W

Reset 0

Figure 13-10. High Address Space Block Select Register (FLASH_HSR)

Flash Memory

MPC5534 Microcontroller Reference Manual, Rev. 2

13-16 Freescale Semiconductor

13.3.2.7 Address Register
FLASH_AR

The FLASH_AR provides the first failing address in the event of ECC event error (FLASH_MCR[EER]
set), as well as providing the address of a failure that occurs in a state machine operation
(FLASH_MCR[PEG] cleared). ECC event errors take priority over state machine errors. This is especially
valuable in the event of a RWW operation, where the read senses an ECC error and the state machine fails
simultaneously. This address is always a doubleword address that selects 64 bits.

In normal operating mode, the FLASH_AR is not writable.

13.3.2.8 Flash Bus Interface Unit Control Register
FLASH_BIUCR

The FLASH_BIUCR is the control register for the set up and control of the flash interface. This register
must not be written while executing from flash. Only use a 32-bit write operation to write to this register.

Table 13-12. FLASH_HSR Field Descriptions

Field Description

0–27 Reserved

28–31
HBSEL[3:0]

High address space block select. Has the same characteristics as MSEL. For more information see
Section 13.3.2.5, “Low/Mid Address Space Block Select Register FLASH_LMSR.”
0b0000 High address space blocks are not selected for erase
0b0001 One high address space block is selected for erase
0b0011 Two high address space blocks are selected for erase
0b0111 Three high address space blocks are selected for erase
0b1111 Four high address space blocks are selected for erase

Address: Base (0xC3F8_8000) + 0x0018 Access: User R/O

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 ADDR 0 0 0

W

Reset 0

Figure 13-11. Address Register (FLASH_AR)

Table 13-13. FLASH_AR Field Descriptions

Field Description

0–9 Reserved

10–28
ADDR[3:21]

Doubleword address of first failing address in the event of an ECC error, or the address of a failure occurring
during state machine operation.

29–31
ADDR[0:2]

Always read as 0.

Flash Memory

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 13-17

Address: Base (0xC3F8_8000) + 0x001C Access: User R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 M3
PFE

M2
PFE

M1
PFE

M0
PFEW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
APC WWSC RWSC

0 DPF
EN

0 IPF
EN

PFLIM BFEN
W

Reset 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

Figure 13-12. Flash Bus Interface Unit Control Register (FLASH_BIUCR)

Table 13-14. FLASH_BIUCR Field Descriptions

Bits Description

0–11 Reserved. Do not set these bits.

12–15
MnPFE

Master n prefetch enable. Used to control whether prefetching can be triggered based on the master ID of a
requesting master. These bits are cleared by hardware reset.
0 No prefetching can be triggered by this master
1 Prefetching can be triggered by this master
These fields are identified as follows:
M3PFE = EBI
M2PFE = eDMA
M1PFE = Nexus
M0PFE = MCU core

16–18
APC 1

Address pipelining control. Used to control the number of cycles between pipelined access requests. This
field must be set to a value corresponding to the operating frequency of the system clock. The required
settings are documented in Table 13-15.
000 Accesses can be pipelined back-to-back
001 Access requests require one additional hold cycle
010 Access requests require two additional hold cycles
...
110 Access requests require six additional hold cycles
111 No address pipelining

19–20
WWSC 1

Write wait state control. Used to control the number of wait-states added to the best-case flash array access
time for writes. This field must be set to a value corresponding to the operating frequency of the system clock.
The required settings are documented in Table 13-15.
00 No additional wait states are added
01 One additional wait state is added
10 Two additional wait states are added
11 Three additional wait states are added

21–23
RWSC 1

Read wait state control. Used to control the number of wait states added to the best-case flash array access
time for reads. This field must be set to a value corresponding to the operating frequency of the system clock.
The required settings are documented in Table 13-16.
000 No additional wait states are added
001 One additional wait state is added
...
111 Seven additional wait states are added

Flash Memory

MPC5534 Microcontroller Reference Manual, Rev. 2

13-18 Freescale Semiconductor

24 Reserved. Do not set this bit.

25
DPFEN

Data prefetch enable. Enables or disables prefetching initiated by a data read access. This field is cleared by
hardware reset.
0 No prefetching is triggered by a data read access
1 Prefetching can be triggered by any data read access

26 Reserved. Do not set this bit.

27
IPFEN

Instruction prefetch enable. Enables or disables prefetching initiated by an instruction read access. This field
is cleared by hardware reset.
0 No prefetching is triggered by an instruction read access
1 Prefetching can be triggered by any instruction read access

28–30
PFLIM

Prefetch limit. Controls the prefetch algorithm used by the FBIU prefetch controller. This field defines a limit
on the maximum number of sequential prefetches attempted between buffer misses. This field is cleared by
hardware reset.
000 No prefetching is performed
001 The referenced line is prefetched on a buffer miss (i.e. prefetch on miss)
01x The referenced line is prefetched on a buffer miss, or the next sequential line is prefetched on a buffer

hit (if not already present), i.e., prefetch on miss or hit.
1xx See 01x (support for legacy code)

31
BFEN

FBIU line read buffers enable. Enables or disables line read buffer hits. It is also used to invalidate the buffers.
These bits are cleared by hardware reset.
0 The line read buffers are disabled from satisfying read requests, and all buffer valid bits are cleared.
1 The line read buffers are enabled to satisfy read requests on hits. Buffer valid bits can be set when the

buffers are successfully filled.

Note: Disable prefetching before invalidating the buffers. This includes starting a program or erase operation,
or turning on and off the buffers.

1 APC, WWSC, and RWSC values are determined by the maximum frequency of operation. See Table 13-15.

Table 13-14. FLASH_BIUCR Field Descriptions (continued)

Bits Description

Flash Memory

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 13-19

Flash Memory

MPC5534 Microcontroller Reference Manual, Rev. 2

13-20 Freescale Semiconductor

13.3.2.9 Flash Bus Interface Unit Access Protection Register
FLASH_BIUAPR

The FLASH_BIUAPR controls access protection for the flash from masters on the crossbar switch. Use a
32-bit write operation only to this register.

Table 13-15. FLASH_BIU Settings vs. Frequency of Operation1

1 Illegal combinations exist. Therefore, all entries must be taken from the same row in this table.

Target Maximum Frequency
(MHz)

APC WWSC RWSC DPFEN 2

2 For maximum flash performance, set to 0b1.

IPFEN 2 PFLIM 3

3 For maximum flash performance, set to 0b010.

BFEN 2

up to and including 27 MHz 4, 5

4 27 MHz parts allow for 25 MHz system clock + 2% frequency modulation (FM).
5 The APC/RWSC/WWSC combination requires setting the flash MCR register bit PRD=1.

0b000 0b01 0b000 0b0, 0b1 0b0, 0b1 0b000
to

0b010

0b0, 0b1

up to and including 52 MHz 6

6 52 MHz parts allow for 50 MHz system clock + 2% frequency modulation (FM).

0b001 0b01 0b001 0b0, 0b1 0b0, 0b1 0b000
to

0b010

0b0, 0b1

up to and including 77 MHz 7

7 77 MHz parts allow for 75 MHz system clock + 2% frequency modulation (FM).

0b010 0b01 0b010 0b0, 0b1 0b0, 0b1 0b000
to

0b010

0b0, 0b1

up to and including 82 MHz 8

8 82 MHz parts allow for 80 MHz system clock + 2% frequency modulation (FM).

0b011 0b01 0b011 0b0, 0b1 0b0, 0b1 0b000
to

0b010

0b0, 0b1

Reset values: 0b111 0b11 0b111 0b0 0b0 0b000 0b0

Address: Base (0xC3F8_8000) + 0x0020 Access: User R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
1 1 1 1 1 1 1 1 M3AP M2AP M1AP M0AP

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 13-13. Flash Bus Interface Unit Access Protection Register (FLASH_BIUAPR)

Flash Memory

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 13-21

13.3.2.10 Flash Bus Interface Unit Control Register 2
FLASH_BIUCR2

The FLASH_BIUCR2 defines the operations of the four line buffers.

Table 13-16. FLASH_BIUAPR Field Descriptions

Field Description

0–23 Reserved. Reads/Writes have no effect.

24–31
MnAP
[0:1]

Master n access protection. Controls whether read and write accesses to the flash are allowed based on
the master ID of a requesting master. These fields are initialized by hardware reset. See Table 7-4.
00 No accesses can be performed by this master
01 Only read accesses can be performed by this master
10 Only write accesses can be performed by this master
11 Both read and write accesses can be performed by this master

These fields are identified as follows:
M0AP= MCU core
M1AP= Nexus
M2AP= eDMA
M3AP= EBI

Address: Base (0xC3F8_8000) + 0x0024 Access: User R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
LBCFG

0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset –1 –1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 238 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 See bit description in Table 13-17 for reset values.

Figure 13-14. Flash Bus Interface Unit Control Register 2 (FLASH_BIUCR2)

Flash Memory

MPC5534 Microcontroller Reference Manual, Rev. 2

13-22 Freescale Semiconductor

To temporarily change the values of any of the fields in the FLASH_BIUCR2, a write to the IPS-mapped
register is performed. To change the values loaded into the FLASH_BIUCR2 at reset, the word location at
address (0x0200 + the shadow base address) in the flash array must be programmed using the normal
sequence of operations.

13.4 Functional Description

13.4.1 Flash Bus Interface Unit (FBIU)

The flash BIU interfaces between the system bus and the flash memory interface unit and generates read
and write enables, the flash array address, write size, and write data as inputs to the flash memory interface
unit (MI). The flash BIU captures read data from the MI and drives it on the system bus. Up to four lines
(1 line is a 128-bit width) of data or instructions are buffered by the flash BIU. Lines can be prefetched in
advance of being requested by the system bus interface, allowing single-cycle read data responses on
buffer hits.

Several prefetch control algorithms are available for controlling line read buffer fills. Prefetch triggering
can be restricted to instruction accesses only, data accesses only, or can be unrestricted. Prefetch triggering
can also be controlled on a per-master basis.

Buffers can also be selectively enabled or disabled for allocation by instruction and data prefetch (see
Section 13.3.2.10, “Flash Bus Interface Unit Control Register 2 FLASH_BIUCR2”).

Access protections can be applied on a per-master basis for both reads and writes to support security and
privilege mechanisms.

Table 13-17. FLASH_BIUCR2 Field Descriptions

Bits Description

0–1
LBCFG

Line Buffer Configuration.This field controls the configuration of the four line buffers in the FBIU controller.
The buffers can be organized as a “pool” of available resources, or with a fixed partition between instruction
and data buffers. In all cases, when a buffer miss occurs, it is allocated to the least-recently-used buffer within
the group and the just-fetched entry then marked as most-recently-used. If the flash access is for the
next-sequential line, the buffer is not marked as most-recently-used until the given address produces a buffer
hit. This field is initialized by hardware reset to the value contained in the address (0x0200 + the shadow base
address) of the flash array. An erased or unprogrammed flash sets this field to 0b11.
00 All four buffers are available for any flash access, i.e., there is no partitioning of the buffers based on the

access type.
01 Reserved
10 The buffers are partitioned into two groups with buffers 0 and 1 allocated for instruction fetches and

buffers 2 and 3 for data accesses.
11 The buffers are partitioned into two groups with buffers 0,1, 2 allocated for instruction fetches and buffer

3 for data accesses.

2–31 Reserved

Flash Memory

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 13-23

13.4.1.1 FBIU Basic Interface Protocol

The flash BIU interfaces to the flash array by driving addresses and read or write enable signals to the flash
memory interface unit. The access time of the flash is determined by the settings of the wait state control
bits in the FLASH_BIUCR, as well as the pipelining of addresses.

The flash BIU also has the capability of extending the normal system bus access timing by inserting
additional primary (initial access) wait states for reads and burst reads. This capability is provided to allow
emulation of other memories which have different access time characteristics.

13.4.1.2 FBIU Access Protections

The flash BIU provides hardware configurable access protections for both read and write cycles from
masters. It allows restriction of read and write requests on a per-master basis. The FBIU also supports
software configurable access protections. Detection of a protection violation results in an error response
from the flash BIU to the system bus.

13.4.1.3 Flash Read Cycles—Buffer Miss

Read data is normally stored in the least-recently updated line read buffer in parallel with the requested
data being forwarded to the system bus. If the flash access was directly the result of a system bus
transaction, the line buffer is marked as most-recently-used as it is being loaded. If the flash access was
the result of a speculative prefetch to the next sequential line, it is first loaded into the least-recently-used
buffer. The status of this buffer is not changed to most-recently-used until a subsequent buffer hit occurs.

13.4.1.4 Flash Read Cycles—Buffer Hit

Single clock read responses to the system bus are possible with the flash BIU when the requested read
access is buffered.

13.4.1.5 Flash Access Pipelining

Accesses to the flash array can be pipelined by driving a subsequent access address and control signals
while waiting for the current access to complete. Pipelined access requests are always run to completion
and are not aborted by the flash BIU. Request pipelining allows for improved performance by reducing the
access latency seen by the system bus master. Access pipelining can be applied to both read and write
cycles by the flash array.

13.4.1.6 Flash Error Response Operation

The flash array can terminate a requested access with an error. This can occur due to an ECC error that is
uncorrectable, an access control violation, or because of improper access sequencing during program/erase
operations. When an error response is received, the flash BIU marks a line read buffer as invalid. An error
response can be signaled on read or write operations.

Flash Memory

MPC5534 Microcontroller Reference Manual, Rev. 2

13-24 Freescale Semiconductor

13.4.1.7 FBIU Line Read Buffers and Prefetch Operation

The flash BIU contains four 128-bit line read buffers which are used to hold data read from the flash array.
Each buffer operates independently and is filled using a single array access. The buffers are used for both
prefetch and normal demand fetches.

Prefetch triggering is controllable on a per-master and access-type basis. Bus masters can be enabled or
disabled from triggering prefetches, and triggering can be further restricted based on whether a read access
is for instruction or data and whether or not it is a burst access. A read access to the flash BIU can trigger
a prefetch to the next sequential line of array data on the cycle following the request. The access address
is incremented to the next-higher 16-byte boundary, and a flash array prefetch is initiated if the data is not
already resident in a line read buffer. Prefetched data is always loaded into the least-recently-used buffer.

Buffers can be in one of six states, listed here in prioritized order:

• Invalid—the buffer contains no valid data.

• Used—the buffer contains valid data which has been provided to satisfy a burst type read.

• Valid—the buffer contains valid data which has been provided to satisfy a single type read.

• Prefetched—the buffer contains valid data which has been prefetched to satisfy a potential future
access.

• Busy—the buffer is currently being used to satisfy a burst read.

• Busy fill—the buffer has been allocated to receive data from the flash array, and the array access
is still in progress.

Selection of a buffer to be loaded on a miss is based on the following replacement algorithm:

1. First, the buffers are examined to determine if there are any invalid buffers. If there are multiple
invalid buffers, the one to be used is selected using a reverse numeric priority, where buffer 0 is
selected first, then buffer 1, etc.

2. If there are no invalid buffers, the least-recently-used buffer is selected for replacement.

Once the candidate line buffer has been selected, the flash array is accessed and read data loaded into the
buffer. If the buffer load was in response to a miss, the just-loaded buffer is immediately marked as
most-recently-used. If the buffer load was in response to a speculative fetch to the next-sequential line
address after a buffer hit, the recently-used status is not changed. Rather, it is marked as most-recently-used
only after a subsequent buffer hit. This policy maximizes performance based on reference patterns of flash
accesses and allows for prefetched data to remain valid when non-prefetch enabled bus masters are granted
flash access.

Several algorithms are available for prefetch control which trade off performance for power. They are
described in Section 13.3.2.8, “Flash Bus Interface Unit Control Register FLASH_BIUCR.” More
aggressive prefetching increases power due to the number of wasted (discarded) prefetches, but can
increase performance by lowering average read latency.

13.4.1.8 Prefetch Triggering

Prefetch triggering can be enabled for instruction and data reads, but never by write cycles. Prefetch
triggering can be controlled for individual bus masters.

Flash Memory

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 13-25

13.4.1.9 FBIU Buffer Invalidation

The line read buffers can be invalidated under hardware and software control. Buffers are automatically
invalidated whenever the buffers are turned on or off, or at the beginning of a program or erase operation.

NOTE
Disable prefetching before invalidating the buffers. This includes starting a
program or erase operation, or turning on and off the buffers.

13.4.1.10 Flash Wait-state Emulation

Emulation of other memory array timings are supported by the flash BIU. This functionality can be useful
to maintain the access timing for blocks of memory which were used to overlay flash blocks for the
purpose of system calibration or tuning during code development.

The flash BIU inserts additional wait states according to the upper address lines ADDR[28:24]. When
these address lines are non-zero, additional cycles are added to system bus transfers. Normal system bus
termination is extended. In addition, no line read buffer prefetches are initiated, and buffer hits are ignored.

13.4.2 Flash Memory Array: User Mode

In user (normal) operating mode the flash module can be read, written (register writes and interlock
writes), programmed, or erased. The following subsections define all actions that can be performed in
normal operating mode. The registers mentioned in these sections are detailed in Section 13.3.2, “Register
Descriptions.”

13.4.2.1 Flash Read and Write

The default state of the flash module is read. The main and shadow address space can be read only in the
read state. The module configuration register (FLASH_MCR) is always available for read. The flash
module enters the read state on reset. The flash module is in the read state under four sets of conditions:

• The read state is active when FLASH_MCR[STOP] = 0 (user mode read).

• The read state is active when FLASH_MCR[PGM] = 1 and/or FLASH_MCR[ERS] = 1 and high
voltage operation is ongoing (read while write).

NOTE
Reads done to the partitions being operated on (either erased or
programmed) result in errors and the FLASH_MCR[RWE] bit is set.

• The read state is active when FLASH_MCR[PGM] = 1 and FLASH_MCR[PSUS] = 1 in the MCR.
(Program suspend).

• The read state is active when FLASH_MCR[ERS] = 1 and FLASH_MCR[ESUS] = 1 and
FLASH_MCR[PGM] = 0 in the MCR. (Erase suspend).

Flash Memory

MPC5534 Microcontroller Reference Manual, Rev. 2

13-26 Freescale Semiconductor

NOTE
Flash core reads are done through the BIU. In many cases the BIU does page
buffering to allow sequential reads to be done with higher performance. This
can create a data coherency issue that must be handled with software. Data
coherency can be an issue after a program or erase operation, as well as
shadow block operations.

In flash normal operating mode, registers can be written and the flash array can be written to do interlock
writes. Reads attempted to invalid locations result in indeterminate data. Invalid locations occur when
addressing is done to blocks that do not exist in non 2 n array sizes. Interlock writes attempted to invalid
locations (due to blocks that do not exist in non 2 n array sizes), result in an interlock occurring, but
attempts to program or erase these blocks do not occur since they are forced to be locked.

See the following sections for more information:

Section 13.3.2.2, “Low/Mid Address Space Block Locking Register FLASH_LMLR”
Section 13.3.2.3, “High Address Space Block Locking Register (FLASH_HLR)”
Section 13.3.2.4, “Secondary Low/Mid Address Space Block Locking Register FLASH_SLMLR”

13.4.2.2Read While Write (RWW)

The flash core is divided into partitions. Partitions are always comprised of two or more blocks. Partitions
are used to determine read while write (RWW) groupings. While a write (program or erase) is being done
within a given partition, a read can be simultaneously executed to any other partition. Partitions are listed
in Table 13-4. Each partition in high address space comprises of two 128-KB blocks. The shadow block
has unique RWW restrictions described in Section 13.4.2.5, “Flash Shadow Block.”

The flash core is also divided into blocks to implement independent erase or program protection. The
shadow block exists outside the normal address space and is programmed, erased and read independently
of the other blocks. The shadow block is included to support systems that require NVM for security or
system initialization information.

A software mechanism is provided to independently lock or unlock each block in high-, mid-, and
low-address space against program and erase.

13.4.2.3 Flash Programming

Programming changes the value stored in an array bit from logic 1 to logic 0 only. Programming cannot
change a stored logic 0 to a logic 1. Addresses in locked/disabled blocks cannot be programmed. You can
program the values in any or all of four words within a page in a single program sequence. Word addresses
are selected using bits 3:2 of the page-bound word.

Whenever a program operation occurs, ECC bits are programmed. ECC is handled on a 64-bit boundary.
Thus, if only 1 word in any given 64-bit ECC segment is programmed, do not program the adjoining word
(in that segment) because the ECC calculation has already completed for that 64-bit segment. Attempts to
program the adjoining word results in an operation failure. All programming operations must be from 64
bits to 128 bits, and be 64-bit aligned. The programming operation must completely fill the selected ECC
segments within the page.

Flash Memory

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 13-27

The program operation consists of the following sequence of events:

1. Change the value in the FLASH_MCR[PGM] bit from a 0 to a 1.

NOTE
Ensure the block that contains the address to be programmed is unlocked.

2. Write the first address to be programmed in the flash module with the program data. This write is
referred to as a program data interlock write. An interlock write can either be an aligned word or
doubleword.

3. To program more than one word or doubleword, write the data to be programmed into each
additional address in the page, which is called a program data write. All unwritten data words
default to 0xFFFF_FFFF.

4. Write a logic 1 to the FLASH_MCR[EHV] bit to start the internal program sequence or skip to step
9 to terminate.

5. Wait until the FLASH_MCR[DONE] bit goes high.

6. Confirm FLASH_MCR[PEG] = 1.

7. Write a logic 0 to the FLASH_MCR[EHV] bit.

8. If more addresses are to be programmed, return to step 2.

9. Write a logic 0 to the FLASH_MCR[PGM] bit to terminate the program sequence.

The program sequence is presented graphically in Figure 13-15. The program suspend operation detailed
in Figure 13-15 is discussed in Section 13.4.2.3.2, “Flash Program Suspend/Resume.”

The first write after a program is initiated determines the page address to be programmed. The program
can be initiated with the 0 to 1 transition of the FLASH_MCR[PGM] bit or by clearing the
FLASH_MCR[EHV] bit at the end of a previous program. This first write is referred to as an interlock
write. If the program is not an erase-suspended program, the interlock write determines if the shadow or
normal array space is programmed and causes FLASH_MCR[PEAS] to be set/cleared.

In the case of an erase-suspended program, the value in FLASH_MCR[PEAS], is retained from the erase.

An interlock write must be performed before setting FLASH_MCR[EHV]. You can terminate a program
sequence by clearing FLASH_MCR[PGM] prior to setting FLASH_MCR[EHV].

If multiple writes are done to the same location the data for the last write is used in programming.

While FLASH_MCR[DONE] is low, FLASH_MCR[EHV] is high and FLASH_MCR[PSUS] is low you
can clear FLASH_MCR[EHV], resulting in a program abort. A program abort forces the module to step 8
of the program sequence. An aborted program results in FLASH_MCR[PEG] being set low, indicating a
failed operation. The data space being operated on before the abort contains indeterminate data. You
cannot abort a program sequence while in program suspend.

WARNING
Aborting a program operation leaves the flash core addresses being
programmed in an indeterminate data state. This can be recovered by
executing an erase on the affected blocks.

Flash Memory

MPC5534 Microcontroller Reference Manual, Rev. 2

13-28 Freescale Semiconductor

Figure 13-15. Program Sequence

Erase SuspendUser Mode Read State

Write MCR

PGM = 1

Program Write

Step 1

Step 2

Step 3

Write MCR

EHV = 1

High Voltage Active

Access MCR

DONE

Step 4

WRITE
PSUS = 1

Read MCR
DONE = 1

Program Suspend

PGM = 0 User Mode Read State

PEG = 0

Read MCR

DONE = 1

DONE = 0
Write MCR

PSUS = 0
EHV = 1

Abort
WRITE

EHV = 0

Step 5

Step 6

PEG
Success
PEG = 1

Write MCR

Failure
PEG = 0

Step 7

EHV = 0

PGM
More Words

Step 8

?

No

Yes

Write MCR

PGM = 0

User Mode Read State

Step 9

Go to Step 2
Note: PEG remains valid under this
condition until EHV is set high or
PGM is cleared.

Note: PSUS cannot be cleared while
EHV = 0. PSUS and EHV cannot
both be changed in a single
write operation.

PEG Valid Period

Last Write
?

Yes

No

ESUS
?

0 1

Erase Suspend

or Erase Suspend

?

Value
?

Flash Memory

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 13-29

13.4.2.3.1 Software Locking

A software mechanism is provided to independently lock/unlock each high, mid, and low address space
against program and erase.

Software Locking is done through the FLASH_LMLR (low/mid address space block locking register),
FLASH_SLMLR (secondary low/mid address space block locking register), or FLASH_HLR (high
address space block locking register). These can be written through register writes, and can be read through
register reads.

When the program/erase operations are enabled through hardware, software locks are enforced through
doing register writes.

13.4.2.3.2 Flash Program Suspend/Resume

The program sequence can be suspended to allow read access to the flash core. It is not possible to erase
or program during a program suspend. Do not attempt interlock writes during program suspend.

A program suspend can be initiated by changing the value of the FLASH_MCR[PSUS] bit from a 0 to a
1. FLASH_MCR[PSUS] can be set high at any time when FLASH_MCR[PGM] and
FLASH_MCR[EHV] are high. A 0 to 1 transition of FLASH_MCR[PSUS] causes the flash module to start
the sequence to enter program suspend, which is a read state. The module is not suspended until
FLASH_MCR[DONE] = 1. At this time, flash core reads can be attempted. After it is suspended, the flash
core can only be read. Reads to the blocks being programmed/erased return indeterminate data.

The program sequence is resumed by writing a logic 0 to FLASH_MCR[PSUS]. FLASH_MCR[EHV]
must be set to a 1 before clearing FLASH_MCR[PSUS] to resume operation. When the operation resumes,
the flash module continues the program sequence from one of a set of predefined points. This can extend
the time required for the program operation.

13.4.2.4 Flash Erase

Erase changes the value stored in all bits of the selected blocks to logic 1. Locked or disabled blocks cannot
be erased. If multiple blocks are selected for erase during an erase sequence, the blocks are erased
sequentially starting with the lowest numbered block and terminating with the highest. Aborting an erase
operation leaves the flash core blocks being erased in an indeterminate data state. This can be recovered
by executing an erase on the affected blocks.

The erase sequence consists of the following sequence of events:

1. Change the value in the FLASH_MCR[ERS] bit from 0 to a 1.

2. Select the block, or blocks to be erased by writing ones to the appropriate registers in
FLASH_LMSR or FLASH_HSR. If the shadow block is to be erased, this step can be skipped, and
FLASH_LMSR and FLASH_HSR are ignored. For shadow block erase, see section
Section 13.4.2.5, “Flash Shadow Block” for more information.

NOTE
Lock and Select are independent. If a block is selected and locked, no erase
occurs. Write to any address in flash. This is referred to as an erase interlock
write.

Flash Memory

MPC5534 Microcontroller Reference Manual, Rev. 2

13-30 Freescale Semiconductor

3. Write a logic 1 to the FLASH_MCR[EHV] bit to start an internal erase sequence or skip to step 8
to terminate.

4. Wait until the FLASH_MCR[DONE] bit goes high.

5. Confirm FLASH_MCR[PEG] = 1.

6. Write a logic 0 to the FLASH_MCR[EHV] bit.

7. If more blocks are to be erased, return to step 2.

8. Write a logic 0 to the FLASH_MCR[ERS] bit to terminate the erase.

The erase sequence is presented graphically in Figure 13-16. The erase suspend operation detailed in
Figure 13-16 is discussed in section Section 13.4.2.4.1, “Flash Erase Suspend/Resume.”

After setting FLASH_MCR[ERS], one write, referred to as an interlock write, must be performed before
FLASH_MCR[EHV] can be set to a 1. Data words written during erase sequence interlock writes are
ignored. You can terminate the erase sequence by clearing FLASH_MCR[ERS] before setting
FLASH_MCR[EHV].

An erase operation can be aborted by clearing FLASH_MCR[EHV] assuming FLASH_MCR[DONE] is
low, FLASH_MCR[EHV] is high and FLASH_MCR[ESUS] is low. An erase abort forces the module to
step 7 of the erase sequence. An aborted erase results in FLASH_MCR[PEG] being set low, indicating a
failed operation. The blocks being operated on before the abort contain indeterminate data. You cannot
abort an erase sequence while in erase suspend.

WARNING
Aborting an erase operation leaves the flash core blocks being erased in an
indeterminate data state. This can be recovered by executing an erase on the
affected blocks.

13.4.2.4.1 Flash Erase Suspend/Resume

The erase sequence can be suspended to allow read access to the flash core. The erase sequence can also
be suspended to program (erase-suspended program) the flash core. A program started during erase
suspend can in turn be suspended. Only one erase suspend and one program suspend are allowed at a time
during an operation. It is not possible to erase during an erase suspend, or program during a program
suspend. During suspend, all reads to flash core locations targeted for program and blocks targeted for
erase return indeterminate data. Programming locations in blocks targeted for erase during
erase-suspended program can result in corrupted data.

An erase suspend operation is initiated by setting the FLASH_MCR[ESUS] bit. FLASH_MCR[ESUS]
can be set to a 1 at any time when FLASH_MCR[ERS] and FLASH_MCR[EHV] are high and
FLASH_MCR[PGM] is low. A 0 to 1 transition of FLASH_MCR[ESUS] causes the flash module to start
the sequence which places it in erase suspend. You must wait until FLASH_MCR[DONE] = 1 before the
module is suspended and further actions are attempted. After it is suspended, the array can be read or a
program sequence can be initiated (erase-suspended program). Before initiating a program sequence you
must first clear FLASH_MCR[EHV]. If a program sequence is initiated the value of the
FLASH_MCR[PEAS] is not reset. These values are fixed at the time of the first interlock of the erase.
Flash core reads while FLASH_MCR[ESUS] = 1 from the blocks being erased return indeterminate data.

Flash Memory

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 13-31

The erase operation is resumed by clearing the FLASH_MCR[ESUS] bit. The flash continues the erase
sequence from one of a set of predefined points. This can extend the time required for the erase operation.

WARNING
In an erase-suspended program, programming flash locations in blocks
which were being operated on in the erase can corrupt flash core data.

Figure 13-16. Erase Sequence

User Mode Read State

Write MCR

ERS = 1

Select Blocks

Erase Interlock Write

Step 1

Step 2

Step 3

Write MCR

EHV = 1

High Voltage Active

Access MCR

DONE
?

Step 4

WRITE
ESUS = 1

Read MCR
DONE = 1

Erase Suspend

ERS = 0
User Mode Read State

PEG = 0

Read MCR

DONE = 1

DONE = 0
Write MCR

ESUS = 0
EHV = 1

Abort
WRITE

EHV = 0

Step 5

Step 6

PEG
?

Success
PEG = 1

Write MCR

Failure
PEG = 0

Step 7

EHV = 0

Erase
More Blocks

Step 8

?

No

Yes

Write MCR

ERS = 0

User Mode Read State

Step 9

EHV = 0

Write MCR

PGM = 1

Program, Step 2

Go to Step 2
Note: PEG remains valid under this
condition until EHV is set high or
ERS is cleared.

Note: ESUS cannot be cleared while
EHV = 0. ESUS and EHV cannot
both be changed in a single
write operation.

PEG Valid Period

Flash Memory

MPC5534 Microcontroller Reference Manual, Rev. 2

13-32 Freescale Semiconductor

13.4.2.5 Flash Shadow Block

The flash shadow block is a memory-mapped block in the flash memory map. Program and erase of the
shadow block are enabled only when FLASH_MCR[PEAS] = 1. After you has begun an erase operation
on the shadow block, the operation cannot be suspended to program the main address space and vice-versa.
You must terminate the shadow erase operation to program or erase the main address space.

NOTE
If an erase of user space is requested, and a suspend is done with attempts
to erase suspend program shadow space, this attempted program is directed
to user space as dictated by the state of FLASH_MCR[PEAS]. Likewise an
attempted erase suspended program of user space, while the shadow space
is being erased, is directed to shadow space as dictated by the state of
FLASH_MCR[PEAS].

The shadow block cannot utilize the RWW feature. After an operation is started in the shadow block, a
read cannot be done to the shadow block, or any other block. Likewise, after an operation is started in a
block in low/mid/high address space, a read cannot be done in the shadow block.

The shadow block contains information on how the lock registers are reset. The first and second words can
be used for reset configuration words. All other words can be used for user defined functions or other
configuration words. The shadow block also contains information on how FLASH_BIUCR2 is reset.

The shadow block can be locked/unlocked against program or erase by using the FLASH_LMLR or
FLASH_SLMLR discussed in Section 13.3.2, “Register Descriptions.”

Programming of the shadow block has similar restrictions to programming the array in terms of how ECC
is calculated. See Section 13.4.2.3, “Flash Programming” for more information. Only one program is
allowed per 64 bit ECC segment between erases. Erase of the shadow block is done similarly as an array
erase. See section Section 13.4.2.4, “Flash Erase” for more information.

13.4.2.6 Censorship

Censorship logic disables access to internal flash based on the censorship control word value and the
BOOTCFG[0:1] bits in the SIU_RSR. This prevents modification of the FLASH_BIUAPR bitfields
associated with all masters except the core based on the censorship control word value, the
BOOTCFG[0:1] bits in the SIU_RSR, and the EXTM bit in the EBI_MCR. Also, censorship logic sets the
boot default value to external-with-external-master access disabled based on the value of the censorship
control word and a TCU input signal.

208 Package: BOOTCFG[0] is not available due to pin limitations and internally asserted
(driven to 0). The value of the censorship control word defaults to internal flash on the
208 package.

Flash Memory

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 13-33

13.4.2.6.1 Censorship Control Word

The censorship control word is a 32-bit value located at the base address of the shadow block plus 0x1E0.
The flash module latches the value of the control word prior to the negation of system reset. Censorship
logic uses the value latched in the flash module to disable access to internal flash, disable the NDI, prevent
modification of the FLASH_BIUAPR bitfields, and/or set the boot default value.

13.4.2.6.2 Flash Disable

Censorship logic disables read and write access to internal flash according to the logic presented in
Table 13-18.

Table 13-18 shows the encoding of the BOOTCFG signals in conjunction with the value stored in the
Censorship word in the shadow block of internal flash memory. The table also shows: the name of the boot
mode; whether the internal flash memory is enabled or disabled; whether the Nexus port is enabled or
disabled; whether the password downloaded in serial boot mode is compared with a fixed ‘public’
password or compared to a user programmable flash password.

The FBIU returns a bus error if an access is attempted while flash access is disabled. Flash access is any
read, write or execute access.

Table 13-18. Flash Access Disable Logic

BOOTCFG1

[0:1]

1 BOOTCFG[0:1] bits are located in the SIU_RSR.
BOOTCFG[0] is not available on the 208 package and is internally asserted (driven to 0).

Censorship
Control

0x00FF_FDE0
(Upper Half)

Serial Boot
Control

0x00FF_FDE2
(Lower Half)

Boot Mode Name
Internal
Flash
State

Nexus
State2

2 The Nexus port controller is held in reset when in censored mode.

Serial
Password

00 !0x55AA Don't care Internal – Censored Enabled Disabled Flash

0x55AA Internal – Public Enabled Enabled Public

01 Don't care 0x55AA Serial – Flash Password Enabled Disabled Flash

!0x55AA Serial – Public Password Disabled Enabled Public

10 !0x55AA Don't care External – No Arbitration – Censored Disabled Enabled Public

0x55AA External – No Arbitration -– Public Enabled Enabled Public

11 !0x55AA Don't care External – External Arbitration – Censored Disabled Enabled Public

0x55AA External – External Arbitration – Public Enabled Enabled Public

’!’ = ’NOT’ (any value other than the value specified)

Flash Memory

MPC5534 Microcontroller Reference Manual, Rev. 2

13-34 Freescale Semiconductor

13.4.2.6.3 FLASH_BIUAPR Modification

Censorship logic prevents modification of the access protection register (FLASH_BIUAPR) bit fields
associated with all masters except the core according to the logic presented in Table 13-19.

13.4.2.6.4 External Boot Default

The SIU latches the boot default value in the SIU_RSR BOOTCFG[0:1] bits if and only if RSTCFG is
negated. Censorship logic sets the boot default value before the SIU latches the value to
external-with-external-master access disabled (EXTM=0) if the lower half of the censorship control word
equals 0xFFFF or 0x0000. Otherwise, censorship logic sets the boot default value to internal flash.

208 Package: BOOTCFG[0] and RSTCFG are not available due to pin limitations. This signal is
internally asserted (driven to 0) therefore, the device defaults to internal flash on the 208
package.

Table 13-19. PFBAPR Modification Logic

BOOTCFG1

1 BOOTCFG[0:1] bits are located in the SIU_RSR.

Censorship Control Word
EXTM2

2 EXTM bit is located in the EBI_MCR.

PFBAPR Bitfields
Writable

[0] [1] Upper Half Lower Half

0 0 0x55AA 0xXXXX 0 Yes

0 0 !0x55AA 0xXXXX 0 Yes

1 0 0x55AA 0xXXXX 0 Yes

1 0 !0x55AA 0xXXXX 0 Yes

1 1 0x55AA 0xXXXX 0 Yes

1 1 !0x55AA 0xXXXX 0 Yes

0 1 0xXXXX 0x55AA 0 Yes

0 1 0xXXXX !0x55AA 0 Yes

0 0 0x55AA 0xXXXX 1 Yes

0 0 !0x55AA 0xXXXX 1 No

1 0 0x55AA 0xXXXX 1 Yes

1 0 !0x55AA 0xXXXX 1 No

1 1 0x55AA 0xXXXX 1 Yes

1 1 !0x55AA 0xXXXX 1 No

0 1 0xXXXX 0x55AA 1 No

0 1 0xXXXX !0x55AA 1 No

Flash Memory

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 13-35

13.4.3 Flash Memory Array: Stop Mode

Stop mode is entered by setting the FLASH_MCR[STOP] bit. The FLASH_MCR[STOP] bit cannot be
written when FLASH_MCR[PGM] = 1 or FLASH_MCR[ERS] = 1. In stop mode all DC current sources
in the flash module are disabled. Stop mode is exited by clearing the FLASH_MCR[STOP] bit.

Accessing the flash memory array when STOP is asserted results in an error response from the flash BIU
to the system bus. Memory array accesses must not be attempted until the flash transitions out of stop
mode.

13.4.4 Flash Memory Array: Reset

A reset is the highest priority operation for the flash and terminates all other operations.

The flash uses reset to initialize register and status bits to their default reset values. If the flash is executing
a program or erase operation and a reset is issued, the operation is aborted and the flash disables the high
voltage logic without damage to the high voltage circuits. Reset aborts all operations and forces the flash
into normal operating mode ready to receive accesses. FLASH_MCR[DONE] is set to 1 at the exit of reset.

After reset is negated, register accesses can be performed, even though registers that require updating from
shadow information, or other inputs, cannot read updated values until flash exits reset.
FLASH_MCR[DONE] can be polled to determine if reset has been exited.

Flash Memory

MPC5534 Microcontroller Reference Manual, Rev. 2

13-36 Freescale Semiconductor

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 14-1

Chapter 14
Internal Static RAM (SRAM)

14.1 Introduction
The SRAM provides 64 KB of general-purpose system SRAM. The first 32 KB of SRAM is powered by
a separate power supply pin for standby operation. Figure 14-1 shows the internal SRAM block diagram.

Figure 14-1. Internal SRAM Block Diagram

The SRAM controller has these features:

• Read/write accesses can map to SRAM from any master

• 32 KB with a separate power source for standby operation

• Byte, halfword, word, and doubleword addressable

• Single-bit correction and double-bit error detection

14.2 SRAM Operating Modes
Table 14-1 lists and describes the SRAM operating modes.

14.3 External Signal Description
The external signal for SRAM is the VSTBY RAM power supply. If the standby feature of the SRAM is
not used, tie the VSTBY pin to VSS.

Table 14-1. SRAM Operating Modes

Mode Description

Normal (functional) Allows reads and writes of SRAM.

Standby Preserves the 32 KB of standby memory when the VDD (1.5 V) power drops below the level of
VSTBY (0.8–1.2 V). Updates to standby SRAM are inhibited during system reset or during standby
mode.

SRAM

VSTBY

32 KB
Standby SRAM

Internal Static RAM (SRAM)

MPC5534 Microcontroller Reference Manual, Rev. 2

14-2 Freescale Semiconductor

14.4 Register Memory Map
The SRAM occupies 64 KB of memory starting at the base address as shown in Table 14-2.

The internal SRAM has no registers. Registers for the SRAM ECC are located in the ECSM. See
Chapter 8, “Error Correction Status Module (ECSM),” for more information.

14.5 Functional Description
ECC checks are performed during the read portion of an SRAM ECC read/write (R/W) operation, and
ECC calculations are performed during the write portion of a read/write (R/W) operation. Because the
ECC bits can contain random data after the device is powered on, you must initialize the SRAM by
executing 32-bit write instructions to the entire SRAM. The platform RAM for the e200z3 is segmented
on a 32-bit boundary, instead of the 64-bit organization for MPC5500 family members that are based on
the e200z6. For software compatibility with other members of the MPC5500 family, use 64-bit writes to
initialize the ECC bits of two 32-bit words simultaneously. For more information, see Section 14.7,
“Initialization and Application Information.”

14.6 SRAM ECC Mechanism
The SRAM ECC detects the following conditions and produces the following results:

• Detects and corrects all 1-bit errors

• Detects and flags all 2-bit errors as non-correctable errors

• Detects 39-bit reads (32-bit data bus + 7-bit ECC) that return all zeros or all ones, asserts an error
indicator on the bus cycle, and sets the error flag

SRAM does not detect all errors greater than two bits. Internal SRAM writes are done on byte boundaries:

• 1 byte (0:7 bits)

• 2 bytes (0:15 bits)

• 4 bytes or 1 word (0:31 bits)

• 8 bytes or a doubleword (0:63 bits)

If the entire 32 data bits are written to SRAM, no read operation is performed and the ECC is calculated
across the 32-bit data bus. The 7-bit ECC is appended to the data segment and written to SRAM. If the
write operation is less than the entire 32-bit data width (1- or 2-byte segment), the following occurs:

1. The ECC mechanism checks the entire 32-bit data bus for errors, detecting and either correcting or
flagging errors.

2. The write data bytes (1- or 2-byte segment) are merged with the corrected 64 bits on the data bus.

3. The ECC is then calculated on the resulting 64 bits formed in the previous step.

Table 14-2. SRAM Memory Map

Address Register Name Register Description Size

Base (0x4000_0000) — SRAM powered by VSTBY 32 KB

Base + 0x8000 — 32-KB RAM 32 KB

Internal Static RAM (SRAM)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 14-3

4. The 7-bit ECC result is appended to the 32 bits from the data bus, and the 39-bit value is then
written to SRAM.

14.6.1 Access Timing

The system bus is a two-stage pipelined bus, which makes the timing of any access dependent on the access
during the previous clock. Table 14-3 lists the various combinations of read and write operations to SRAM
and the number of wait states used for the each operation. The table columns contain the following
information:

Current operation Lists the type of SRAM operation executing currently

Previous operation Lists the valid types of SRAM operations that can precede the current SRAM
operation (valid operation during the preceding clock)

Wait states Lists the number of wait states (bus clocks) the operation requires which depends
on the combination of the current and previous operation

14.6.2 Reset Effects on SRAM Accesses

If a reset event asserts during a read or write operation to SRAM, the completion of that access depends
on the cycle at which the reset occurs. Data read from or written to SRAM before the reset event occurred
is retained, and no other address locations are accessed or changed.

14.7 Initialization and Application Information
To use the SRAM, the ECC must check all bits that require initialization after power on. Use a 64-bit write
to each SRAM location to initialize the SRAM array as part of the application initialization code. All
writes must specify an even number of registers performed on 64-bit word-aligned boundaries. If the write

Table 14-3. Number of Wait States Required for RAM Operation

Current Operation Previous Operation Number of Wait States

Read

Idle 0

Read 0

32 or 64-bit write 0

8 or 16-bit write 1

32 or 64-bit write

Idle 0

Read 0

32 or 64-bit write 0

8 or 16-bit write 1

8 or 16-bit write

Idle 0

Read 0

32 or 64-bit write 0

8 or 16-bit write 1

Internal Static RAM (SRAM)

MPC5534 Microcontroller Reference Manual, Rev. 2

14-4 Freescale Semiconductor

is not the entire 64-bits (8-, 16-, or 32-bits), a read / modify / write operation is generated that checks the
ECC value upon the read. See Section 14.6, “SRAM ECC Mechanism.”

NOTE
You must initialize SRAM, even if the application does not use ECC
reporting.

14.7.1 Example Code

Because the ECC uses 64-bit based instructions, use 64-bit writes for this device, even though you must
initialize the SRAM with 32-bit writes.

To initialize SRAM correctly, use a store multiple word (stmw) instruction to implement 64-bit writes to
all SRAM locations. The stmw instruction concatenates two 32-bit registers to implement a single 64-bit
write. To ensure the writes are 64-bits, specify an even number of registers and write on 64-bit
word-aligned boundaries.

The following example code illustrates the use of the stmw instruction to initialize the SRAM ECC bits.
init_RAM:
lis r11,0x4000 # base address of the SRAM, 64-bit word aligned
ori r11,r11,0 # not needed for this address but could be for others
li r12,512 # loop counter to get all of SRAM;

64k/4 bytes/32 GPRs = 512
mtctr r12
init_ram_loop:
stmw r0,0(r11) # write all 32 GPRs to SRAM
addi r11,r11,128 # inc the ram ptr; 32 GPRs * 4 bytes = 128
bdnz init_ram_loop # loop for 64k of SRAM
blr # done

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 15-1

Chapter 15
Boot Assist Module (BAM)

15.1 Introduction
This chapter describes the boot assist module (BAM).

15.1.1 Overview

The BAM contains the MCU boot program code. The BAM control block is connected to peripheral
bridge B and occupies the last 16 KB of the MCU memory space. The BAM program supports the
following booting modes:

• Internal flash

• External memory (324 package only; not available on the 208 package)

• Serial boot using an eSCI interface

• Serial boot using a FlexCAN interface

The BAM program is executed by the e200z3 core just after the MCU reset. Depending on the boot mode,
the program initializes the minimum MCU resources to start application code execution.

Figure 15-1 is a block diagram of the BAM.

Figure 15-1. BAM Block Diagram

Peripheral
bridge B

BAM
control
block

BAM

Boot Assist Module (BAM)

MPC5534 Microcontroller Reference Manual, Rev. 2

15-2 Freescale Semiconductor

15.1.2 Features

The BAM program provides the following features:

• Initial e200z3 core MMU setup with minimum address translation for all internal MCU resources
and external memory address space

• Locate and detect application boot code

• Automatic switch to serial boot mode if the flash is not initialized or is invalid:

— Internal flash, or

— External flash (324 package only; not available on the 208 package)

• Programmable 64-bit password protection for serial boot mode

• Boot application code from:

— Internal flash module

— External memory without arbitration (324 package only; not available on the 208 package)

• Serial boot can load the application boot code from a FlexCAN or eSCI bus into internal SRAM

• Censorship protection for internal flash module

• Watchdog timer enable option in the e200z3 core

• Configurable memory map for use with the legacy PowerPC Book E code or Freescale VLE code

15.1.3 Modes of Operation

15.1.3.1 Normal Mode

In normal operation, the BAM responds to all read requests within its address space. The BAM program
is executed following the negation of reset.

15.1.3.2 Debug Mode

The BAM program is not executed when the MCU comes out of reset in OnCE debug mode. Use the
development tool to configure and initialize the MCU before accessing the MCU resources.

15.1.3.3 Internal Boot Mode

Use internal boot mode to boot from internal flash memory. Configuration information, initialization, and
boot code are kept in internal flash. If the application requires, the BAM program can complete the boot
process before the application enables the external bus interface.

15.1.3.4 External Boot Modes

Use external boot mode for systems that have application code and configuration information in external
memory connected by the EBI. Do not select external boot mode for devices without an external bus.

Boot Assist Module (BAM)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 15-3

15.1.3.5 Serial Boot Mode

This mode of operation can load a user program into internal SRAM using either the eSCI or FlexCAN
serial interface, then execute the downloaded program. The program can then control the downloading of
data, as well as erasing and programming the internal or external flash memory.

Serial boot mode downloads:

• 64-bit password

• 32-bit start address

• 32-bit download consisting of 1-bit VLE flag (most significant bit)
followed by a 31-bit length field containing the number of bytes to receive (download length)

Set the VLE flag to 1 for devices that support variable length encoding and must run in VLE mode. When
the VLE flag is set, the BAM programs the external bus interface (EBI), RAM, and the flash memory map
unit (MMU) TLB entries 1, 2, and 3 with the VLE attribute.

Clear the VLE bit to 0 for devices that use the PowerPC Book E or Power Architecture instruction set
mode.

15.2 Memory Map
The BAM has 16 KB of memory, from 0xFFFF_C000 through 0xFFFF_FFFF, which is divided into four
4-KB segments, each containing a copy of the BAM program code. The BAM code resides in the 4-KB
memory segment beginning at 0xFFFF_F000. A copy of the BAM code resides in the three preceding
4-KB segments, as shown in Table 15-1. The BAM program executes from the reset vector at address
0xFFFF_FFFC. Table 15-1 shows the addresses for the BAM code in the memory map.

15.3 Functional Description

15.3.1 BAM Program Resources

The BAM program initializes and uses the following MCU resources:

• BOOTCFG field in the reset status register (SIU_RSR) to determine the boot option

— For devices using the 208 package, the BAM determines the value of BOOTCFG[1] only, since
BOOTCFG[0] is not available due to pin limitations and is internally asserted (driven to 0).

• Location and value of the reset configuration halfword (RCHW), which contains the address and
configuration options for the boot code. See Chapter 4, “Reset,” for information about the RCHW.

• DISNEX bit in the SIU_CCR register to determine if the Nexus port is enabled

Table 15-1. BAM Memory Map

Address Description

0xFFFF_C000–0xFFFF_CFFF BAM program mirrored

0xFFFF_D000–0xFFFF_DFFF BAM program mirrored

0xFFFF_E000–0xFFFF_EFFF BAM program mirrored

0xFFFF_F000–0xFFFF_FFFF BAM program

Boot Assist Module (BAM)

MPC5534 Microcontroller Reference Manual, Rev. 2

15-4 Freescale Semiconductor

• MMU allows core access to MCU internal resources and the EBI

• EBI registers and external bus pads, when using external boot modes

• FlexCAN A, eSCI A and their pads, when using serial boot mode

• eDMA during serial boot mode

15.3.2 BAM Program Operation

The MCU core accesses the BAM after RSTOUT negates and before the application program executes.

The BAM program configures the e200z3 core MMU access for all MCU internal resources and external
memory, according to Table 15-2. The memory map configuration remains the same for internal flash boot
mode.

The MMU maps the logical addresses to the same physical addresses for all modules except for the
external bus interface (EBI). The logical EBI addresses are mapped to physical addresses in internal flash
memory. This allows code developed to run from external memory to run from internal flash memory.

The BAM program reads the following data and determines the boot mode for the boot sequence:

• BOOTCFG[0:1] located in the reset status register (SIU_RSR)

• Censorship control field located at 0x00FF_FDE0 in the shadow block of internal flash

• Serial boot control field located at 0x00FF_FDE2 in the shadow block of internal flash

The boot mode determines the following:

• Enables or disables internal flash memory

• Enables or disables the Nexus port

• Compares the password received in serial boot mode to a preset public password or a
programmable password located in internal flash

Table 15-2. MMU Configuration for Internal Flash Boot

TLB
Entry

Region Attributes
Logical Base

Address
Physical Base

Address
Size

0 Peripheral bridge B
and BAM

 • Guarded
 • Big endian
 • Global PID

0xFFF0_0000 0xFFF0_0000 1 MB

1 Internal flash • Not guarded
 • Big endian
 • Global PID

0x0000_0000 0x0000_0000 16 MB

2 EBI • Not guarded
 • Big endian
 • Global PID

0x2000_0000 0x2000_0000 16 MB

3 Internal SRAM • Not guarded
 • Big endian
 • Global PID

0x4000_0000 0x4000_0000 256 KB

Boot Assist Module (BAM)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 15-5

Table 15-3 summarizes the different boot modes.

The 32-bit censorship word, which contains the censorship control and serial boot control fields, is read
and interpreted during the boot process. Its value is used in conjunction with the BOOTCFG[0:1] values
to enable or disable the internal flash memory and the Nexus interface. The censorship word is
programmed at the factory to contain 0x55AA_55AA, which uses a password in internal flash to activate
serial boot mode for an uncensored (public) device.

The censorship word starts at address 0x00FF_FDE0 and contains a 16-bit censorship control field [0:15]
and a 16-bit serial boot control field [16:31]. The factory default settings are shown in Figure 15-2:

Table 15-3. Boot Modes

BOOTCFG
[0:1]

Censorship
Control

0x00FF_FDE0

Serial Boot
Control

0x00FF_FDE2
Boot Mode Name

Internal
Flash
State

Nexus
State

Serial
Password

00
!0x55AA1

1 ‘!’ = ‘NOT,’ as in !0x55AA, means all values except 0x55AA. Do not use 0x0000 or 0xFFFF for the value of the censorship
control or serial boot control words.

Any value
Internal—Censored Enabled Disabled Flash

0x55AA Internal—Public Enabled Enabled Public

01 Any value
0x55AA Serial—Flash password Enabled Disabled Flash

!0x55AA Serial—Public password Disabled Enabled Public

10
!0x55AA

Any value
External—No arbitration—Censored Disabled Enabled Public

0x55AA External—No arbitration—Public Enabled Enabled Public

11 Invalid value

Address: 0x00FF_FDE0 Value: 0x55AA

MSB 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Binary value 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0

Hex value 5 5 A A

Censorship control field–default value configures the device as uncensored.

Address: 0x00FF_FDE2 Value: 0x55AA

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Binary value 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0

Hex value 5 5 A A

Serial boot control field–default value reads a password from internal flash.

Figure 15-2. Censorship Word

Boot Assist Module (BAM)

MPC5534 Microcontroller Reference Manual, Rev. 2

15-6 Freescale Semiconductor

The BAM program reads the DISNEX bit to determine which of the following passwords to compare with
the serial password received in serial boot mode:

• Public password (64-bit fixed value of 0xFEED_FACE_CAFE_BEEF); or

• Flash password (64-bit value in the shadow block of internal flash at address 0x00FF_FDD8).

Serial boot flash password starts at address 0x00FF_FDD8:

15.3.2.1 Boot Mode Features

The BAM program continues to initialize in one of the following boot modes:

• Internal boot mode from flash

• External boot mode from:

— External memory without bus arbitration (324 package only; not available on the 208 package)

• Serial boot mode from one of the following interfaces:

— eSCI interface

— FlexCAN interface

Address: 0x00FF_FDD8 Value: 0xFEED

MSB 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Binary value 1 1 1 1 1 1 1 0 1 1 1 0 1 1 0 1

Hex value F E E D

Address: 0x00FF_FDDA Value: 0xFACE

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Binary value 1 1 1 1 1 0 1 0 1 1 0 0 1 1 1 0

Hex value F A C E

Address: 0x00FF_FDDC Value: 0xCAFE

MSB 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

Binary value 1 1 0 0 1 0 1 0 1 1 1 1 1 1 1 0

Hex value C A F E

Address: 0x00FF_FDDE Value: 0xBEEF

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Binary value 1 0 1 1 1 1 1 0 1 1 1 0 1 1 1 1

Hex value B E E F

Figure 15-3. Serial Boot Flash Password

Boot Assist Module (BAM)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 15-7

15.3.2.2 Internal Boot Mode Flow

When the BAM detects internal flash boot mode, a bus error exception handler is set up to avoid bus errors
and manage corrupt data from internal flash memory. The BAM program then reads up to six locations to
find a valid reset configuration halfword (RCHW). When the RCHW is:

• Valid—BAM sets the e200z3 watchdog timer enable bit RCHW[WTE]

• Invalid —BAM uses the serial boot mode

15.3.2.2.1 Finding the Reset Configuration Halfword

The BAM searches internal flash memory for a valid reset configuration halfword (RCHW). A valid
RCHW is a 16-bit value that contains a fixed 8-bit boot identifier and the reset configuration halfword
(RCHW). The RCHW is the first halfword in one of the six low address flash blocks as shown in
Table 15-4.

Read Section 4.4.3.5.1, “Reset Configuration Half Word (RCHW) Definition” for the definition and
description of the RCHW.

If a valid RCHW value is located, the BAM:

1. Sets the watchdog timer enable bit (RCHW[WTE])

2. Fetches the reset vector from BOOT_BLOCK_ADDRESS + 0x0004

3. Branches to the reset boot vector

The application must have a valid instruction at the reset boot vector address.

If the BAM fails to find a valid RCHW, the validity of the flash memory is unreliable and the device
defaults to serial boot operating mode.

Table 15-4. Low Address Space (LAS)
Block Memory Addresses

Block Address

0 0x0000_0000

1 0x0000_4000

2 0x0001_0000

3 0x0001_C000

4 0x0002_0000

5 0x0003_0000

Boot Assist Module (BAM)

MPC5534 Microcontroller Reference Manual, Rev. 2

15-8 Freescale Semiconductor

BOOT_BLOCK_ADDRESS + 0x0000_0004

If the watchdog timer is enabled for internal boot mode, the watchdog timeout is set to 2.5 × 217 system
clock cycles.

15.3.2.3 External Boot Modes Flow

Use external boot mode to boot application code from an external asynchronous memory device that is
connected to the EBI. External boot mode is controlled by CS[0].

15.3.2.3.1 External Boot MMU Configuration

As shown in Table 15-5, the BAM program sets up two MMU regions differently than in internal flash
boot mode. The internal flash logical addresses are mapped to the physical addresses of the EBI.

This allows code written to run from internal flash memory to execute from external memory.

15.3.2.3.2 Single Bus Master

Use External boot with no arbitration mode for single-master systems where the MCU is the only bus
master, therefore no arbitration of the external bus is necessary. See Section 15.3.2.3.3, “Configure the EBI
for External Boot—Single Master with no Arbitration.”

The boot modes are specified by the BOOTCFG[0:1] value.

208 Package: BOOTCFG[0] is not available, and is internally asserted (driven to 0), therefore the 208
package is limited to boot from internal flash memory or a serial port.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A16 A17 A18 A19 A20 A21 A22 A23 A24 A25 A26 A27 A28 A29 A30 A31

Figure 15-4. Reset Boot Vector

Table 15-5. MMU Configuration for External Boot Mode

TLB
Entry

Region Attributes
Logical Base

Address
Physical Base

Address
Size

1 Internal flash
memory

 • Not guarded
 • Big endian
 • Global PID

0x0000_0000 0x2000_0000 16 MB

2 EBI • Not guarded
 • Big endian
 • Global PID

0x2000_0000 0x2000_0000 16 MB

Boot Assist Module (BAM)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 15-9

15.3.2.3.3 Configure the EBI for External Boot—Single Master with no Arbitration

The BAM program configures:

• Chip select CS[0] as a 16-bit port starting at base address 0x2000_0000 with:

— no burst

— 15 wait states

— 8 MB

• EBI for no external master (clears EXTM bit)

• Enables the EBI for normal operation

• Configures the following EBI signals:

— ADDR[8:31]

— DATA[0:15]

— WE[0]

— OE

— TS

— CS[0]

15.3.2.3.4 Read the Reset Configuration Halfword

The BAM program reads the first location in external memory (i.e. address 0x2000_0000) for a valid reset
configuration halfword (RCHW). If the BAM program finds a valid RCHW, the following occurs:

1. The CS[0] port size and data pins are configured according to the RCHW[PS0] bit

2. The e200z3 core watchdog timeout is enabled or disabled using the RCHW[WTE] bit.
The watchdog timeout interval is 2.5 × 217 system clock periods when using the RCHW.

3. MMU boots using PowerPC Book E code or Freescale VLE code according to the RCHW[VLE]
setting.

The BAM program then reads the reset vector from the address 0x2000_0004 and branches to that reset
vector address, starting application program execution. See Figure 15-4 for more information.

15.3.2.4 Serial Boot Mode Operation

Serial boot operating mode configures:

• FlexCAN A and the eSCI A GPIO signals

• Unused message buffers in FlexCAN A are designated as scratch pad SRAM

• Flash memory map unit (MMU) TLB entries

• Watchdog timer is enabled and set to 2.5 × 227 system clock cycles

Serial boot mode downloads:

• 64-bit password

• 32-bit start address

• 32-bit download consisting of a 1-bit VLE flag followed by a 31-bit length field

Boot Assist Module (BAM)

MPC5534 Microcontroller Reference Manual, Rev. 2

15-10 Freescale Semiconductor

Set the VLE flag to 1 for devices that support variable length encoding and must run in VLE mode. When
the VLE flag is set, the BAM configures these components:

• External bus interface (EBI) signals and port size

• SRAM structure

• VLE attribute is set in flash memory map unit (MMU) TLB entries 1, 2, and 3

Clear the VLE bit to 0 for devices that use the PowerPC Book E or Power Architecture instruction set
mode.

15.3.2.4.1 Serial Boot Mode MMU and EBI Configuration

The BAM program sets up the MMU for all peripheral and memory regions in one of two different modes
and sets up the EBI in one of three different modes; depending on how serial boot mode was entered.

If serial boot mode is entered directly by choosing the mode with the BOOTCFG signals, or was entered
indirectly from internal boot mode because no valid RCHW was found, then the MMU is configured the
same way as for internal boot mode. The EBI is disabled and all bus pins function as GPIO.

If serial boot mode is entered indirectly from external boot/single-master because no valid RCHW was
found, then the MMU and EBI are configured the for an external boot mode with a 16-bit data bus.

See Table 15-3 and Table 15-5 for more information.

15.3.2.4.2 Serial Boot Mode FlexCAN and eSCI Configuration

In serial boot mode, the BAM program configures FlexCAN A and eSCI A to receive messages. The
CNRXA and RXDA signals are configured as inputs to the FlexCAN and eSCI modules. The CNTXA
signal is configured as an output from the FlexCAN module. The TXDA signal of the eSCI A remains
configured as GPIO input. The BAM program writes 0x0000_0000_0000_0000 to the e200z3 core
timebase registers (TB), enables the e200z3 core setting the watchdog timer to use 2.5 × 227

 system clock
cycles before a reset occurs.

See Table 15-6 for examples of time out periods.

In serial boot mode the FlexCAN controller is configured to operate at a baud (bit) rate equal to the system
clock frequency divided by 60 with one message buffer (MB) using the standard 11-bit identifier format
detailed in the CAN 2.0A specification.

See Section 21.4.5.4, “Protocol Timing,” for information on FlexCAN bit rate generation.

Coming out of reset, the default system clock is 1.5 times the crystal frequency. The baud rate with PLL
enabled is equal to the crystal frequency divided by 40.

See Chapter 11, “Frequency Modulated Phase Locked Loop and System Clocks (FMPLL),” for more
information. Table 15-6 shows FlexCAN operation at reset.

Boot Assist Module (BAM)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 15-11

The BAM ignores the following errors:

• Bit 1 errors

• Bit 0 errors

• Acknowledge errors

• Cyclic redundancy code errors

• Form errors

• Stuffing errors

• Transmit error counter errors

• Receive error counter errors

All data received is accepted as valid and is echoed out on the CNTXA signal.

NOTE
The host computer must compare the ‘echoed data’ to the sent data and
restart the process if an error is detected.

See Figure 15-5 for details of FlexCAN bit timing.

Figure 15-5. FlexCAN Bit Timing

Table 15-6. BAM FlexCAN Frequency at Reset (FMPLL Enabled out of Reset)

FMPLL Clock Mode
System Clock Frequency (fsys)

after Reset
Serial Boot Mode Frequency1

(FlexCAN Baud Rate)

1 Serial boot mode frequency is set in software as the system clock frequency divided by 60.

Crystal reference mode or
External reference mode

1.5 x crystal reference frequency
(fref_crystal)

2

2 Crystal reference frequency is set at 8–20 MHz.

Crystal reference frequency ÷ 40

Dual controller mode 2 x EXTCLK EXTCLK ÷ 30

SYNC_SEG Time segment 1 Time segment 2

Sample point

NRZ signal

Transmit point

1
time quanta time quanta time quanta

9 2

1 bit time

1 time quanta = 5 system clock periods = 3.3 crystal clock periods (with PLL enabled)

Boot Assist Module (BAM)

MPC5534 Microcontroller Reference Manual, Rev. 2

15-12 Freescale Semiconductor

The eSCI is configured for one start bit, eight data bits, no parity and one stop bit and to operate at a baud
rate equal to the system clock divided by 1250. See Table 15-7 for examples of baud rates.

The BAM ignores the following eSCI errors:

• Overrun errors

• Noise errors

• Framing errors

• Parity errors

All data received is accepted as valid and is echoed out on the TXD signal. The host computer is
responsible for comparing the echoes with the sent data, and restarting the process if an error is detected.

Upon receiving a valid FlexCAN message with an ID equal to 0x0011 that contains eight data bytes, or a
valid eSCI message, the BAM uses a serial boot submode: FlexCAN serial boot mode, or eSCI serial boot
mode.

In FlexCAN serial boot mode, the eSCI A signal RXDA reverts to GPIO input. All data is downloaded on
the FlexCAN bus and eSCI messages are ignored.

In eSCI serial boot mode, the FlexCAN A signals CNRXA and CNTXA revert to GPIO inputs and the
TXDA signal is configured as an output. All data is downloaded on the eSCI bus and FlexCAN messages
are ignored.

Table 15-7. Serial Boot Mode—Baud Rate and Watchdog Summary

Crystal Frequency
(MHz)

System Clock
Frequency (MHz)

SCI Baud Rate
FlexCAN

Baud Rate
Watchdog Timeout
Period (seconds)

fref_crystal fsys = 1.5 x fref_crystal fsys ÷ 1250 fsys ÷ 60 (2.5 x 227) ÷ fsys

8 12 9600 200 K 28.0

12 18 14400 300 K 18.6

16 24 19200 400 K 14.0

20 30 24000 500 K 11.2

Table 15-8. FlexCAN and eSCI Reset Configuration for FlexCAN and eSCI Boot

Pin Label
Reset

 Function
Initial Serial
Boot Mode

Serial Boot Mode after Receiving a Valid

 FlexCAN Message eSCI Message

CNTXA GPIO CNTXA CNTXA GPIO

CNRXA GPIO CNRXA CNRXA GPIO

TXDA GPIO GPIO GPIO TXDA

RXDA GPIO RXDA GPIO RXDA

Boot Assist Module (BAM)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 15-13

15.3.2.4.3 Download Process for FlexCAN Serial Boot Mode

The download process contains the following steps:

1. Download the 64-bit password.

2. Download the start address, VLE flag, and the number of data bytes to download.

3. Download the data.

4. Execute the boot code from the start address.

Each step of the process must complete before the next step starts.

1. Download the 64-bit password.

The host computer must send a FlexCAN message with ID = 0x011 that contains the 64-bit serial
download password. FlexCAN messages with other IDs or fewer bytes of data are ignored. When
a valid message is received, the BAM transmits a FlexCAN message with ID = 0x001 that
contains the data received. The host must not send a second FlexCAN message until it receives the
echo of the first message. A FlexCAN message sent before the echo is received is ignored.

The received 64-bit password is validated to ensure that none of the four 16-bit halfwords have a
value of 0x0000 or 0xFFFF, which are invalid passwords. A valid password must have at least one
0 and one 1 in each halfword lane.

The BAM program then reads the disable Nexus bit [DISNEX] in the SIU_CCR register to
determine the censorship status of the MCU. If Nexus is disabled, the MCU is censored and the
password is compared to a password stored in the shadow block in internal flash memory.

If Nexus is enabled, the MCU is not censored or booting from external flash and the password is
compared to the constant value = 0xFEED_FACE_CAFE_BEEF.

If the password fails any validity tests, the MCU stops responding to all stimulus. To repeat boot
operation, the MCU needs to be reset by external reset or by watchdog. If the password is valid,
the BAM program refreshes the e200z3 watchdog timer and the next step in the protocol can be
performed.

2. Download the start address, VLE bit, and the download size.

The host computer must send a FlexCAN message with an ID = 0x012 that contains:

— 32-bit start address in internal SRAM indicating where to store the succeeding data in memory;

— 32-bit number containing a 1-bit variable length encoded (VLE) flag followed by a 31-bit
length field that contains the number of data bytes to receive and store in memory before
switching to execute the code just loaded.

Table 15-9. FlexCAN and eSCI Reset Pin Configuration

Pins I/O Weak Pullup State Hysteresis
Driver

Configuration
Slew Rate Input Buffer Enable

CNTXA_TXDA Output Enabled Up — Push/pull Medium N

CNRXA_RXDA Input Enabled Up Y — — —

GPIO Input Enabled Up Y — — —

Boot Assist Module (BAM)

MPC5534 Microcontroller Reference Manual, Rev. 2

15-14 Freescale Semiconductor

The start address is expected on a 32-bit word boundary, therefore the least significant 2 bits of the
address are ignored. FlexCAN messages with other IDs or fewer data bytes are ignored.

Set the VLE bit in the serial download data (most significant bit in the LENGTH word) if the code
to download uses VLE instructions.

When a valid message is received, the BAM transmits a FlexCAN message with an ID = 0x002
that contains the received data. The host computer must not send another FlexCAN message until
it receives the echo from the previous message. A FlexCAN message sent before the echo is
received is ignored.

3. Download the data.

The host computer must send a succession of FlexCAN messages with ID = 0x013 that contains
raw binary data (the data length is variable). Each data byte received is stored in MCU memory,
starting at the address specified in the previous step and incrementing through memory until the
number of data bytes received and stored in memory matches the number specified in the previous
step. FlexCAN messages with ID values other than 0x013 are ignored.

When a valid message is received, the BAM transmits a FlexCAN message with an ID = 0x003
that contains the data received. The host computer must not send another FlexCAN message until
it receives the echo from the previous message. A FlexCAN message sent before the echo is
received is ignored.

NOTE
Internal SRAM is protected by 64-bit error correction (ECC) hardware. All
writes to uninitialized internal SRAM must be 64-bits wide, or an ECC error
occurs. The BAM buffers 8 bytes of downloaded data before executing a
single 64-bit write. Only internal SRAM supports 64-bit writes.
Downloading data to other RAM causes errors.

If the start address of the downloaded data is not at an 8-byte boundary, the
BAM writes 0x00 to the memory locations from the preceding 8-byte
boundary to the start address (maximum 4 bytes). The BAM also writes
0x00 to all memory locations from the last byte of data downloaded to the
following 8-byte boundary (maximum 7 bytes).

4. Execute code.

The BAM waits for the last FlexCAN message transmission to complete. Then the FlexCAN
controller is disabled. CNTXA and CNRXA become GPIO inputs. The BAM branches to the
starting address of the downloaded code, as specified in step 2.

NOTE
The code that downloads and executes must:

• Periodically refresh the e200z3 watchdog timer; or

• Change the timeout period to a value that does not cause resets
during normal operation.

Boot Assist Module (BAM)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 15-15

15.3.2.4.4 eSCI Serial Boot Mode Download Process

The eSCI serial boot mode download process contains the following steps:

1. Download the 64-bit password.

2. Download the start address, VLE flag, and the number of data bytes to download.

3. Download the data.

4. Execute the code from start address.

Each step in the following process must complete before the next step starts. The eSCI operates in half
duplex mode where the host sends a byte of data, then waits for the echo back from the MCU before
proceeding with the next byte. Bytes sent from the host before the previous echo from the MCU is received
are ignored.

1. Download the 64-bit password.

The first 8 bytes of eSCI data the host computer sends must contain the 64-bit serial download
password. For each valid eSCI message received, the BAM transmits the same data on the eSCI A
TXDA signal.

The received 64-bit password is checked for validity. It is checked to ensure that none of the
4 x 16-bit halfwords are illegal passwords (0x0000 or 0xFFFF). A password must have at least one
0 and one 1 in each halfword to qualify as legal.

The BAM program then checks the censorship status of the MCU by checking the DISNEX bit in
the SIU_CCR. If Nexus is disabled, the MCU is considered censored and the password is compared
with a password stored in the shadow block of internal flash memory.

If Nexus is enabled, the MCU is not censored or is booting from external flash and the password
is compared to the constant value of 0xFEED_FACE_CAFE_BEEF.

If the password fails a validity test, the MCU stops responding to all stimulus. To repeat the boot
operation, assert the RESET signal or wait for the watchdog timer to reset the MCU. If the
password is valid, the BAM refreshes the e200z3 watchdog timer and proceeds to step 2.

Table 15-10. FlexCAN Serial Boot Mode Download Process

Step Host Message Sent
MCU Response

Message
Action

1 FlexCAN ID =
0x011 + 64-bit password

FlexCAN ID =
0x001 + 64-bit password

Password checked for validity and compared
against stored password. e200z3 watchdog timer is
refreshed if the password check is successful.

2 FlexCAN ID =
0x012 + 32-bit store address
+ 32-bit number of bytes

FlexCAN ID =
0x002 + 32-bit store address
+ 32-bit number of bytes

The load address and the number of bytes to
download are stored for future use.

3 FlexCAN ID =
0x013 + 8 to 64 bits of raw
binary data

FlexCAN ID =
0x003 + 8 to 64 bits of raw
binary data

Each data byte received is written to MCU memory,
starting at the address specified in the previous
step and incrementing until the number of data
bytes received and stored matches the number of
bytes to download and store (specified in step 2).

4 None None The BAM program returns I/O pins and the
FlexCAN module to their reset state, then branches
to the start address of the stored data (specified in
step 2).

Boot Assist Module (BAM)

MPC5534 Microcontroller Reference Manual, Rev. 2

15-16 Freescale Semiconductor

2. Download the start address, VLE bit, and the download size.

The host computer must send the next eight bytes of eSCI data that contains:

— 32-bit start address in internal SRAM indicating where to store the succeeding data in memory;

— 32-bit number containing a 1-bit variable length encoded (VLE) flag followed by a 31-bit
length field that contains the number of data bytes to receive and store in memory before
switching to execute the code just loaded.

The start address is normally located on a word boundary (4-bytes), therefore the least significant
2 bits of the address are ignored. For each valid eSCI message received, the BAM transmits the
same data on the eSCI A TXDA signal.

Set the VLE bit in the serial download data (most significant bit in the LENGTH word) if the code
to download uses VLE instructions.

3. Download the data.

The host computer must then send a succession of eSCI messages, each containing raw binary data.
Each byte of data received is stored in the MCU’s memory, starting at the address specified in the
previous step and incrementing through memory until the number of data bytes received and stored
in memory matches the number specified in the previous step. For each valid eSCI message
received, the BAM transmits the same data on the TXDA signal.

NOTE
Internal SRAM is protected by 64-bit wide error correction coding hardware
(ECC). All writes to uninitialized internal SRAM must be 64 bits wide, or
an ECC error occurs. The BAM buffers download data until 8-bytes are
received, and then executes a single 64-bit wide write. Only internal SRAM
supports 64-bit writes. Downloading data to RAM other than internal
SRAM causes errors.

If the start address of the downloaded data is not on an 8-byte boundary, the
BAM writes 0x00 beginning at the preceding 8-byte boundary memory
location to the start address (4 byte maximum). The BAM also writes 0x00
to all memory locations from the last data byte downloaded to the following
8-byte boundary (7 byte maximum).

4. Execute the code.

The BAM waits for the last eSCI message transmission to complete and then disables the eSCI.
TXDA and RXDA revert to general-purpose inputs. The BAM branches to the starting address
where the downloaded code is stored (specified in step 2) and executes the code.

NOTE
The code that downloads and executes must periodically refresh the e200z3
watchdog timer or change the timeout period to a value that does not cause
resets during normal operation.

Boot Assist Module (BAM)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 15-17

15.3.3 Interrupts

No interrupts are generated or enabled by the BAM.

Table 15-11. eSCI Serial Boot Mode Download Process

Step Host Sent Message
BAM Response

Message
Action

1 64-bit password
MSB first

64-bit password Password checked for validity and compared against
stored password. e200z3 watchdog timer is
refreshed if the password check is successful

2 32-bit store address +
32-bit number of bytes
MSB first

32-bit store address +
32-bit number of bytes

Load address and size of download are stored for
future use

3 8 bits of raw binary data 8 bits of raw binary data Each byte of data received is stored in MCU
memory, starting at the address specified in the
previous step and incrementing until the number of
data bytes received and stored matches the number
of data bytes specified in the preceding step.

4 None None The BAM returns I/O pins and the eSCI module to
their reset state, except it asserts
ESCI_A_CR2[MDIS] instead of negates. Then the
BAM branches to the starting address of the stored
data specified in step 2.

Boot Assist Module (BAM)

MPC5534 Microcontroller Reference Manual, Rev. 2

15-18 Freescale Semiconductor

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 16-1

Chapter 16
Enhanced Modular Input/Output Subsystem (eMIOS)

16.1 Introduction
This chapter describes the enhanced modular input/output subsystem (eMIOS), which provides
functionality to generate or measure timed events.

16.1.1 Block Diagram

Figure 16-1 shows the block diagram of the eMIOS.

Enhanced Modular Input/Output Subsystem (eMIOS)

MPC5534 Microcontroller Reference Manual, Rev. 2

16-2 Freescale Semiconductor

Figure 16-1. eMIOS Block Diagram

See Note 1

[D][A]

Counter
Buses
(Time

Bases) EMIOS16

EMIOS_Flag_Out16

[C][A]

[B][A]

•
••

•
••

Counter
Buses
(Time

Bases)

Counter
Buses
(Time

Bases)

All
Submodules

Internal
Counter
Clock
Enable

STAC

Internal

Output Disable Input[0:3]

Global Time
Base Enable In

Global Time
Base Enable Out

System
Clock

Enhanced Modular

Unified

STAC Client Submodule

BIU
Slave

Interface

Clock
Prescaler

Output Disable
Control Bus

Note 1: Connection between UC[n-1] and UCn necessary to implement QDEC mode.

Input/Output

•••
•••

•
••

•
••

Subsystem

Channel
23

EMIOS23

EMIOS_Flag_Out23

Unified
Channel

16

Unified
Channel

15

EMIOS15 (See Note 2)

EMIOS_Flag_Out15

Unified
Channel

8

Unified
Channel

7

Unified
Channel

0

EMIOS8

EMIOS_Flag_Out8

EMIOS7

EMIOS_Flag_Out7

EMIOS0

EMIOS_Flag_Out0

EMIOS_Flag_Out8
EMIOS_Flag_Out9
EMIOS_Flag_Out10
EMIOS_Flag_Out11
EMIOS_Flag_Out[20:23]

ETPUA_ODI3
ETPUA_ODI2
ETPUA_ODI1
ETPUA_ODI0

ETPUB_ODI[0:3]

Bus

Note 2: On channels 12–15, there is no input from EMIOS[12:15], but only from the DSPI module.

Enhanced Modular Input/Output Subsystem (eMIOS)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 16-3

16.1.2 Overview

The eMIOS builds on the MIOS concept by using a unified channel (UC) module that provides a superset
of the functionality of all the individual MIOS channels, while providing a consistent user interface. This
allows for more flexibility because each unified channel can be programmed for different functions.

16.1.3 Features
• 24 unified channels

• Unified channels features

— 24-bit registers for captured/match values

— 24-bit internal counter

— Internal prescaler

— Dedicated output pin for buffer direction control

— Selectable time base

— Can generate its own time base

• Four 24-bit wide counter buses

— Counter bus A can be driven by unified channel 23 or by the STAC bus.

— Counter bus B, C, and D are driven by unified channels 0, 8, and 16, respectively.

— Counter bus A can be shared among all unified channels (UC). UCs 0–7, 8–15, and 16–23 can
share counter buses B, C, and D, respectively.

• One global prescaler

• Shared time bases through the counter buses

• Synchronization among internal and external time bases

• Shadow FLAG register

• State of module can be frozen for debug purposes

• DMA request capability for some channels

• Motor control capability

16.1.4 Modes of Operation

16.1.4.1 eMIOS Modes

The eMIOS operates in one of the following modes:

• User mode—The normal operating mode. When EMIOS_MCR[FRZ] = 0, and
EMIOS_CCR[FREN] = 0, the eMIOS is in user mode.

• Debug mode—Debug mode is programmed individually for each channel. When entering debug
mode, the values in the UC registers’ are frozen, but remain available to the debugger for read and
write accesses. After leaving debug mode, the values in the UC register counters prior to entering
debug mode are restored before resuming operations.

Enhanced Modular Input/Output Subsystem (eMIOS)

MPC5534 Microcontroller Reference Manual, Rev. 2

16-4 Freescale Semiconductor

In debug mode, all clocks are running and all registers are accessible for use during software
debugging; there is no power saving during debug mode.

• Freeze mode—Freeze mode enables the eMIOS to freeze the value in the unified channels
registers’ when debug mode is requested at the MCU level. While in freeze mode, the eMIOS
continues to operate to allow the MCU access to the unified channels’ registers. The unified
channel values remain frozen until one of these events occurs:

— EMIOS_MCR[FRZ] bit is written to zero

— MCU exits debug mode

— Unified channel’s EMIOS_CCR[FREN] bit is cleared

In freeze mode, all clocks are running and all registers are accessible for use debugging software;
there is no power saving during freeze mode.

16.1.4.2 Unified Channel Modes

The unified channels can be configured to operate in the following modes:

These modes are described in Section 16.4, “Functional Description.”

Table 16-1. Unified Channel Modes

Mode

General purpose input/output

Single action input capture

Single action output compare

Input pulse width measurement

Input period measurement

Double action output compare

Pulse/edge accumulation

Pulse/edge counting

Quadrature decode

Windowed programmable time accumulation

Modulus counter, normal

Modulus counter, buffered

Output pulse width and frequency modulation, normal

Output pulse width and frequency modulation, buffered

Center aligned output pulse width modulation with dead time insertion, normal

Center aligned output pulse width modulation with dead time insertion, buffered

Output pulse width modulation, normal

Output pulse width modulation, buffered

Enhanced Modular Input/Output Subsystem (eMIOS)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 16-5

16.2 External Signal Description

16.2.1 Overview

Each unified channel has one input and one output signal connected to the channel’s I/O pin. See the SIU,
eTPU, and DSPI sections for details about connecting eMIOS to pads and other modules.

NOTE
Channels 12–15 are input for data from the DSPI module.
Channels 12–15 cannot be input from eMIOS[12:15] because these are not
pinned out. See Figure 2-1.

The internal output disable input signals 0–3 (see Table 16-3), are provided to implement the output
disable feature needed for motor control. They are connected to EMIOS_Flag_Out signals according to
Section 16.2.1.2, “Output Disable Input—eMIOS Output Disable Input Signals.”

16.2.1.1 External Signals

When configured as an input, EMIOSn is synchronized and filtered by the programmable input filter (PIF).
The output of the PIF is then used by the channel logic, and can be read by the MCU through the UCIN
bit of the EMIOS_CSRn.

When configured as an output, EMIOSn is a registered output and can be read by the MCU through the
UCOUT bit of the EMIOS_CSRn.

16.2.1.2 Output Disable Input—eMIOS Output Disable Input Signals

Output disable inputs to both the eMIOS and the eTPU modules are connected to EMIOS_Flag_Outn
signals according to Table 16-3.

Table 16-2. External Signals

Signal Direction Function Reset State

EMIOS[0:11, 16:23] Input eMIOS Unified Channel n input —

EMIOS[12:15] Input From DSPI —

EMIOS[0:23] Output eMIOS Unified Channel n output 0 / Hi-Z1

1 A value of 0 refers to the reset value of the signal. Hi-Z refers to the state of the external pin if a tri-state
output buffer is controlled by the corresponding eMIOS signal.

Table 16-3. eMIOS Output Disable Input Signals

eMIOS Channel1
eMIOS Output

Disable Input Signal2

eTPU Output
Disable

Input Signal3

EMIOS_Flag_Out8 output disable input 3 ETPUA_ODI3

EMIOS_Flag_Out9 output disable input 2 ETPUA_ODI2

Enhanced Modular Input/Output Subsystem (eMIOS)

MPC5534 Microcontroller Reference Manual, Rev. 2

16-6 Freescale Semiconductor

16.3 Memory Map and Register Definitions
Addresses of unified channel (UC) registers are specified as offsets from the channel’s base address,
otherwise the eMIOS base address is used as reference.

The overall address map organization is shown in Table 16-4. Table 16-5 describes the unified channel
registers. All registers are cleared on reset.

EMIOS_Flag_Out10 output disable input 1 ETPUA_ODI1

EMIOS_Flag_Out11 output disable input 0 ETPUA_ODI0

EMIOS_Flag_Out20 — ETPUB_ODI0

EMIOS_Flag_Out21 — ETPUB_ODI1

EMIOS_Flag_Out22 — ETPUB_ODI2

EMIOS_Flag_Out23 — ETPUB_ODI3

1 All other EMIOS_Flag_Outn output signals are not connected.
2 Each of the four internal eMIOS output disable input signals can be programmed to

disable the output of any eMIOS channel if that channel has selected output disable
capability by the setting of its EMIOS_CCRn[ODIS] bit, and by specifying the output
disable input in its EMIOS_CCRn[ODISSL] field.

3 ETPUx_ODIy input signals disable outputs for eTPU engine x, channels (y*8)
through (y*8+7). See the ETPU chapter for more details.

Table 16-4. eMIOS Memory Map

Address Register Name Register Description Bits

Base (0xC3FA_0000) EMIOS_MCR Module Configuration Register 32

Base + 0x0004 EMIOS_GFR Global Flag Register 32

Base + 0x0008 EMIOS_OUDR Output Update Disable Register 32

Base + (0x000C–0x001F) — Reserved —

Base + 0x0020 UC0 Unified Channel 0 Registers 256

Base + 0x0040 UC1 Unified Channel 1 Registers 256

Base + 0x0060 UC2 Unified Channel 2 Registers 256

Base + 0x0080 UC3 Unified Channel 3 Registers 256

Base + 0x00A0 UC4 Unified Channel 4 Registers 256

Base + 0x00C0 UC5 Unified Channel 5 Registers 256

Base + 0x00E0 UC6 Unified Channel 6 Registers 256

Base + 0x0100 UC7 Unified Channel 7 Registers 256

Table 16-3. eMIOS Output Disable Input Signals (continued)

eMIOS Channel1
eMIOS Output

Disable Input Signal2

eTPU Output
Disable

Input Signal3

Enhanced Modular Input/Output Subsystem (eMIOS)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 16-7

Base + 0x0120 UC8 Unified Channel 8 Registers 256

Base + 0x0140 UC9 Unified Channel 9 Registers 256

Base + 0x0160 UC10 Unified Channel 10 Registers 256

Base + 0x0180 UC11 Unified Channel 11 Registers 256

Base + 0x01A0 UC12 Unified Channel 12 Registers 256

Base + 0x01C0 UC13 Unified Channel 13 Registers 256

Base + 0x01E0 UC14 Unified Channel 14 Registers 256

Base + 0x0200 UC15 Unified Channel 15 Registers 256

Base + 0x0220 UC16 Unified Channel 16 Registers 256

Base + 0x0240 UC17 Unified Channel 17 Registers 256

Base + 0x0260 UC18 Unified Channel 18 Registers 256

Base + 0x0280 UC19 Unified Channel 19 Registers 256

Base + 0x02A0 UC20 Unified Channel 20 Registers 256

Base + 0x02C0 UC21 Unified Channel 21 Registers 256

Base + 0x02E0 UC22 Unified Channel 22 Registers 256

Base + 0x0300 UC23 Unified Channel 23 Registers 256

Table 16-5. UC Memory Map

Address Register Name Register Description Bits

UCn Base + 0x0000 EMIOS_CADRn Channel A Data Register 32

UCn Base + 0x0004 EMIOS_CBDRn Channel B Data Register 32

UCn Base + 0x0008 EMIOS_CCNTRn Channel Counter Register 32

UCn Base + 0x000C EMIOS_CCRn Channel Control Register 32

UCn Base + 0x0010 EMIOS_CSRn Channel Status Register 32

UCn Base + (0x0014–0x001F) — Reserved —

Table 16-4. eMIOS Memory Map (continued)

Address Register Name Register Description Bits

Enhanced Modular Input/Output Subsystem (eMIOS)

MPC5534 Microcontroller Reference Manual, Rev. 2

16-8 Freescale Semiconductor

16.3.1 Register Description

All registers are 32-bit wide. This section illustrates the eMIOS with 24 unified channels supporting 24-bit
wide data.

16.3.1.1 eMIOS Module Configuration Register
EMIOS_MCR

EMIOS_MCR contains global control bits for the eMIOS module.

Address: Base + 0x0000 Access: User R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
0 MDIS FRZ GTBE ETB GPREN

0 0 0 0 0 0
SRV

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
GPRE

0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 16-2. eMIOS Module Configuration Register (EMIOS_MCR)

Table 16-6. EMIOS_MCR Field Descriptions

Field Description

0 Reserved. This bit is readable/writable, but has no effect.

1
MDIS

Module disable. Puts the eMIOS in low power mode. The MDIS bit is used to stop the clock of the module,
except the access to registers EMIOS_MCR and EMIOS_OUDR.
0 Clock is running
1 Enter low power mode

2
FRZ

Freeze. Enables the eMIOS to freeze the registers of the unified channels when debug mode is requested at
MCU level. Each unified channel must have FREN bit set to enter freeze mode. While in freeze mode, the
eMIOS continues to operate to allow the MCU access to the unified channels registers. The unified channel
remains frozen until the FRZ bit is written to zero or the MCU exits debug mode or the unified channel FREN
bit is cleared.
0 Allows unified channels to continue to operate when device enters debug mode and the

EMIOS_CCRn[FREN] bit is set
1 Stops unified channels operation when in debug mode and the EMIOS_CCRn[FREN] bit is set

3
GTBE1

Global time base enable. Used to export a global time base enable from the module and provide a method to
start time bases of several modules simultaneously.
0 Global time base enable out signal negated
1 Global time base enable out signal asserted
Note: The global time base enable input signal controls the internal counters. When asserted, internal

counters are enabled. When negated, internal counters disabled.

Enhanced Modular Input/Output Subsystem (eMIOS)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 16-9

16.3.1.2 eMIOS Global Flag Register
EMIOS_GFR

The EMIOS_GFR is a read-only register that groups the FLAG bits from all channels. This organization
improves interrupt handling on simpler devices. These bits are mirrors of the FLAG bits of each channel
register (EMIOS_CSR) and flag bits in those channel registers cannot be cleared by accessing this ‘mirror’
register.

4
ETB

External time base. Selects the time base source that drives counter bus[A].
0 Unified channel 23 drives counter bus[A]
1 STAC drives counter bus[A]
Note: If ETB is set to select STAC as the counter bus[A] source, the GTBE must be set to enable the STAC to

counter bus[A]. See Section 16.4.2, “STAC Client Submodule” and the shared time and angle clock
(STAC) bus interface section and the STAC bus configuration register (ETPU_REDCR) section of the
eTPU chapter for more information about the STAC.

5
GPREN

Global prescaler enable. Enables the prescaler counter.
0 Prescaler disabled (no clock) and prescaler counter is cleared
1 Prescaler enabled

6–11 Reserved

12–15
SRV
[0:3]

Server time slot. Selects the address of a specific STAC server to which the STAC client submodule is
assigned (see Section 16.4.2, “STAC Client Submodule,” for details)
0000 eTPU engine A, TCR1
0001 Invalid value
0010 eTPU engine A, TCR2
0011 Invalid value
0100–1111 Invalid value

16–23
GPRE
[0:7]

Global prescaler. Selects the clock divider value for the global prescaler, as shown below.

24–31 Reserved

1 The GTBE signal is an inter-module signal, not an external pin on the device.

Table 16-6. EMIOS_MCR Field Descriptions (continued)

Field Description

GPRE[0:7] Divide Ratio

00000000 1

00000001 2

.

.

.

.

.

.

.

.

11111111 256

Enhanced Modular Input/Output Subsystem (eMIOS)

MPC5534 Microcontroller Reference Manual, Rev. 2

16-10 Freescale Semiconductor

16.3.1.3 eMIOS Output Update Disable Register
EMIOS_OUDR

The EMIOS_OUDR serves to disable transfers from the A2 to the A1 channel registers and from the B2
to the B1 channel registers when values are written to these registers, and the channel is running in
modulus counter (MC) mode or an output mode.

Address: Base + 0x0004 Access: User R/O

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 F23 F22 F21 F20 F19 F18 F17 F16

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R F15 F14 F13 F12 F11 F10 F9 F8 F7 F6 F5 F4 F3 F2 F1 F0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 16-3. eMIOS Global Flag Register (EMIOS_GFR)

Address: Base + 0x0008 Access: User R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0
OU23 OU22 OU21 OU20 OU19 OU18 OU17 OU16

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
OU15 OU14 OU13 OU12 OU11 OU10 OU9 OU8 OU7 OU6 OU5 OU4 OU3 OU2 OU1 OU0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 16-4. eMIOS Output Update Disable Register (EMIOS_OUDR)

Table 16-7. EMIOS_OUDR Field Descriptions

Field Description

0–7 Reserved

8–31
OUn

Channel n output update disable. When running in MC mode or an output mode, values are written to
registers A2 and B2. OUn bits are used to disable transfers from registers A2 to A1 and B2 to B1. Each bit
controls one channel.
0 Transfer enabled. Depending on the operating mode, transfer can occur immediately or in the next

period. Unless stated otherwise, transfer occurs immediately.
1 Transfers disabled

Enhanced Modular Input/Output Subsystem (eMIOS)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 16-11

16.3.1.4 eMIOS Channel A Data Register
EMIOS_CADRn

Depending on the mode of operation, internal registers A1 or A2, used for matches and captures, can be
assigned to address EMIOS_CADRn. Both A1 and A2 are cleared by reset. Table 16-8 summarizes the
EMIOS_CADRn writing and reading accesses for all operating modes. For more information see section
Section 16.4.4.4, “Modes of Operation of the Unified Channels.”

16.3.1.5 eMIOS Channel B Data Register (EMIOS_CBDRn)

Depending on the mode of operation, internal registers B1 or B2 are used to address EMIOS_CBDRn.
Both B1 and B2 are cleared by reset. Table 16-8 summarizes the EMIOS_CBDRn writing and reading
accesses for all operating modes. For more information see section Section 16.4.4.4, “Modes of Operation
of the Unified Channels.”

NOTE
Do not read the EMIOS_CBDRn registers must not be read speculatively.
For future compatibility, the TLB entry covering the EMIOS_CBDRn must
be configured to be guarded.

Address: UCn Base + 0x0000 Access: User R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0
A

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
A

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 16-5. eMIOS Channel A Data Register (EMIOS_CADRn)

Address: UCn Base + 0x0004 Access: User R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0
B

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
B

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 16-6. eMIOS Channel B Data Register (EMIOS_CBDRn)

Enhanced Modular Input/Output Subsystem (eMIOS)

MPC5534 Microcontroller Reference Manual, Rev. 2

16-12 Freescale Semiconductor

16.3.1.6 eMIOS Channel Counter Register
EMIOS_CCNTRn

The EMIOS_CCNTRn contains the value of the internal counter. When GPIO mode is selected or the
channel is frozen, the EMIOS_CCNTRn is readable and writable. For all others modes, the
EMIOS_CCNTRn is a read-only register. When entering some operating modes, this register is
automatically cleared (see section Section 16.4.4.4, “Modes of Operation of the Unified Channels,” for
details).

Table 16-8. EMIOS_CADRn and EMIOS_CBDRn Value Assignments

Operating Mode
Register Access

Write Read Write Read

GPIO A1, A2 A1 B1,B2 B1

SAIC1 — A2 B2 B2

SAOC1

1 In these modes, the register EMIOS_CBDRn is not used, but B2 can be accessed.

A2 A1 B2 B2

IPWM — A2 — B1

IPM — A2 — B1

DAOC A2 A1 B2 B1

PEA A1 A2 — B1

PEC1 A1 A1 B1 B1

QDEC1 A1 A1 B2 B2

WPTA A1 A1 B1 B1

MC – Normal1 A2 A1 B2 B2

MC – Buffered A2 A1 B2 B2

OPWFM – Normal A2 A1 B2 B1

OPWFM – Buffered A2 A1 B2 B1

OPWMC – Normal A2 A1 B2 B1

OPWMC – Buffered A2 A1 B2 B1

OPWM – Normal A2 A1 B2 B1

OPWM – Buffered A2 A1 B2 B1

Enhanced Modular Input/Output Subsystem (eMIOS)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 16-13

16.3.1.7 eMIOS Channel Control Register
EMIOS_CCRn

The eMIOS_CCRn enables the setting of several control parameters for a unified channel. Among these
controls are the setting of a channel prescaler, channel mode selection, input trigger sensitivity and
filtering, interrupt and DMA request enabling, and output mode control.

Address: UCn Base + 0x0008 Access: User R/O

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 C

W1

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R C

W1

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 In GPIO mode or freeze action, this register is writable.

Figure 16-7. eMIOS Channel Counter Register (EMIOS_CCNTRn)

Address: UCn Base + 0x000C Access: User R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
FREN ODIS ODISSL UCPRE

UCP
REN

DMA
0

IF FCK FEN
0

W1

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0
BSL EDSEL EDPOL MODE

W1 FORCMA FORCMB

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 16-8. eMIOS Channel Control Register (EMIOS_CCRn)

Table 16-9. EMIOS_CCRn Field Description

Field Description

0
FREN

Freeze enable. If set and validated by FRZ bit in EMIOS_MCR, freezes all registers values when in debug
mode, allowing the MCU to perform debug functions.
0 Normal operation
1 Freeze UC registers values

1
ODIS

Output disable. Allows output disable in any output mode except GPIO.
0 The output pin operates normally
1 If the selected output disable input signal is asserted, the output pin goes to the complement of EDPOL

for OPWFM, OPWFMB, and OPWMB modes, but the unified channel continues to operate normally; that
is, it continues to produce FLAG and matches. When the selected output disable input signal is negated,
the output pin operates normally.

Enhanced Modular Input/Output Subsystem (eMIOS)

MPC5534 Microcontroller Reference Manual, Rev. 2

16-14 Freescale Semiconductor

2–3
ODISSL

[0:1]

Output disable select. Selects one of the four output disable input signals.
00 output disable input 0
01 output disable input 1
10 output disable input 2
11 output disable input 3

4–5
UCPRE

[0:1]

Prescaler. Selects the clock divider value for the unified channel internal prescaler, as follows;

6
UCPREN

Prescaler enable. Enables the prescaler counter.
0 Prescaler disabled (no clock) and prescaler counter is loaded with UCPRE value
1 Prescaler enabled

Table 16-9. EMIOS_CCRn Field Description (continued)

Field Description

UCPRE[0:1] Divide Ratio

00 1

01 2

10 3

11 4

Enhanced Modular Input/Output Subsystem (eMIOS)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 16-15

7
DMA

Direct memory access. Selects between generating an interrupt request (IRQ) or a DMA request.
0 FLAG assigned to Interrupt request
1 FLAG assigned to DMA request
Not all eMIOS channels support DMA, as shown below.
For a channel that does not support DMA, do not change the default value of 0 for the DMA bit.

8 Reserved

Table 16-9. EMIOS_CCRn Field Description (continued)

Field Description

eMIOS Channel DMA = 0 DMA = 1

0 Interrupt DMA request

1 Interrupt DMA request

2 Interrupt DMA request

3 Interrupt DMA request

4 Interrupt DMA request

5 Interrupt Reserved

6 Interrupt DMA request

7 Interrupt DMA request

8 Interrupt DMA request

9 Interrupt DMA request

10 Interrupt DMA request

11 Interrupt DMA request

12 Interrupt Reserved

13 Interrupt Reserved

14 Interrupt Reserved

15 Interrupt Reserved

16 Interrupt DMA request

17 Interrupt DMA request

18 Interrupt DMA request

19 Interrupt DMA request

20 Interrupt Reserved

21 Interrupt Reserved

22 Interrupt Reserved

23 Interrupt Reserved

Enhanced Modular Input/Output Subsystem (eMIOS)

MPC5534 Microcontroller Reference Manual, Rev. 2

16-16 Freescale Semiconductor

9–12
IF

[0:3]

Input filter. Controls the programmable input filter, selecting the minimum input pulse width that can pass
through the filter, as shown below. For output modes, these bits have no meaning.

13
FCK

Filter clock select. Selects the clock source for the programmable input filter.
0 Prescaled clock
1 System clock

14
FEN

FLAG enable. Allows the unified channel FLAG bit to generate an interrupt signal or a DMA request signal
(The type of signal to be generated is defined by the DMA bit).
0 Disable (FLAG does not generate an interrupt or DMA request)
1 Enable (FLAG generates an interrupt or DMA request)

15–17 Reserved

18
FORCMA

Force match A. For output modes, the FORCMA bit is equivalent to a successful comparison on comparator
A (except that the FLAG bit is not set). This bit is cleared by reset and is always read as zero. This bit is valid
for every output operating mode which uses comparator A, otherwise it has no effect.
0 Has no effect
1 Force a match at comparator A
For input modes, the FORCMA bit is not used and writing to it has no effect.

19
FORCMB

Force match B. For output modes, the FORCMB bit is equivalent to a successful comparison on comparator
B (except that the FLAG bit is not set). This bit is cleared by reset and is always read as zero. This bit is valid
for every output operating mode which uses comparator B, otherwise it has no effect.
0 Has no effect
1 Force a match at comparator B
For input modes, the FORCMB bit is not used and writing to it has no effect.

20 Reserved

Table 16-9. EMIOS_CCRn Field Description (continued)

Field Description

IF[0:3]1

1 Filter latency is 3 clock cycles.

Minimum input pulse width
[filter clock periods]

0000 Bypassed2

2 The input signal is synchronized before arriving at the
digital filter.

0001 2 filter clock periods

0010 4 filter clock periods

0100 8 filter clock periods

1000 16 filter clock periods

all others Reserved

Enhanced Modular Input/Output Subsystem (eMIOS)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 16-17

21–22
BSL
[0:1]

Bus select. Used to select either one of the counter buses or the internal counter to be used by the unified
channel.

Note: In certain modes the internal counter is used internally and therefore cannot be used as the channel
time base.

23
EDSEL

Edge selection bit. For input modes, the EDSEL bit selects whether the internal counter is triggered by both
edges of a pulse or just by a single edge as defined by the EDPOL bit. When not shown in the mode of
operation description, this bit has no effect.
0 Single edge triggering defined by the EDPOL bit
1 Both edges triggering

For GPIO input mode, the EDSEL bit selects if a FLAG can be generated.
0 A FLAG is generated as defined by the EDPOL bit
1 No FLAG is generated

For SAOC mode, the EDSEL bit selects the behavior of the output flip-flop at each match.
0 The EDPOL value is transferred to the output flip-flop
1 The output flip-flop is toggled

Table 16-9. EMIOS_CCRn Field Description (continued)

Field Description

BSL[0:1] Selected Bus

00 All channels: counter bus[A]

01 Channels 0 to 7: counter bus[B]
Channels 8 to 15: counter bus[C]
Channels 16 to 23: counter bus[D]

10 Reserved

11 All channels: internal counter (see Note)

Enhanced Modular Input/Output Subsystem (eMIOS)

MPC5534 Microcontroller Reference Manual, Rev. 2

16-18 Freescale Semiconductor

24
EDPOL

Edge polarity.

For input modes (except QDEC and WPTA mode), the EDPOL bit asserts which edge triggers either the
internal counter or an input capture or a FLAG. When not shown in the mode of operation description, this bit
has no affect.
0 Trigger on a falling edge
1 Trigger on a rising edge

For WPTA mode, the internal counter is used as a time accumulator and counts up when the input gating
signal has the same polarity of EDPOL bit.
0 Counting occurs when the input gating signal is low
1 Counting occurs when the input gating signal is high

For QDEC (MODE[6] cleared), the EDPOL bit selects the count direction according to direction signal (UCn
input).
0 Counts down when UCn is asserted
1 Counts up when UCn is asserted
NOTE: UC[n-1] EDPOL bit selects which edge clocks the internal counter of UCn
0 Trigger on a falling edge
1 Trigger on a rising edge

For QDEC (MODE[6] set), the EDPOL bit selects the count direction according to the phase difference.
0 Internal counter decrements if phase A is ahead phase B signal
1 Internal counter increments if phase A is ahead phase B signal
NOTE: To operate correctly, EDPOL bit must contain the same value in UCn and UC[n-1]

For output modes, the EDPOL bit is used to select the logic level on the output pin. When software selects
any output mode except GPIO, the initial state of the output flip-flop is the complement of EDPOL.
0 A match on comparator A clears the output flip-flop, while a match on comparator B sets it
1 A match on comparator A sets the output flip-flop, while a match on comparator B clears it

25–31
MODE

Mode selection. Selects the mode of operation of the unified channel, as shown in Table 16-10.

Table 16-10. Unified Channel MODE Bits

MODE[0:6] Unified Channel Mode of Operation

0b0000000 General purpose input/output mode (input)

0b0000001 General purpose input/output mode (output)

0b0000010 Single action input capture

0b0000011 Single action output compare

0b0000100 Input pulse width measurement

0b0000101 Input period measurement

0b0000110 Double action output compare (with FLAG set on the second match)

0b0000111 Double action output compare (with FLAG set on both match)

0b0001000 Pulse/edge accumulation (continuous)

Table 16-9. EMIOS_CCRn Field Description (continued)

Field Description

Enhanced Modular Input/Output Subsystem (eMIOS)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 16-19

0b0001001 Pulse/edge accumulation (single shot)

0b0001010 Pulse/edge counting (continuous)

0b0001011 Pulse/edge counting (single shot)

0b0001100 Quadrature decode (for count and direction encoders type)

0b0001101 Quadrature decode (for phase A and phase B encoders type)

0b0001110 Windowed programmable time accumulation

0b0001111 Reserved

0b0010000 Modulus counter (up counter, internal clock source)

0b0010001 Modulus counter (up counter, external clock source)

0b0010010–0b0010011 Reserved

0b0010100 Modulus counter
 (up/down counter, no change in counter direction upon match of input counter and register B1,
internal clock source)

0b0010101 Modulus counter
(up/down counter, no change in counter direction upon match of input counter and register B1,
external clock source)

0b0010110 Modulus counter
(up/down counter, change in counter direction upon match of input counter and register B1 and
sets the FLAG, internal clock source)

0b0010111 Modulus counter
(up/down counter, change in counter direction upon match of input counter and register B1 and
sets the FLAG, external clock source)

0b0011000 Output pulse width and frequency modulation
 (FLAG set at match of internal counter and comparator B, immediate update)

0b0011001 Output pulse width and frequency modulation
(FLAG set at match of internal counter and comparator B, next period update)

0b0011010 Output pulse width and frequency modulation
(FLAG set at match of internal counter and comparator A or comparator B, immediate update)

0b0011011 Output pulse width and frequency modulation
 (FLAG set at match of internal counter and comparator A or comparator B, next period update)

0b0011100 Center aligned output pulse width modulation
(FLAG set in trailing edge, trailing edge dead-time)

0b0011101 Center aligned output pulse width modulation (FLAG set in trailing edge, leading edge dead-time)

0b0011110 Center aligned output pulse width modulation (FLAG set in both edges, trailing edge dead-time)

0b0011111 Center aligned output pulse width modulation (FLAG set in both edges, leading edge dead-time)

0b0100000 Output pulse width modulation
(FLAG set at match of internal counter and comparator B, immediate update)

0b0100001 Output pulse width modulation
(FLAG set at match of internal counter and comparator B, next period update)

Table 16-10. Unified Channel MODE Bits (continued)

MODE[0:6] Unified Channel Mode of Operation

Enhanced Modular Input/Output Subsystem (eMIOS)

MPC5534 Microcontroller Reference Manual, Rev. 2

16-20 Freescale Semiconductor

0b0100010 Output pulse width modulation
 (FLAG set at match of internal counter and comparator A or comparator B, immediate update)

0b0100011 Output pulse width modulation
(FLAG set at match of internal counter and comparator A or comparator B, next period update)

0b1100100–0b1111111 Reserved

0b1010000 Modulus up counter, buffered, internal clock

0b1010001 Modulus up counter, buffered, external clock

0b1010010–0b1010001 Reserved

0b1010100 Modulus up/down counter, buffered (FLAG set on one event, internal clock)

0b1010101 Modulus up/down counter, buffered (FLAG set on one event, external clock)

0b1010110 Modulus up/down counter, buffered (FLAG set on both events, internal clock)

0b1010111 Modulus up/down counter, buffered (FLAG set on both events, external clock)

0b1011000 Output pulse width and frequency modulation, buffered (FLAG set at match of internal counter
and comparator B)

0b1011001 Reserved

0b1011010 Output pulse width and frequency modulation, buffered (FLAG set at match of internal counter
and comparator A or comparator B)

0b1011011 Reserved

0b1011100 Center aligned output pulse width modulation, buffered (FLAG set on trailing edge, trailing edge
dead-time)

0b1011101 Center aligned output pulse width modulation, buffered (FLAG set on trailing edge, leading edge
dead-time)

0b1011110 Center aligned output pulse width modulation, buffered (FLAG set on both edges, trailing edge
dead-time)

0b1011111 Center aligned output pulse width modulation, buffered (FLAG set on both edges, leading edge
dead-time)

0b1100000 Output pulse width modulation, buffered (FLAG set on second match)

0b1100001 Reserved

0b1100010 Output pulse width modulation, buffered (FLAG set on both matches)

Table 16-10. Unified Channel MODE Bits (continued)

MODE[0:6] Unified Channel Mode of Operation

Enhanced Modular Input/Output Subsystem (eMIOS)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 16-21

16.3.1.8 eMIOS Channel Status Register (EMIOS_CSRn)

EMIOS_CSRn reflects the status of the UC input/output signals and the overflow condition of the internal
counter, as well as the occurrence of a trigger event.

Address: UCn Base + 0x0010 Access: User R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R OVR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R OVFL 0 0 0 0 0 0 0 0 0 0 0 0 UCIN UCOUT FLAG

W w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 16-9. eMIOS Channel Status Register (EMIOS_CSRn)

Table 16-11. EMIOS_CSRn Field Descriptions

Field Description

0
OVR

Overrun. Indicates that FLAG generation occurred when the FLAG bit was already set. This bit can be cleared
by writing a 1 to it or by clearing the FLAG bit.
0 Overrun has not occurred
1 Overrun has occurred

1–15 Reserved

16
OVFL

Overflow. Indicates that an overflow has occurred in the internal counter. OVFL is cleared by writing a 1 to it.
0 No overflow
1 An overflow had occurred

17–28 Reserved

29
UCIN

Unified channel input pin. Reflects the input pin state after being filtered and synchronized.

30
UCOUT

Unified channel output pin. The UCOUT bit reflects the output pin state.

31
FLAG

FLAG. Set when an input capture or a match event in the comparators occurred. This bit is cleared by writing
a 1 to it.
0 FLAG cleared
1 FLAG set event has occurred
Note: When EMIOS_CCR[DMA] bit is set, the FLAG bit is cleared by the eDMA controller.

Enhanced Modular Input/Output Subsystem (eMIOS)

MPC5534 Microcontroller Reference Manual, Rev. 2

16-22 Freescale Semiconductor

16.4 Functional Description
The eMIOS provides independent channels (UC) that can be configured and accessed by the MCU. Four
time bases can be shared by the channels through four counter buses and each unified channel can generate
its own time base. Optionally, the counter A bus can be driven by an external time base from the eTPU
imported through the STAC interface.

NOTE
Counter bus A can be driven by unified channel 23 or by the STAC bus.
Counter bus B, C, and D are driven by unified channels 0, 8, and 16,
respectively. Counter bus A can be shared among all unified channels. UCs
0 to 7, 8 to 15, and 16 to 23 can share counter buses B, C, and D,
respectively.

The following four components of the eMIOS are discussed below:

• Bus interface unit

• STAC client submodule

• Global clock prescaler

• Unified channels and their modes of operation

16.4.1 Bus Interface Unit (BIU)

The bus interface unit provides the interface between the internal bus and the slave interface, allowing
communication among all submodules and the slave interface.

The BIU allows 8-, 16-, and 32-bit accesses. They are performed over a 32-bit data bus in a single cycle
clock.

16.4.1.1 Effect of Freeze on the BIU

When the FRZ bit in the EMIOS_MCR is set and the module is in debug mode, the operation of the BIU
is not affected.

16.4.2 STAC Client Submodule

The shared time and angle count (STAC) bus provides access to one external time base, imported from the
STAC bus to the eMIOS unified channels. The eTPU module's time bases and angle count can be exported
and/or imported through the STAC client submodule interface. Time bases and/or angle information of
either eTPU engine can be exported to the other eTPU engine and to the eMIOS module, which is only a
STAC client. There are restrictions on engine export/import targets: one engine cannot export from or
import to itself, nor can it import time base and/or angle count if in angle mode.

The device’s STAC server identification assignment is shown in Table 16-12. The time slot assignment is
fixed, so only time bases running at system clock ÷ 4 or slower can be integrally exported. The STAC client
submodule runs with the system clock, and its time slot timing is synchronized with the eTPU timing on
reset. The time slot sequence is 0-1-2-3, such that they are alternated between engines 1 and 2.

Enhanced Modular Input/Output Subsystem (eMIOS)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 16-23

Figure 16-10 provides a block diagram for the STAC client submodule.

Figure 16-10. STAC Client Submodule Block Diagram

Bits SRV[0:3] in register EMIOS_MCR, selects the desired time slot of the STAC bus to be output.
Figure 16-11 shows a timing diagram for the STAC client submodule.

Figure 16-11. Timing Diagram for the STAC Bus and
STAC Client Submodule Output

Every time the selected time slot changes, the STAC Client Submodule output is updated.

16.4.2.1 Effect of Freeze on the STAC Client Submodule

When the FRZ bit in the EMIOS_MCR is set and the module is in debug mode, the operation of the STAC
client submodule is not affected; that is, there is no freeze function in this submodule.

16.4.3 Global Clock Prescaler Submodule (GCP)

The GCP divides the system clock to generate a clock for the clock prescalers of the unified channels. The
system clock is prescaled by the value defined in Table 16-7 according to the GPRE[0:7] bits in the
EMIOS_MCR. Counting is enabled by setting EMIOS_MCR[GPREN]. The counter can be stopped at any
time by clearing this bit, thereby stopping the internal counter in all the unified channels.

Table 16-12. STAC Client Submodule Server Slot Assignment

Engine Time Base Server ID

1 TCR1 0

1 TCR2 2

2 TCR1 1

2 TCR2 3

SRV3 SRV2 SRV1 SRV0

STAC Bus Time BaseSTAC Client Submodule
(24-bit Wide) Output

Time Slot Selector Bits

TS[02]STAC Bus
(Submodule Input) TS[00] TS[01] TS[02]

Time Base
(Submodule Output) TS[01]xx

Note: In this case, SRV bits were set to capture TS[01].

TS[03] TS[00] TS[03] TS[00] TS[01]

System Clock

TS[01]

Enhanced Modular Input/Output Subsystem (eMIOS)

MPC5534 Microcontroller Reference Manual, Rev. 2

16-24 Freescale Semiconductor

16.4.3.1 Effect of Freeze on the GCP

When the FRZ bit in the EMIOS_MCR is set and the module is in debug mode, the operation of GCP
submodule is not affected; that is, there is no freeze function in this submodule.

16.4.4 Unified Channel (UC)

Figure 16-12 shows the unified channel block diagram. Each unified channel consists of the following:

• Counter bus selector that selects the time base to be used by the channel for all timing functions

• Programmable clock prescaler

• Two double buffered data registers A and B that allow up to two input capture and/or output
compare events to occur before software intervention is needed.

• Two comparators (equal only) A and B that compare the selected counter bus with the value in the
data registers

• Internal counter that can be used as a local time base or to count input events

• Programmable input filter that ensures that only valid pin transitions are received by a channel

• Programmable input edge detector that detects rising, falling, or both edges

• Output flip-flop that holds the logic level to be applied to the output pin

• eMIOS status and control registers

• Output disable input selector that selects the output disable input signal to be used as the unified
channel output disable

• Control state machine (FSM)

The major components and functions of the unified channels are discussed in Section 16.4.4.1,
“Programmable Input Filter (PIF)” through Section 16.4.4.4, “Modes of Operation of the Unified
Channels.”

Enhanced Modular Input/Output Subsystem (eMIOS)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 16-25

Figure 16-12. Unified Channel Block Diagram

16.4.4.1 Programmable Input Filter (PIF)

The PIF ensures that only valid input pin transitions are received by the unified channel edge detector. A
block diagram of the PIF is shown in Figure 16-13.

The PIF is a 5-bit programmable up counter that is incremented by the selected clock source, according to
bits IF[0:3] in EMIOS_CCRn. The clock source is selected by the EMIOS_CCRn[FCK] bit.

Programmable
Filter

FSM

IF[0:3]

UCIN

UCOUT

ODIS

EDSELEDPOL

Edge Detect

Output Flip-Flop

FCK

Comparator A
(with Zero

Prescaler

UCPRE[0:1]

BSL[0:1]

Detection)

Comparator B

Register CADR

ENEN

FORCMB

RWCB RQB

See Note 2
Internal Counter Clock

See Note 1

Counter Bus B, C, or D

Counter Bus A

FORCMA

MODE[0:6]

UPDATE

Output Disable
Control Bus

ODISSL[0:1]

EMIOSn

EMIOSn

Internal Bus

Unified Channel

Counter
Bus

Select

Internal Counter

Register A1

Register A2

Register B1

Register B2

Notes:

1. Counter bus A can be driven by either the STAC bus or channel 23. See EMIOS_MCR[ETB].

2. Goes to the finite state machine of the UC[n-1]. These signals are used for QDEC mode.

FLAG

Register CBDR

Channel 0 drives counter bus B, channel 8 drives counter bus C and channel 16 drives counter bus D.
Counter bus B can be selected as the counter for channels 0-7, counter bus C for channels 8-15,
and counter bus D for channels 16-23. See Figure 1-1 and EMIOS_CCRn[BS].

EMIOS_UCn

EMIOS_Flag_Outn

UCPREN

Enhanced Modular Input/Output Subsystem (eMIOS)

MPC5534 Microcontroller Reference Manual, Rev. 2

16-26 Freescale Semiconductor

Figure 16-13. Programmable Input Filter Submodule Diagram

The input signal is synchronized by the system clock. When a state change occurs in this signal, the 5-bit
counter starts counting up. As long as the new state is stable on the pin, the counter continues incrementing.
If a counter overflows occurs, the new pin value is validated. In this case, it is transmitted as a pulse edge
to the edge detector. If the opposite edge appears on the pin before validation (overflow), the counter is
reset. At the next synchronized pin transition, the counter starts counting again. Any pulse that is shorter
than a full range of the masked counter is regarded as a glitch, and it is not passed on to the edge detector.
A timing diagram of the input filter is shown in Figure 16-14.

Figure 16-14. Programmable Input Filter Example

16.4.4.2 Clock Prescaler (CP)

A unified channel has a clock prescaler (CP) that divides the global clock prescaler (see Section 16.4.3,
“Global Clock Prescaler Submodule (GCP)”) output signal to generate a clock enable for the internal
counter of the unified channel. It is a programmable 2-bit down counter. The global clock prescaler
submodule (GCP) output signal is prescaled by the value defined in Table 16-9 according to the
UCPRE[0:1] bits in the EMIOS_CCRn. The output is clocked every time the counter reaches zero.
Counting is enabled by setting the UCPREN bit in the EMIOS_CCRn. The counter can be stopped at any
time by clearing this bit, thereby stopping the internal counter in the unified channel.

16.4.4.3 Effect of Freeze on the Unified Channel

When in debug mode and the EMIOS_MCR[FRZ] bit and the EMIOS_CCRn[FREN] bit are both set, the
internal counter and the unified channel’s capture and compare functions are halted. The UC is frozen in
its current state.

Synchronizer

IF3

CLK

IF2 IF1 IF0

5-bit Up Counter

FCK

Prescaled Clock

EMIOSn

Clock

System Clock

Filter Out

Selected Clock

5-bit Counter

IF = 0b0011

Filter Out

EMIOSn

Time

Enhanced Modular Input/Output Subsystem (eMIOS)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 16-27

During freeze, all registers are accessible. When the unified channel is operating in an output mode, the
force match functions remain available, allowing the software to force the output to the desired level.

For input modes, any input events that occur while the channel is frozen are ignored.

When exiting debug mode or freeze enable bit is cleared (FRZ in the EMIOS_MCR or FREN in the
EMIOS_CCRn) the channel actions resume.

16.4.4.4 Modes of Operation of the Unified Channels

The mode of operation of a unified channel is determined by the mode select bits MODE[0:6] in the
EMIOS_CCRn. See Table 16-10 for details.

When entering an output mode (except for GPIO mode), the output flip-flop is set to the complement of
the EDPOL bit in the EMIOS_CCRn.

Because the internal counter EMIOS_CCNTRn continues to run in all modes (except for GPIO mode), it
is possible to use this counter as the UC time base unless it (the internal counter) is a required resource in
the operation of the selected mode.

To provide smooth waveform generation while allowing A and B registers to be changed during operation,
the double-buffered modes MCB, OPWFMB, OPWMB, and OPWMCB are provided (beginning at
Section 16.4.4.4.15, “Modulus Counter, Buffered Mode (MCB)”). In these modes the A and B registers
are double buffered. Descriptions of the double-buffered modes are presented separately, because there are
several basic differences from the single-buffered MC, OPWFM, OPWM, and OPWMC modes.

Section 16.4.4.4.2, “Single Action Input Capture Mode (SAIC)” through Section 16.4.4.4.18, “Output
Pulse Width Modulation, Buffered Mode (OPWMB)” below explain in detail the unified channels’ modes
of operation.

16.4.4.4.1 General Purpose Input/Output Mode (GPIO)

In GPIO mode, all input capture and output compare functions of the UC are disabled, the internal counter
(EMIOS_CCNTRn register) is cleared and disabled. All control bits remain accessible. To prepare the UC
for a new operating mode, writing to registers EMIOS_CADRn or EMIOS_CBDRn stores the same value
in registers A1 and A2, or B1 and B2, respectively.

MODE[6] bit selects between input (MODE[6] = 0) and output (MODE[6] = 1) modes:

It is required that when changing MODE[0:6], the application software goes into GPIO mode first to reset
the UC internal functions correctly. Failure to do this can lead to invalid and unexpected output compares
and input capture results, or can cause the FLAGs to be set incorrectly.

In GPIO input mode, the FLAG generation is determined according to EDPOL and EDSEL bits and the
input pin status can be determined by reading the UCIN bit.

MODE[0:6] Unified Channel Mode of Operation

0b0000000 General purpose input/output mode (input)

0b0000001 General purpose input/output mode (output)

Enhanced Modular Input/Output Subsystem (eMIOS)

MPC5534 Microcontroller Reference Manual, Rev. 2

16-28 Freescale Semiconductor

In GPIO output mode, the unified channel is used as a single output port pin and the value of the EDPOL
bit is permanently transferred to the output flip-flop.

NOTE
The GPIO modes provided in the eMIOS are particularly useful as interim
modes when certain other eMIOS modes are being dynamically configured
and enabled or disabled during the execution of the application. For normal
GPIO function on the eMIOS pins, it is recommended that the SIU be used
to configure those pins as system GPIO. See Section 6.3.1.3,
“General-Purpose I/O Pins (GPIO[0:213]).

16.4.4.4.2 Single Action Input Capture Mode (SAIC)

In SAIC mode, when a triggering event occurs on the input pin, the value on the selected time base is
captured into register A2. At the same time, the FLAG bit is set to indicate that an input capture has
occurred. Register EMIOS_CADRn returns the value of register A2.

The input capture is triggered by a rising, falling or either edges in the input pin, as configured by EDPOL
and EDSEL bits in EMIOS_CCRn.

Figure 16-15 shows how the unified channel can be used for input capture.

Figure 16-15. Single Action Input Capture Example

16.4.4.4.3 Single Action Output Compare Mode (SAOC)

In SAOC mode a match value is loaded in register A2 and then transferred to register A1 to be compared
with the selected time base. When a match occurs, the EDSEL bit selects if the output flip-flop is toggled
or if the value in EDPOL is transferred to it. At the same time, the FLAG bit is set to indicate that the output

MODE[0:6] Unified Channel Mode of Operation

0b0000010 Single Action Input Capture Mode

MODE[0:6] Unified Channel Mode of Operation

0b0000011 Single Action Output Compare Mode

Selected
Counter Bus

FLAG
Set Event

Edge Detect Edge Detect Edge Detect

Captured A2
Value2

0xxxxxxx 0x001000 0x001250 0x0016A0

Notes: 1
2

Input Signal1

0x000500 0x001000 0x001100 0x001250 0x001525 0x0016A0

After input filter.
Reading EMIOS_CADRn returns the value of A2.

Enhanced Modular Input/Output Subsystem (eMIOS)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 16-29

compare match has occurred. Writing to register EMIOS_CADRn stores the value in register A2 and
reading to register EMIOS_CADRn returns the value of register A1.

An output compare match can be simulated in software by setting the FORCMA bit in EMIOS_CCRn. In
this case, the FLAG bit is not set.

Figure 16-16 and Figure 16-17 show how the unified channel can be used to perform a single output
compare with EDPOL value being transferred to the output flip-flop and toggling the output flip-flop at
each match, respectively.

Figure 16-16. SAOC Example with EDPOL Value Transferred to the Output Flip-flop

Figure 16-17. SAOC Example Toggling the Output Flip-flop

16.4.4.4.4 Input Pulse Width Measurement Mode (IPWM)

The IPWM mode allows the measurement of the width of a positive or negative pulse by capturing the
leading edge on register B1 and the trailing edge on register A2. Successive captures are done on
consecutive edges of opposite polarity. The leading edge sensitivity (that is, pulse polarity) is selected by

MODE[0:6] Unified Channel Mode of Operation

0b0000100 Input Pulse Width Measurement Mode

Selected
Counter Bus

FLAG
Set Event

A1 Match A1 Match A1 Match

0xxxxxxx 0x001000 0x001000 0x001000

Notes: 1

0x000500 0x001000 0x001100 0x001000 0x001100 0x001000

EMIOS_CADRn writes to A2.
A2 value transferred to A1 according to OUn bit.

Update to
A1

EDSEL = 0

Output
Flip-Flop

EDPOL = 1

A1 Value1 0x001000

Selected
Counter Bus

FLAG
Set Event

A1 Match A1 Match A1 Match

0xxxxxxx 0x001000 0x001000 0x001000

Notes: 1

0x000500 0x001000 0x001100 0x001000 0x001100 0x001000

EMIOS_CADRn writes to A2.
A2 value transferred to A1 according to OUn bit.

Update to
A1

EDSEL = 1

Output
Flip-Flop

EDPOL = x

A1 Value1 0x001000

Enhanced Modular Input/Output Subsystem (eMIOS)

MPC5534 Microcontroller Reference Manual, Rev. 2

16-30 Freescale Semiconductor

EDPOL bit in the EMIOS_CCRn. Registers EMIOS_CADRn and EMIOS_CBDRn return the values in
register A2 and B1, respectively.

The capture function of register A2 remains disabled until the first leading edge triggers the first input
capture on register B2. When this leading edge is detected, the count value of the selected time base is
latched into register B2; the FLAG bit is not set. When the trailing edge is detected, the count value of the
selected time base is latched into register A2 and, at the same time, the FLAG bit is set and the content of
register B2 is transferred to register B1.

If subsequent input capture events occur while the corresponding FLAG bit is set, registers A2 and B1 are
updated with the latest captured values and the FLAG remain set. Registers EMIOS_CADRn and
EMIOS_CBDRn return the value in registers A2 and B1, respectively.

To guarantee coherent access, reading EMIOS_CADRn disables transfers between B2 and B1 until
reading EMIOS_CBDRn. After that, transfer is re-enabled.

The input pulse width is calculated by subtracting the value in B1 from A2.

Figure 16-18 shows how the unified channel can be used for input pulse width measurement.

Figure 16-18. Input Pulse Width Measurement Example

16.4.4.4.5 Input Period Measurement Mode (IPM)

The IPM mode allows the measurement of the period of an input signal by capturing two consecutive rising
edges or two consecutive falling edges. Successive input captures are done on consecutive edges of the
same polarity. The edge polarity is defined by the EDPOL bit in the EMIOS_CCRn.

MODE[0:6] Unified Channel Mode of Operation

0b0000101 Input Period Measurement Mode

0x000500 0x001000 0x001100 0x001250 0x001525 0x0016A0Selected
Counter Bus

FLAG
Set Event

B B B

Captured A2
Value2 0xxxxxxx 0xxxxxxx 0x001100 0x001525

Notes: 1 After input filter.
2 Reading EMIOS_CADRn returns the value of A2, writing EMIOS_CADRn writes to A2.

Input Signal1

EDPOL = 1 A A

B1 Value3

0x0015250x001100

0xxxxxxx 0xxxxxxx 0x001000 0x0012500x0012500x001000

0xxxxxxx 0x001000 0x001250 0x0016A00x0012500x001000Captured B2
Value

3 Reading EMIOS_CBDRn returns the value of B1, writing EMIOS_CBDRn writes to B1.

0xxxxxxx 0xxxxxxx 0x001000 0x0012500x0012500x001000A1 Value

Enhanced Modular Input/Output Subsystem (eMIOS)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 16-31

When the first edge of selected polarity is detected, the selected time base is latched into the registers A2
and B2, and the data previously held in register B2 is transferred to register B1. On this first capture the
FLAG line is not set, and the values in registers B1 is meaningless. On the second and subsequent captures,
the FLAG line is set and data in register B2 is transferred to register B1.

When the second edge of the same polarity is detected, the counter bus value is latched into registers A2
and B2, the data previously held in register B2 is transferred to data register B1, and the FLAG bit is set
to indicate the start and end points of a complete period have been captured. This sequence of events is
repeated for each subsequent capture. Registers EMIOS_CADRn and EMIOS_CBDRn return the values
in register A2 and B1, respectively.

To guarantee coherent access, reading EMIOS_CADRn disables transfers between B2 and B1 until
reading EMIOS_CBDRn register, then any pending transfer is re-enabled.

The input pulse period is calculated by subtracting the value in B1 from A2.

Figure 16-19 shows how the unified channel can be used for input period measurement.

Figure 16-19. Input Period Measurement Example

16.4.4.4.6 Double Action Output Compare Mode (DAOC)

In the DAOC mode the leading and trailing edges of the variable pulse width output are generated by
matches occurring on comparators A and B, respectively.

When the DAOC mode is first selected (coming from GPIO mode) both comparators are disabled.
Comparators A and B are enabled by updating registers A1 and B1 respectively and remain enabled until
a match occurs on that comparator, when it is disabled again. To update registers A1 and B1, a write to A2
and B2 must occur and the EMIOS_CCRn[ODIS] bit must be cleared.

MODE[0:6] Unified Channel Mode of Operation

0b0000110 Double action output compare (with FLAG set on the second match)

0b0000111 Double action output compare (with FLAG set on both match)

0x000500 0x001000 0x001100 0x001250 0x001525 0x0016A0Selected
Counter Bus

FLAG
Set Event

A A A

Captured A2
Value2 0xxxxxxx 0x001000 0x0016A0

Notes: 1 After input filter.
2 Reading EMIOS_CADRn returns the value of A2, writing EMIOS_CADRn writes to A2.

Input Signal1

EDPOL = 1

B1 Value3

0x001250

0xxxxxxx 0xxxxxxx 0x0012500x001000

0xxxxxxx 0x001000 0x0016A00x001250Captured B2
Value

3 Reading EMIOS_CBDRn returns the value of B1, writing EMIOS_CBDRn writes to B1.

Enhanced Modular Input/Output Subsystem (eMIOS)

MPC5534 Microcontroller Reference Manual, Rev. 2

16-32 Freescale Semiconductor

The output flip-flop is set to the value of EMIOS_CCRn[EDPOL] when a match occurs on comparator A
and to the complement of EDPOL when a match occurs on comparator B.

MODE[6] controls if the EMIOS_CSRn[FLAG] is set on both matches or just on the second match (see
Table 16-10 for details).

If subsequent enabled output compares occur on registers A1 and B1, pulses continue to be generated,
regardless of the state of the FLAG bit.

At any time, the EMIOS_CCRn[FORCMA] and EMIOS_CCRn[FORCMB] bits allow the software to
force the output flip-flop to the level corresponding to a comparison event in comparator A or B,
respectively. The FLAG bit is not affected by these forced operations.

NOTE
If both registers (A1 and B1) are loaded with the same value, the unified
channel behaves as if a single match on comparator B had occurred; the
output flip-flop is set to the complement of EDPOL bit and the FLAG bit is
set.

Figure 16-20 and Figure 16-21 show how the unified channel can be used to generate a single output pulse
with FLAG bit being set on the second match or on both matches, respectively.

Figure 16-20. Double Action Output Compare with FLAG Set on the Second Match

Selected
Counter Bus

FLAG
Set Event

A1 Match

0xxxxxxx 0x001000 0x001000 0x001000

Notes: 1 Writing EMIOS_CADRn writes to A1.
2 Writing EMIOS_CBDRn writes to B1.

MODE[6] = 0 B1 Match B1 Match

0xxxxxxx 0x001100 0x0011000x001100

A1 Match
Update to
A1 and B1

Output
Flip-Flop

A1 Value1

B1 Value2

A2 value transferred to A1 according to OUn bit.
B2 value transferred to B1 according to OUn bit.

0x000500 0x001000 0x001100 0x001000 0x001100

Enhanced Modular Input/Output Subsystem (eMIOS)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 16-33

Figure 16-21. Double Action Output Compare with FLAG Set on Both Matches

16.4.4.4.7 Pulse/Edge Accumulation Mode (PEA)

The PEA mode returns the time taken to detect a desired number of input events. MODE[6] bit selects
between continuous or single shot operation.

After writing to register A1, the internal counter is cleared on the first input event, ready to start counting
input events and the selected timebase is latched into register B2. On the match between the internal
counter and register A1, a counter bus capture is triggered to register A2 and B2. The data previously held
in register B2 is transferred to register B1 and the FLAG bit is set to indicate that an event has occurred.
The desired time interval can be determined subtracting register B1 from A2. Registers EMIOS_CADRn
and EMIOS_CBDRn return the values in register A2 and B1, respectively.

To guarantee coherent access, reading EMIOS_CADRn disables transfers between B2 and B1 until
reading EMIOS_CBDRn register, then any pending transfer is re-enabled.

Triggering of the counter clock (input event) is done by a rising or falling edge or both edges on the input
pin. The polarity of the triggering edge is selected by the EDSEL and EDPOL bits in EMIOS_CCRn.

For continuous operating mode (MODE[6] cleared), the counter is cleared on the next input event after a
FLAG generation and continues to operate as described above.

For single shot operation (MODE[6] set), the counter is not cleared or incremented after a FLAG
generation, until a new writing operation to register A is performed.

MODE[0:6] Unified Channel Mode of Operation

0b0001000 Pulse/edge accumulation (continuous)

0b0001001 Pulse/edge accumulation (single shot)

Selected
Counter Bus

FLAG
Set Event

A1 Match

0xxxxxxx 0x001000 0x001000 0x001000

Notes: 1 Writing EMIOS_CADRn writes to A1.
2 Writing EMIOS_CBDRn writes to B1.

MODE[6] = 1 B1 Match B1 Match

0xxxxxxx 0x001100 0x0011000x001100

A1 Match
Update to
A1 and B1

Output
Flip-Flop

A1 Value1

B1 Value2

A2 value transferred to A1 according to OUn bit.
B2 value transferred to B1 according to OUn bit.

0x000500 0x001000 0x001100 0x001000 0x001100

Enhanced Modular Input/Output Subsystem (eMIOS)

MPC5534 Microcontroller Reference Manual, Rev. 2

16-34 Freescale Semiconductor

NOTE
The FORCMA and FORCMB bits have no effect when the unified channel
is configured for PEA mode.

Figure 16-22 and Figure 16-23 show how the unified channel can be used for continuous and single shot
pulse/edge accumulation mode.

Figure 16-22. Pulse/Edge Accumulation Continuous Mode Example

Selected
Counter Bus 0x000090 0x000400 0x001000 0x007000

0x001500

Input Signal2

A2 Value4

0x001500

0xxxxxxx 0x0070000x000400

0xxxxxxx 0x0010000x000090

0xFFFFFF

0x001500

EMIOS_CCNTRn1

FLAG
Set Event

MODE[6] = 0
Write to A1 A1 Match A1 Match

A1 Value3

B1 Value

Notes: 1 Cleared on the first input event after writing to register A1.
2 After input filter.

0xxxxxxx 0x000090 0x0070000x001000

3 Writing EMIOS_CADRn writes to A1.

B2 Value5 0x000400

Time

Events A1 Events No Events A1 Events

4 Reading EMIOS_CADRn returns the value of A2.
5 Reading EMIOS_CBDRn returns the value of B1.

0x000000

0xxxxxxx 0x001500

Enhanced Modular Input/Output Subsystem (eMIOS)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 16-35

Figure 16-23. Pulse/Edge Accumulation Single-shot Mode Example

16.4.4.4.8 Pulse/Edge Counting Mode (PEC)

The PEC mode returns the amount of pulses or edges detected on the input for a desired time window.
MODE[6] bit selects between continuous or single shot operation.

Triggering of the internal counter is done by a rising or falling edge or both edges on the input signal. The
polarity and the triggering edge is selected by EDSEL and EDPOL bits in EMIOS_CCRn.

Register A1 holds the start time and register B1 holds the stop time for the time window. After writing to
register A1, when a match occur between comparator A and the selected timebase, the internal counter is
cleared and it is ready to start counting input events. When the time base matches comparator B1, the
internal counter is disabled and the FLAG bit is set. Reading the EMIOS_CCNTRn returns the amount of
detected pulses.

For continuous operation (MODE[6] cleared), the next match between comparator A and the selected time
base clears the internal counter and counting is enabled again. To guarantee the accuracy when reading

MODE[0:6] Unified Channel Mode of Operation

0b0001010 Pulse/edge counting (continuous)

0b0001011 Pulse/edge counting (single shot)

Selected
Counter Bus 0x000090 0x000400

Input Signal2

A2 Value4

0x001500

0xxxxxxx 0x000400

0xxxxxxx 0x000090

0xFFFFFF

0x001500

EMIOS_CCNTRn1

FLAG
Set Event

MODE[6] = 1
Write to A1 A1 Match

A1 Value3

B1 Value

Notes: 1 Cleared on the first input event after writing to register A1.
2 After input filter.

0xxxxxxx 0x000090

3 Writing EMIOS_CADRn writes to A1.

B2 Value5 0x000400

Time

Events A1 Events

4 Reading EMIOS_CADRn returns the value of A2.
5 Reading EMIOS_CBDRn returns the value of B1.

0x000000

0xxxxxxx 0x001500

Events

Enhanced Modular Input/Output Subsystem (eMIOS)

MPC5534 Microcontroller Reference Manual, Rev. 2

16-36 Freescale Semiconductor

EMIOS_CCNTRn after the flag is set, the software must check if the time base value is out of the time
interval defined by registers A1 and B1.

For single shot operation (MODE[6] set), the next match between comparator A and the selected time base
has no effect, until a new write to register A is performed.

NOTE
The FORCMA and FORCMB bits have no effect when the unified channel
is configured for PEC mode.

Figure 16-24 and Figure 16-25 show how the unified channel can be used for continuous or single shot
pulse/edge counting mode.

Figure 16-24. Pulse/Edge Counting Continuous Mode Example

Selected
Counter Bus

0x000090 0x000090

B1 Value2

0x000090

0x000303 0x0003030x000303

Amount of

EMIOS_CCNTRn

FLAG
Set Event

MODE[6] = 0
A1 Match B1 Match B1 Match

A1 Value1

Notes: 1 Writing EMIOS_CADRn writes to A1.
2 Writing EMIOS_CBDRn writes to B1.

Time
0x000000

Events
Detected

A1 Match
A1 & B1

Write

0x000090 0x000303 0x000090 0x000303

Enhanced Modular Input/Output Subsystem (eMIOS)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 16-37

Figure 16-25. Pulse/Edge Counting Single-Shot Mode Example

16.4.4.4.9 Quadrature Decode Mode (QDEC)

Quadrature decode mode uses UCn operating in QDEC mode and the programmable input filter (PIF)
from UC[n-1]. UC[n-1] can be configured, at the same time, to an operation mode that does not use I/O
pins, such as MC mode (modulus counter). The connection among the UCs is circular; that is, when UC0
is running in QDEC mode, the programmable input filter from UC23 is being used.

This mode generates a FLAG every time the internal counter matches A1 register. The internal counter is
automatically selected and is not cleared when entering this mode.

MODE[6] bit selects which type of encoder is used: count and direction encoder or phase A and phase B
encoders.

When operating with count and direction encoder (MODE[6] cleared), UCn input pin must be connected
to the direction signal and UC[n-1] input pin must be connected to the count signal of the quadrature
encoder. UCn EDPOL bit selects count direction according to direction signal and UC[n-1] EDPOL bit
selects if the internal counter is clocked by the rising or falling edge of the count signal.

When operating with phase A and phase B encoder (MODE[6] set), UCn input pin must be connected to
the phase A signal and UC[n-1] input pin must be connected to the phase B signal of the quadrature
encoder. EDPOL bit selects the count direction according to the phase difference between phase A and
phase B signals.

Figure 16-26 and Figure 16-27 show two unified channels configured to quadrature decode mode for
count and direction encoder and phase A and phase B encoders, respectively.

MODE[0:6] Unified Channel Mode of Operation

0b0001100 Quadrature decode (for count and direction encoders type)

0b0001101 Quadrature decode (for phase A and phase B encoders type)

Selected
Counter Bus

0x000090 0x000090

B1 Value2

0x000090

0x000303 0x0003030x000303

Amount of

EMIOS_CCNTRn

FLAG
Set Event

MODE[6] = 1
A1 Match B1 Match B1 Match

A1 Value1

Notes: 1 Reading EMIOS_CADRn returns the value of A1.
2 Reading EMIOS_CBDRn returns the value of B1.

Time
0x000000

Events
Detected

A1 Match
A1 & B1

Write

0x000090 0x000303 0x000090 0x000303

Enhanced Modular Input/Output Subsystem (eMIOS)

MPC5534 Microcontroller Reference Manual, Rev. 2

16-38 Freescale Semiconductor

Figure 16-26. Quadrature Decode Mode Example with Count and Direction Encoder

Figure 16-27. Quadrature Decode Mode Example with Phase A and Phase B Encoder

16.4.4.4.10 Windowed Programmable Time Accumulation Mode (WPTA)

MODE[0:6] = 0001110

The WPTA mode accumulates the sum of the total high time or low time of an input signal over a
programmable interval (time window).

The prescaler bits UCPRE[0:1] in EMIOS_CCRn define the increment rate of the internal counter.

Direction
(from UCn)

Count
(from UC[n-1])

EMIOS_CCNTRn
inc/dec

A1 Write
(Value 1) A1 Match A1 Match

+1 +1 +1 +1 +1 +1 +1 +1 –1 –1 –1 –1 –1

EMIOS_CCNTRn

Value 1

0x000000

FLAG
Set Event

Note: Writing EMIOS_CADRn writes to A1.

MODE[6] = 0
EDPOL = 1

Time

Phase A
(from UCn)

Phase B
(from UC[n-1])

EMIOS_CCNTRn
inc/dec

A1 Write
(Value 1) A1 Match A1 Match

+1

EMIOS_CCNTRn

Value 1

0x000000

FLAG
Set Event

Note: Writing EMIOS_CADRn writes to A1.

MODE[6] = 1

Time

-1-1-1-1-1-1+1 +1+1+1+1+1+1 -1 +1+1 +1+1+1+1+1+1 -1-1-1-1-1-1 -1 +1 +1+1+1+1+1+1

Value 2

A1 Match A1 Match A1 Match
A1 Write
(Value 2)

Enhanced Modular Input/Output Subsystem (eMIOS)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 16-39

Register A1 holds the start time and register B1 holds the stop time of the programmable time interval.
When a match occurs between register A and the selected timebase, the internal counter is cleared and it
is ready to start counting. The internal counter is used as a time accumulator; that is, it counts up when the
input signal has the same polarity of EDPOL bit in EMIOS_CCRn and does not count otherwise. When a
match occurs in comparator B, the internal counter is disabled regardless of the input signal polarity and
the FLAG bit is set. Reading EMIOS_CCNTRn returns the high or low time of the input signal.

NOTE
The FORCMA and FORCMB bits have no effect when the unified channel
is configured for WPTA mode.

Figure 16-28 shows how the unified channel can be used to accumulate high time.

Figure 16-28. Windowed Programmable Time Accumulation Example

16.4.4.4.11 Modulus Counter Mode (MC)

MODE[0:6] Modulus Counter Operating Modes

0b0010000 Modulus counter:
 • up counter
 • internal clock source

0b0010001 Modulus counter:
 • up counter
 • external clock source

0b0010010–0b0010011 Reserved

A1 Match

Selected
Counter Bus

0x000100 0x000100 0x003000

B1 Value3 0x001500 0x0042000x001500

0xFFFFFF

Time

FLAG
Set Event

EDPOL = 1

B1 Match

A1 Value2

Notes: 1 After input filter.
2 Writing EMIOS_CADRn writes to A1.
3 Writing EMIOS_CBDRn writes to B1.

Time
0x000000

Input Signal1

B1 Match
A1 & B1

Write

0x003000

0x004200

A1 & B1
Write A1 MatchAccumulator

(EMIOS_CCNTR)

0x000100 0x0042000x001500 0x003000

Enhanced Modular Input/Output Subsystem (eMIOS)

MPC5534 Microcontroller Reference Manual, Rev. 2

16-40 Freescale Semiconductor

The MC mode can be used to provide a time base for a counter bus or as a general purpose timer.

MODE[6] bit selects internal or external clock source when cleared or set, respectively. When external
clock is selected, the input signal pin is used as the source and the triggering polarity edge is selected by
the EDPOL and EDSEL in the EMIOS_CCRn.

When software selects the modulus counter mode, the internal counter is initially reset to 0. The internal
counter counts up from the current value until it matches the value in register A1. Register B1 is cleared
and is not accessible to the MCU. MODE[4] bit selects up mode or up/down mode, when cleared or set,
respectively.

When in up count mode, a match between the internal counter and register A1 sets the FLAG and clears
the internal counter.

When in up/down count mode, a match between the internal counter and register A1 sets the FLAG and
changes the counter direction from increment to decrement. A match between register B1 and the internal
counter changes the counter direction from decrement to increment and sets the FLAG only if MODE[5]
bit is set.

NOTE
The FORCMA and FORCMB bits have no effect when the unified channel
is configured for MC mode.

0b0010100 Modulus counter:
 • up/down counter
 • no change in counter direction upon match of

input counter and register B1
 • internal clock source

0b0010101 Modulus counter:
 • up/down counter
 • no change in counter direction upon match of

input counter and register B1
 • external clock source

0b0010110 Modulus counter:
 • up/down counter
 • change in counter direction upon match of

input counter and register B1 and sets the
FLAG

 • internal clock source

0b0010111 Modulus counter:
 • up/down counter
 • change in counter direction upon match of

input counter and register B1 and sets the
FLAG

 • external clock source

MODE[0:6] Modulus Counter Operating Modes

Enhanced Modular Input/Output Subsystem (eMIOS)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 16-41

NOTE
Any update to the A register occurs immediately, regardless of the current
state of the counter and whether the counter is in up mode, or up/down
mode.

Figure 16-29 and Figure 16-30 shows how the unified channel can be used as modulus counter in up mode
and up/down mode, respectively.

Figure 16-29. Modulus Counter Up Mode Example

Figure 16-30. Modulus Counter Up/Down Mode Example

0x000303 0x000200

EMIOS_CCNTRn

FLAG
Set Event

MODE[4] = 0 A1 Match A1 Match

A1 Value1

Notes: 1 Writing EMIOS_An writes to A2.
 A2 value transferred to A1 according to OUn bit.

Time
0x000000

A1 Match A1 Match

0x0002000x000303

0xFFFFFF

0x000303
0x000200

Write to
A2

Write to
A2

0xxxxxxx 0x000303

0x000303 0x000200

EMIOS_CCNTRn

FLAG
Set Event

MODE[4] = 1 A1 Match A1 Match

A1 Value1

Notes: 1 Writing EMIOS_An writes to A2.
A2 value transferred to A1 according to OUn bit.

Time
0x000000

B1(=0) Match B1(=0) Match

0x000200

0xFFFFFF

0x000303
0x000200

Write to
A2

0xxxxxxx 0x000303

Write to
A2

0x000200

Enhanced Modular Input/Output Subsystem (eMIOS)

MPC5534 Microcontroller Reference Manual, Rev. 2

16-42 Freescale Semiconductor

16.4.4.4.12 Output Pulse Width and Frequency Modulation Mode (OPWFM)

In this mode, register A1 contains the duty cycle and register B1 contains the period of the output signal.
MODE[6] bit controls the transfer from register B2 to B1, which can be done either immediately
(MODE[6] cleared), providing the fastest change in the duty cycle, or at every match of register A1
(MODE[6] set).

The internal counter is automatically selected as a time base, therefore the BSL[0:1] bits in register
EMIOS_CCRn have no meaning. The output flip-flop’s active state is the complement of EDPOL bit. The
output flip-flop is active during the duty cycle (from the start of the cycle until a match occurs in
comparator A). After the match in comparator A the output flip-flop is in the inactive state (the value of
EDPOL) until the next cycle starts. When a match on comparator A occurs, the output flip-flop is set to
the value of the EDPOL bit. When a match occurs on comparator B, the output flip-flop is set to the
complement of the EDPOL bit and the internal counter is cleared.

FLAG can be generated at match B, when MODE[5] is cleared, or in both matches, when MODE[5] is set.

At any time, the FORCMA and FORCMB bits allow the software to force the output flip-flop to the level
corresponding to a match on A or B respectively. Also, FORCMB clears the internal counter. The FLAG
bit is not set by the FORCMA or FORCMB operations.

If subsequent comparisons occur on comparators A and B, the PWFM pulses continue to be output,
regardless of the state of the FLAG bit.

To achieve 0% duty cycle, both registers A1 and B1 must be set to the same value. When a simultaneous
match occurs on comparators A and B, the output flip-flop is set at every period to the value of EDPOL bit.

To temporarily change from the current duty cycle to 0% and then return to the current duty cycle, the
sequence is the following:

1. If not currently stored, store value of register A.

2. Set A=B.

3. If immediate 0% duty cycle is desired, set FORCA=1.

4. To return to the previous duty cycle, restore register A with its former value.

MODE[0:6] Unified Channel Mode of Operation

0b0011000 Output pulse width and frequency modulation
 (FLAG set at match of internal counter and comparator B, immediate update)

0b0011001 Output pulse width and frequency modulation
(FLAG set at match of internal counter and comparator B, next period update)

0b0011010 Output pulse width and frequency modulation
(FLAG set at match of internal counter and comparator A or comparator B, immediate
update)

0b0011011 Output pulse width and frequency modulation
 (FLAG set at match of internal counter and comparator A or comparator B, next
period update)

Enhanced Modular Input/Output Subsystem (eMIOS)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 16-43

100% duty cycle is possible by writing 0x000000 to register A. When a match occurs, the output flip-flop
is set at every period to the complement of EDPOL bit. The transfer from register B2 to B1 is still
controlled by MODE[6] bit.

To temporarily change from the current duty cycle to 100% and then return to the current duty cycle, the
sequence is the following:

1. If not currently stored, store value of register A.

2. Set A=0.

3. If immediate 100% duty cycle is desired, set FORCB=1.

4. To return to the previous duty cycle, restore register A with its former value.

NOTE
Updates to the A register always occur immediately. If next period update is
selected via the mode[6] bit, only the B register update is delayed until the
next period.

Figure 16-31 shows the unified channel running in OPFWM mode with immediate register update and
Figure 16-32 shows the unified channel running in OPFWM mode with next period update PFWM mode.
In both figures EDPOL = 1, so the output is low during the duty cycle. Table 16-13 has additional
illustrative examples.

Figure 16-31. OPWFM with Immediate Update

A1 Value1

B1 Value

B2 Value2

0x001000

0x000900

Output
Flip-Flop

A1 Match A1 Match

Time
0x000000

B1 Match

0x000200

0x001000

0x000900

0x000200

Write to
A2 & B2

0x000200 0x000200

Write to
B2

0x000900

EMIOS_CCNTRn

MODE[6] = 0 B1 Match

0x001000

0x001000

0x000900

Notes: 1 Writing EMIOS_An writes to A2.
2 Writing EMIOS_Bn writes to B2.
A2 value transferred to A1 according to OUn bit.
B2 value transferred to B1 according to OUn bit.

Enhanced Modular Input/Output Subsystem (eMIOS)

MPC5534 Microcontroller Reference Manual, Rev. 2

16-44 Freescale Semiconductor

Figure 16-32. OPWFM with Next Period Update

Table 16-13. Examples of Output Waveforms

EDPOL Duty Cycle
A

(decimal)
B

(decimal)
Waveform

0
(active high

output)

0% 1000 1000

25% 250 1000

50% 500 1000

75% 750 1000

100% 0 1000

A1 Value1

B1 Value

B2 Value2

0x001000

0x000900

Output
Flip-Flop

A1 Match A1 Match

Time
0x000000

B1 Match

0x0002000x000200

0x001000

0x000900

0x000200

Write to
A2 & B2

0x000200 0x000200

Write to
B2

0x001000

MODE[6] = 1

EMIOS_CCNTR
B1 Match A1 Match B1 Match

0xxxxxxx

0x001000

0x001000 0x000900 0x000900

Notes: 1 Writing EMIOS_An writes to A2.
2 Writing EMIOS_Bn writes to B2.
A2 value transferred to A1 according to OUn bit.
B2 value transferred to B1 according to OUn bit.

L

H

L

H

L

H

L

H

L

H

Enhanced Modular Input/Output Subsystem (eMIOS)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 16-45

16.4.4.4.13 Center Aligned Output Pulse Width Modulation with Dead-time Mode
(OPWMC)

This operating mode generates a center aligned PWM with dead time insertion in the leading or trailing
edge.

The selected counter bus must be running an up/down time base, as shown in Figure 16-30. BSL[0:1] bits
select the time base. Register A1 contains the ideal duty cycle for the PWM signal and is compared with
the selected time base. Register B1 contains the dead time value and is compared with the internal counter.
For a leading edge dead time insertion, the output PWM duty cycle is equal to the difference between
register A1 and register B1, and for a trailing edge dead time insertion, the output PWM duty cycle is equal
to the sum of register A1 and register B1. MODE[6] bit selects between trailing and leading dead time
insertion, respectively.

1
(active low

output)

0% 1000 1000

25% 250 1000

50% 500 1000

75% 750 1000

100% 0 1000

MODE[0:6] Unified Channel Mode of Operation

0b0011100 Center aligned output pulse width modulation
(FLAG set in trailing edge, trailing edge dead-time)

0b0011101 Center aligned output pulse width modulation
(FLAG set in trailing edge, leading edge dead-time)

0b0011110 Center aligned output pulse width modulation
(FLAG set in both edges, trailing edge dead-time)

0b0011111 Center aligned output pulse width modulation
(FLAG set in both edges, leading edge dead-time)

Table 16-13. Examples of Output Waveforms

EDPOL Duty Cycle
A

(decimal)
B

(decimal)
Waveform

L

H

L

H

L

H

L

H

L

H

Enhanced Modular Input/Output Subsystem (eMIOS)

MPC5534 Microcontroller Reference Manual, Rev. 2

16-46 Freescale Semiconductor

NOTE
Set the internal prescaler of the OPWMCB channel to the same value as the
MCB channel prescaler, and the prescalers must be synchronized. This
allows the A1 and B1 registers to represent the same time scale for duty
cycle and dead time insertion.

When operating with leading edge dead time insertion, the first match between A1 and the selected time
base clears the internal counter and switches the selected time base to the internal counter. When a match
occurs between register B1 and the selected time base, the output flip-flop is set to the value of the EDPOL
bit and the time base is switched to the selected counter bus. In the next match between register A1 and
the selected time base, the output flip-flop is set to the complement of the EDPOL bit. This sequence
repeats continuously.

When operating with trailing edge dead time insertion, the first match between A1 and the selected time
base sets the output flip-flop to the value of the EDPOL bit. In the next match between register A1 and the
selected time base, the internal counter is cleared and the selected time base is switched to the internal
counter. When a match occurs between register B1 and the selected time base, the output flip-flop is set to
the complement of the EDPOL bit and the time base is switched to the selected counter bus. This sequence
repeats continuously.

FLAG can be generated in the trailing edge of the output PWM signal when MODE[5] is cleared, or in
both edges, when MODE[5] is set.

At any time, the FORCMA or FORCMB bits are equivalent to a successful comparison on comparator A
or B with the exception that the FLAG bit is not set.

NOTE
When in freeze mode, the FORCMA or FORCMB bits only allow the
software to force the output flip-flop to the level corresponding of a match
on A or B respectively.

If subsequent matches occur on comparators A and B, the PWM pulses continue to be generated,
regardless of the state of the FLAG bit.

To achieve a duty cycle of 100%, both registers A1 and B1 must be set to the same value. When a
simultaneous match occurs between the selected time base and registers A1 and B1, the output flip-flop is
set at every period to the value of EDPOL bit and the selected time base switches to the selected counter
bus, allowing a new cycle to begin at any time, as previously described. 0% duty cycle is possible by
writing 0x000000 to register A. When a match occurs, the output flip-flop is set at every period to the
complement of EDPOL bit and the selected time base switches to the selected counter bus, allowing a new
cycle to begin at any time, as previously described. In both cases, FLAG is generated regardless of
MODE[5] bit.

NOTE
If A1 and B1 are set to the value 0x000000, a 0% duty cycle waveform is
produced.

NOTE
Any updates to the A or B register occurs immediately.

Enhanced Modular Input/Output Subsystem (eMIOS)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 16-47

Figure 16-33 and Figure 16-34 show the unified channel running in OPWMC with leading and trailing
dead time, respectively.

Figure 16-33. Output PWMC with Leading Dead-time Insertion

Output
Flip-Flop

A1 Match A1 Match

Time
0x000000

0x000303

0x000200

Update to
A1Selected

MODE[6] = 1

Counter Bus
A1 Match

Notes: 1 Writing EMIOS_An writes to A2.
2 Writing EMIOS_Bn writes to B1.
A2 value transferred to A1 according to OUn bit.
B2 value transferred to B1 according to OUn bit.

Update to
A1 A1 Match

A1 Value1 $000200$000200
0x000303 0x000303

0x0002000x0003030xxxxxxx

Update to
B1 B1 Match

0x000010

0x000000

EMIOS_CCNTR

B1
Match

B1 Value2 0x000010
Time

Enhanced Modular Input/Output Subsystem (eMIOS)

MPC5534 Microcontroller Reference Manual, Rev. 2

16-48 Freescale Semiconductor

Figure 16-34. Output PWMC with Trailing Dead-time Insertion

16.4.4.4.14 Output Pulse Width Modulation Mode (OPWM)

Registers A1 and B1 define the leading and trailing edges of the PWM output pulse, respectively.
MODE[6] bit controls the transfer from register B2 to B1, which can be done either immediately
(MODE[6] cleared), providing the fastest change in the duty cycle, or at every match of register A1
(MODE[6] set).

MODE[0:6] Unified Channel Mode of Operation

0b0100000 Output pulse width modulation
(FLAG set at match of internal counter and comparator B, immediate update)

0b0100001 Output pulse width modulation
(FLAG set at match of internal counter and comparator B, next period update)

0b0100010 Output pulse width modulation
 (FLAG set at match of internal counter and comparator A or comparator B, immediate
update)

0b0100011 Output pulse width modulation
(FLAG set at match of internal counter and comparator A or comparator B, next
period update)

Output
Flip-Flop

A1 Match A1 Match

Time
0x000000

0x000303

0x000200

Update to
A1Selected

MODE[6] = 0

Counter Bus
A1 Match

Notes: 1 Writing EMIOS_An writes to A2.
2 Writing EMIOS_Bn writes to B1.
A2 value transferred to A1 according to OUn bit.
B2 value transferred to B1 according to OUn bit.

Update to
A1 A1 Match

A1 Value1 0x0002000x0002000x000200

Update to
B1 B1 Match

0x000010

0x000000

EMIOS_CCNTR

B1 Value2 0x000010
Time

B1 Match

0x000303 0x000303
0x0003030xxxxxxx

Enhanced Modular Input/Output Subsystem (eMIOS)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 16-49

The value loaded in register A1 is compared with the value on the selected time base. When a match on
comparator A occurs, the output flip-flop is set to the value of the EDPOL bit. When a match occurs on
comparator B, the output flip-flop is set to the complement of the EDPOL bit.

FLAG can be generated at match B, when MODE[5] is cleared, or in both matches, when MODE[5] is set.

At any time, the FORCMA and FORCMB bits allow the software to force the output flip-flop to the level
corresponding to a match on A or B respectively. The FLAG bit is not set by the FORCMA and FORCMB
operations.

If subsequent matches occur on comparators A and B, the PWM pulses continue to be generated,
regardless of the state of the FLAG bit.

To achieve 0% duty cycle, registers A1 and B1 must be set to the same value. When a simultaneous match
on comparators A and B occur, the output flip-flop is set at every period to the value of EDPOL bit. 0%
duty cycle is possible by writing 0x000000 to register A. When a match occurs, the output flip-flop is set
at every period to the complement of EDPOL bit. The transfer from register B2 to B1 is still controlled by
MODE[6] bit.

NOTE
If A1 and B1 are set to the value 0x000000, a 100% duty cycle waveform is
produced.

NOTE
Updates to the A register always occur immediately. If next period update is
selected via the mode[6] bit, only the B register update is delayed until the
next period.

Figure 16-35 and Figure 16-36 show the unified channel running in OPWM with immediate update and
next period update, respectively.

Enhanced Modular Input/Output Subsystem (eMIOS)

MPC5534 Microcontroller Reference Manual, Rev. 2

16-50 Freescale Semiconductor

Figure 16-35. Output PWM with Immediate Update

Figure 16-36. Output PWM with Next Period Update

A1 Value1

B1 Value

B2 Value2

0x001000

Output
Flip-Flop

Time
0x000000

B1 Match

0x0009000x000900

0xFFFFFF
0x001000
0x000900

Update to
A1

0xxxxxxx0x000200

Update to
A1

0x001000

Selected

MODE[6] = 0

Counter Bus
A1 Match B1 Match

0xxxxxxx

0xxxxxxx

0x001000

Notes: 1 Writing EMIOS_An writes to A2.
2 Writing EMIOS_Bn writes to B2.
A2 value transferred to A1 according to OUn bit.
B2 value transferred to B1 according to OUn bit.

0x000200

Write to
B2

A1
Match

0x001000

A1 Value1

B1 Value

B2 Value2

0x001000

Output
Flip-Flop

Time
0x000000

B1 Match

0x000200

0xFFFFFF
0x001000
0x000900

0x000200

0x000900

Selected

MODE[6] = 1

Counter Bus
A1 Match B1 Match

0xxxxxxx 0x001000

Notes: 1 Writing EMIOS_An writes to A2.
2 Writing EMIOS_Bn writes to B2.

0x000200

Write to
B2

0x001000

Write to
A1 & B2

A1
Match

0x000900

0x000900

A2 value transferred to A1 according to OUn bit.
B2 value transferred to B1 according to OUn bit.

Enhanced Modular Input/Output Subsystem (eMIOS)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 16-51

16.4.4.4.15 Modulus Counter, Buffered Mode (MCB)

The MCB mode provides a time base which can be shared with other channels through the internal counter
buses. Register A1 is double buffered, thus allowing smooth transitions between cycles when changing the
A2 register value during operation. The A1 register is updated at the cycle boundary, which is defined as
when the internal counter reaches the value one. The internal counter values are within a range from one
up to register A1 value in MCB mode.

The MODE[6] bit selects the internal clock source if clear or external if set. When an external clock is
selected, the channel input pin is used as the channel clock source. The active edge of this clock is defined
by EDPOL and EDSEL bits in the EMIOS_CCR channel register.

When entering the MCB mode, if up counter is selected (MODE[4] = 0), the internal counter starts
counting up from its current value until an A1 match occurs. On the next system clock cycle after an A1
match occurs, the internal counter is set to one and the counter continues counting up. If up/down mode is
selected (MODE[4] = 1), the counter changes direction at the A1 match and counts down until it reaches
one and is then set to count up again. In this mode B1 is set to one and cannot be changed, as it is used to
generate a match to switch from down count to up count.

Versus the MC mode, the MCB mode counts between one and the A1 register value. The counter cycle
period in up count mode is equal to the A1 value. In up/down counter mode the period is defined by the
formula: (2 × A1) – 2.

Figure 16-37 illustrates the counter cycle for several A1 values. Register A1 is loaded with the A2 value
at the cycle boundary. Thus any value written to A2 within cycle (n) are updated to A1 at the next cycle
boundary, and therefore are used on cycle (n+1). The cycle boundary between cycle (n) and cycle (n+1) is
defined as the first clock cycle of cycle (n+1). Flags are set when A1 matches occur.

MODE[0:6] Unified Channel Mode of Operation

0b1010000 Modulus up counter, buffered, internal clock

0b1010001 Modulus up counter, buffered, external clock

0b1010010–0b1010001 Reserved

0b1010100 Modulus up/down counter, buffered
(FLAG set on one event, internal clock)

0b1010101 Modulus up/down counter, buffered
(FLAG set on one event, external clock)

0b1010110 Modulus up/down counter, buffered
(FLAG set on both events, internal clock)

0b1010111 Modulus up/down counter, buffered
(FLAG set on both events, external clock)

Enhanced Modular Input/Output Subsystem (eMIOS)

MPC5534 Microcontroller Reference Manual, Rev. 2

16-52 Freescale Semiconductor

Figure 16-37. eMIOS MCB Mode Example — Up Operation

NOTE
If a prescaler greater than 1 is used, there are several system clock cycles
between when the flag is asserted and the counter is set to one. You must
consider this when the A value is changed every cycle, because A1 is
updated on the cycle boundary, which is after the flag is set.

Figure 16-38 illustrates the MCB up/down counter mode. The A1 register is updated at the cycle boundary.
If A2 is written in cycle (n), this new value is used in cycle (n+1) for the next A1 match.

Flags are generated only at an A1 match if MODE[5] is 0. If MODE[5] is 1, flags are also generated at the
cycle boundary.

Figure 16-38. eMIOS MCB Mode Example — Up/Down Operation

EMIOS_CCNTRn

Time

Write to A2
Match A1 Match A1 Match A1

Write to A2

0x000001

0x000005
0x000006
0x000007

FLAG Set Event

0x000005 0x000007A2 Value

A1 Value 0x000006 0x000005 0x000007 0x000007

Note: A2 value transferred to A1 according to OUn bit.

EMIOS_CCNTRn

Time

Write to A2
Match A1 Match A1

Write to A2

0x000001

0x000005
0x000006
0x000007

FLAG Set Event

0x000005 0x000007A2 Value

A1 Value 0x000006 0x000005 0x000007

Note: A2 value transferred to A1 according to OUn bit.

Enhanced Modular Input/Output Subsystem (eMIOS)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 16-53

Figure 16-39 provides a more detailed illustration of the A1 update process in up counter mode. The A1
load signal is generated based on the detection of the internal counter reaching one, and has the duration
of one system clock cycle. During the load pulse A1 still holds its previous value. It is actually updated at
the second system clock cycle.

Figure 16-39. eMIOS MCB Mode Example — Up Operation A1 Register Update

Figure 16-40 illustrates the A1 register update process in up/down counter mode. A2 can be written at any
time within cycle (n) to use in cycle (n+1). Thus A1 receives the new value at the next cycle boundary.
The EMIOS_OUDR[n] bits can be used to disable the update of A1 register.

Figure 16-40. eMIOS MCB Mode Example — Up/Down Operation A1 Register Update

A1 Value 0x000008

0x000008

0x000001

EMIOS_CCNTR

0x000004
0x000006

A2 Value 0x000008 0x000004 0x000006

0x000002

0x000004 0x000006

Write to A2

A1 Load Signal

1

8

4
6

Selected Counter = 1
Time

Cycle n Cycle n+1 Cycle n+2
Match A1 Match A1Match A1

Write to A2

A2 value transferred to A1 according to OUn bit.

EMIOS_CCNTR

Time

Write to A2
Match A1 Match A1

Write to A2

0x000001

0x000005
0x000006

0x000005

A2 Value

A1 Value 0x000006

0x000005

Selected Counter = 1

A1 Load Signal

0x000006 0x000006

0x000006

Cycle n Cycle n+1 Cycle n+2

A2 value transferred to A1 according to OUn bit (the transfer is triggered by the A1 load signal)

Enhanced Modular Input/Output Subsystem (eMIOS)

MPC5534 Microcontroller Reference Manual, Rev. 2

16-54 Freescale Semiconductor

16.4.4.4.16 Output Pulse Width and Frequency Modulation, Buffered Mode (OPWFMB)

This mode generates waveforms with variable duty cycle and frequency. The internal channel counter is
automatically selected as the time base, A1 sets the duty cycle and B1 determines the frequency. Both A1
and B1 are double buffered to allow smooth signal generation when changing the register values during
operation. 0% and 100% duty cycles are supported.

To provide smooth and consistent channel operation, this mode differs substantially from the OPWFM
mode. The main differences are in how A1 and B1 are updated, the delay from the A1 match to the output
flip-flop transition, and the range of the internal counter which ranges from 1 up to B1 value.

When a match on comparator A occurs, the output register is set to the value of EDPOL. When a match
on comparator B occurs, the output register is set to the complement of EDPOL. A B1 match also causes
the internal counter to transition to 1, thus re-starting the counter cycle.

Figure 16-41 shows an example of OPWFMB mode operation. The output flip-flop transition occurs when
the A1 or B1 match signal is negated, as detected by the negative edge of the A1 and B1 match signals.
For example, if register A1 is set to 0x000004, the output flip-flop transitions 4 counter periods after the
cycle starts, plus one system clock cycle. In Figure 16-41 the prescaler ratio is set to two (see
Section 16.5.3, “Time Base Generation).

Figure 16-41. eMIOS OPWFMB Mode Example — A1/B1 Match to Output Register Delay

MODE[0:6] Unified Channel Mode of Operation

0b1011000 Output pulse width and frequency modulation, buffered
(FLAG set at match of internal counter and comparator B)

0b1011001 Reserved

0b1011010 Output pulse width and frequency modulation, buffered
 (FLAG set at match of internal counter and comparator A or comparator B)

8

1

4

A1 Match

5

A1 Value 0x000004

A1 Match

A1 Match Negative

Output Flip-Flop

Time

B1 Match
B1 Match

B1 Match Negative

B1 Value 0x000008

System Clock

Prescaled Clock

Edge Detection

Edge Detection

Negative
Edge Detect

Negative
Edge Detect

EDPOL = 0

EMIOS_CCNTRn

Enhanced Modular Input/Output Subsystem (eMIOS)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 16-55

Figure 16-42 shows the generated output signal if A1 is 0. Since the counter does not reach zero in this
mode, the channel internal logic infers a match as if A1 = 1, with the difference that in this case the positive
edge of the match signal is used to trigger the output flip-flop transition instead of the negative edge that
is used when A1 = 1. The A1 positive edge match signal from cycle (n+1) occurs at the same time as the
B1 match negative edge from cycle (n). This allows the use of the A1 match positive edge to mask the B1
match negative edge when they occur at the same time. The result is that no transition occurs on the output
flip-flop, and a 0% duty cycle is generated.

Figure 16-42. eMIOS OPWFMB Mode Example — A1 = 0 (0% Duty Cycle)

Figure 16-43 shows the timing for the A1 and B1 loading. A1 and B1 use the same signal to trigger a load,
which is generated based on the selected counter reaching one. This event is defined as the cycle boundary.
The load signal pulse has the duration of one system clock cycle and occurs at the first system clock period
of every cycle of the counter. If A2 and B2 are written within cycle (n), their values are loaded into A1 and
B1, respectively, at the first clock of cycle (n+1). The update disable bits, EMIOS_OUDR, can be used to
control the update of these registers, thus allowing the delay of A1 and B1 update for synchronization
purposes.

During the load pulse A1 still holds its old value, which is updated on the following system clock cycle.
During the A1 load pulse, an internal by-pass allows the use of A2 instead of A1 for matches if A2 is either
0 or 1, thus allowing matches to be generated even when A1 is being loaded. This approach allows a
uniform channel operation for any A2 value, including 1 and 0.

In Figure 16-43 it is assumed that the channel and global prescalers are set to one, meaning that the channel
internal counter transition at every system clock cycle. FLAGs can be generated only on B1 matches when

1

4
5

A1 Value 0x000004

A1 Match

A1 Match Negative

Output Flip-Flop

Time

B1 Match Negative Edge Detect

B1 Match

B1 Match Negative

B1 Value 0x000008

System Clock

Prescaled Clock

A2 Value 0x000000
0x000000

A1 Match Positive A1 Match Positive Edge Detect

No Transition at this Point

1

Cycle n Cycle n+1

Edge Detection

Edge Detection

Edge Detection

A1 Match
Negative
Edge Detect

EDPOL = 0

Write to A2

EMIOS_CCNTRn

Enhanced Modular Input/Output Subsystem (eMIOS)

MPC5534 Microcontroller Reference Manual, Rev. 2

16-56 Freescale Semiconductor

MODE[5] is cleared, or on both A1 and B1 matches when MODE[5] is set. Since B1 FLAG occurs at the
cycle boundary, this flag can be used to indicate that A2 or B2 data written on cycle (n) were loaded to A1
or B1, respectively, thus generating matches in cycle (n+1).

Figure 16-43. eMIOS OPWFMB Mode Example — A1/B1 Updates and Flags

Figure 16-44 shows the operation of the output disable feature in OPWFMB mode. Unlike OPWFM mode,
the output disable forces the channel output flip-flop to the EDPOL bit value. This functionality targets
applications that use active high signals and a high to low transition at A1 match. For such cases EDPOL
must be 0.

Cycle n Cycle n+1 Cycle n+2

A1 Value

B1 Value

B2 Value

0x000008

0x000002

0x000006

0x000008

0x000001

0x000004
0x000006

MODE[0] = 1

A2 Value 0x000002 0x000004 0x000006

0x000002

0x000004 0x000006

0x000008 0x000006

Output Flip-Flop

Write to B2
 Match A1 Match B1

 Match B1

A1/B1 Load Signal

Due to B1 Match

FLAG Set Event

Cycle n-1

Time

Write to A2
Match A1

 Write to A2 Match B1

EDPOL = 0

EMIOS_CCNTRn

Enhanced Modular Input/Output Subsystem (eMIOS)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 16-57

Figure 16-44. eMIOS OPWFMB Mode Example — Active Output Disable

The output disable has a synchronous operation, meaning that the assertion of the output disable input
signal causes the channel output flip-flop to transition to EDPOL at the next system clock cycle. If the
output disable input is negated, the output flip-flop transitions at the following A1 or B1 match.

In Figure 16-44 it is assumed that the output disable input is enabled and selected for the channel (see
Section 16.3.1.7, “eMIOS Channel Control Register EMIOS_CCRn,” for a detailed description of the
ODIS and ODISSL bits and selection of the output disable inputs).

The FORCMA and FORCMB bits allow the software to force the output flip-flop to the level
corresponding to a match on comparators A or B respectively. Similar to a B1 match, FORCMB clears the
internal counter. The FLAG bit is not set when the FORCMA or FORCMB bits are set.

Figure 16-45 illustrates the generation of 100% and 0% duty cycle signals. It is assumed that EDPOL = 0
and the prescaler ratio is 1. Initially A1 = 0x000008 and B1 = 0x000008. In this case, a B1 match has
precedence over an A1 match, thus the output flip-flop is set to the complement of EDPOL. This cycle
corresponds to a 100% duty cycle signal. The same output signal can be generated for any A1 value greater
than or equal to B1.

Cycle n Cycle n+1 Cycle n+2

A1 Value

B1 Value

B2 Value

0x000008

0x000002

0x000006

0x000008

0x000001

0x000004
0x000006

MODE[0] = 1

A2 Value 0x000002 0x000004 0x000006

0x000002

0x000004 0x000006

0x000008 0x000006

Output Flip-Flop

Write to B2
 Match A1 Match B1

 Match B1

A1/B1 Load Signal

Due to B1 Match

FLAG Set Event

Cycle n-1

Time

Write to A2
Match A1

 Write to A2 Match B1

EDPOL = 0

EMIOS_CCNTRn

Enhanced Modular Input/Output Subsystem (eMIOS)

MPC5534 Microcontroller Reference Manual, Rev. 2

16-58 Freescale Semiconductor

Figure 16-45. eMIOS OPWFMB Mode Example — 100% to 0% Duty Cycle

A 0% duty cycle signal is generated if A1 = 0 as shown in Figure 16-45 cycle 9. In this case the
B1 = 0x000008 match from cycle 8 occurs at the same time as the A1 = 0x000000 match from cycle 9.
See Figure 16-42 for a description of A1 and B1 match generation for a case where A1 match has
precedence over B1 match and the output signal transitions to EDPOL.

16.4.4.4.17 Center Aligned Output Pulse Width Modulation, Buffered Mode (OPWMCB)

This mode generates a center aligned PWM with dead time insertion on the leading or trailing edge. A1
and B1 registers are double buffered to allow smooth output signal generation when changing A2 or B2
values during operation.

The selected counter bus for a channel configured to OPWMCB mode must be another channel running
in MCB up/down counter mode (see Section 16.4.4.4.15, “Modulus Counter, Buffered Mode (MCB)”).
Register A1 contains the ideal duty cycle for the PWM signal and is compared with the selected time base.
Register B1 contains the dead time value and is compared against the internal counter. For a leading edge
dead time insertion, the output PWM duty cycle is equal to the difference between register A1 and register
B1, and for a trailing edge dead time insertion, the output PWM duty cycle is equal to the sum of register
A1 and register B1. The MODE[6] bit selects between trailing and leading dead time insertion,
respectively.

MODE[0:6] Unified Channel Mode of Operation

0b1011100 Center aligned output pulse width modulation, buffered
(FLAG set on trailing edge, trailing edge dead-time)

0b1011101 Center aligned output pulse width modulation, buffered
(FLAG set on trailing edge, leading edge dead-time)

0b1011110 Center aligned output pulse width modulation, buffered
(FLAG set on both edges, trailing edge dead-time)

0b1011111 Center aligned output pulse width modulation, buffered
(FLAG set on both edges, leading edge dead-time)

0x000008 0x000007 0x000006 0x000005 0x000004 0x000003 0x000002 0x000001 0x000000

0%100%

EDPOL = 0

A1 Value

B1 Value

Output Flip-Flop

0x000008

Prescaler = 1

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

0x000007 0x000006 0x000005 0x000004 0x000003 0x000002 0x000001 0x000000A2 Value

Time

EMIOS_CCNTRn

Enhanced Modular Input/Output Subsystem (eMIOS)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 16-59

NOTE
It is recommended that the internal prescaler of the OPWMCB channel be
set to the same value as the MCB channel prescaler, and the prescalers must
also be synchronized. This allows the A1 and B1 registers to represent the
same time scale for duty cycle and dead time insertion.

Figure 16-46 illustrates loading of the A1 and B1 registers, which occurs when the selected counter bus
reaches the value one. This counter value defines the cycle boundary. Values written to A2 or B2 within
cycle (n) are loaded into A1 or B1 registers and are used to generate matches in cycle (n+1).

Figure 16-46. eMIOS OPWMCB Mode Example — A1/B1 Register Loading

The EMIOS_OUDR[n] bit can be used to disable the A1 and B1 updates, thus allowing the loading of these
registers to be synchronized with the load of A1 or B1 registers in others channels. By using the update
disable bit, the A1 and B1 registers can be updated in the same counter cycle.

In this mode A1 matches set the internal counter to one. When operating with leading edge dead time
insertion, the first A1 match resets the internal counter to 0x000001. When a match occurs between
register B1 and the internal time base, the output flip-flop is set to the value of the EDPOL bit. In the
following match between A1 and the selected time base, the output flip-flop is set to the complement of
the EDPOL bit. This sequence repeats continuously. Figure 16-47 shows two cycles of a center aligned
PWM signal. Both A1 and B1 register values are changing within the same cycle, which allows the duty
cycle and dead time values to be changed at simultaneously.

Selected

Time

Write to A2
Match A1 Match A1

Write to A2

0x000001

0x000005
0x000006

0x000015

A1 Value

A2 Value 0x000020

0x000015

Selected Counter = 1

A1/B1 Load Signal

0x000020 0x000016

0x000016

Cycle n Cycle n+1 Cycle n+2

B1 Value 0x000004

B2 Value 0x000004 0x0000060x000005

0x000005 0x000006

Counter
Bus

Enhanced Modular Input/Output Subsystem (eMIOS)

MPC5534 Microcontroller Reference Manual, Rev. 2

16-60 Freescale Semiconductor

Figure 16-47. eMIOS PWMCB Mode Example — Lead Dead Time Insertion

As shown in Figure 16-48, when operating with trailing edge dead time insertion the first match between
A1 and the selected time base sets the output flip-flop to the value of the EDPOL bit and resets the internal
counter to 0x000001. In the second match between register A1 and the selected time base, the internal
counter is reset to 0x000001 and B1 matches are enabled. When the match between register B1 and the
selected time base occurs the output flip-flop is set to the complement of the EDPOL bit. This sequence
repeats continuously.

EDPOL = 1

Internal

Internal Counter is

Dead-Time

A1 Value

A2 Value

B1 Value

B2 Value

Selected

0x000002 0x000004

0x000002 0x000004

0x000015

0x000015 0x000013

0x000013

0x000001
0x000002
0x000004

0x000015
0x000013

0x000020

Output Flip-Flop

FLAG Set Event

0x000001

Counter Bus

Time

Time

Time Base

Dead-Time

Set to 1 on A1 Match

Write to B2
Write to A2

Enhanced Modular Input/Output Subsystem (eMIOS)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 16-61

Figure 16-48. eMIOS PWMCB Mode Example — Trailing Dead Time Insertion

FLAG can be generated in the trailing edge of the output PWM signal when MODE[5] is cleared, or on
both edges when MODE[5] is set. If subsequent matches occur on A and B, the PWM pulses continue to
be generated, regardless of the state of the FLAG bit.

NOTE
In OPWMCB mode, FORCMA and FORCMB do not have the same
behavior as a regular match:

FORCMA has different behaviors depending on the selected dead time
insertion mode. In leading dead time insertion mode, writing one to
FORCMA sets the output flip-flop to the compliment of EDPOL. In trailing
dead time insertion mode, the output flip-flop is forced to the value of
EDPOL.

If FORCMB is set, the output flip-flop value depends on the selected dead
time insertion mode. In leading dead time insertion mode, FORCMB sets
the output flip-flop to the value of EDPOL. In trailing dead time insertion
mode, the output flip-flop is forced to the compliment of EDPOL.

EDPOL = 1

Internal

Internal Counter is

Dead-Time

A1 Value

A2 Value

B1 Value

B2 Value

Selected

0x000002 0x000004

0x000002 0x000004

0x000015

0x000015 0x000013

0x000013

0x000001
0x000002
0x000004

0x000015
0x000013

0x000020

Output Flip-Flop

FLAG Set Event

0x000001

Counter Bus

Time

Time

Time Base

Dead-Time

Set to 1 on A1 Match

Write to B2
Write to A2

Enhanced Modular Input/Output Subsystem (eMIOS)

MPC5534 Microcontroller Reference Manual, Rev. 2

16-62 Freescale Semiconductor

NOTE
Setting the FORCMA bit does not reset the internal time base to 0x000001
as a regular A1 match does. FORCMA and FORCMB have the same
behavior even in freeze or normal mode regarding the output flip-flop
transition.

The FLAG bit is not set in the case of the FORCMA, FORCMB or both bits being set at the same time.

When FORCMA and FORCMB are both set, the output flip-flop is set to the compliment of the EDPOL
bit. This is equivalent to FORCMA having precedence over FORCMB when lead dead time insertion is
selected and FORCMB having precedence over FORCMA when trailing dead time insertion is selected.

Duty cycles from 0% to 100% can be generated by setting appropriate A1 and B1 values relative to the
period of the external time base. Setting A1 = 1 or A1 = 0 generates a 100% duty cycle waveform. If
A1 > period ÷ 2, where period refers to the selected counter bus period, then a 0% duty cycle is produced.
Assuming EDPOL is one and OPWMCB mode with trailing dead time insertion mode is selected, 100%
duty cycle signals can be generated if B1 occurs at or after the cycle boundary (external counter = 1).

NOTE
A special case occurs when A1 is set to the external counter bus period ÷ 2,
which is the maximum value of the external counter. In this case the output
flip-flop is constantly set to the EDPOL bit value.

Internal channel logic prevents matches from one cycle to propagate to the next cycle. In trailing dead time
insertion mode, a B1 match from cycle (n) could eventually cross the cycle boundary and occur in cycle
(n+1). In this case the B1 match is masked out and does not cause the output flip-flop to transition.
Therefore matches in cycle (n+1) are not affected by the late B1 matches from cycle (n).

Figure 16-49 shows a 100% duty cycle output signal generated by setting A1 = 4 and B1 = 3. In this case
the trailing edge is positioned at the boundary of cycle (n+1), which is actually considered to belong to
cycle (n+2) and therefore does not cause the output flip-flip to transition.

Enhanced Modular Input/Output Subsystem (eMIOS)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 16-63

Figure 16-49. eMIOS PWMCB Mode Example — 100% Duty Cycle (A1 = 4, B1 = 3)

The output disable input, if enabled, causes the output flip-flop to transition to the compliment of EDPOL.
This allows to the channel output flip-flop to be forced to a safety state. The internal channel matches
continue to occur in this case, thus generating flags. When the output disable is negated, the channel output
flip-flop is again controlled by A1 and B1 matches. This process is synchronous, meaning that the output
channel pin transitions only occur on system clock edges.

As in OPWMB and OPWFMB modes, the match signal used to set or clear the channel output flip-flop is
generated on the negation of the channel comparator output signal which compares the selected time base
with A1 or B1. See Figure 16-41, which illustrates the delay from matches to output flip-flop transition in
OPWFMB mode.

0x000001

0x000020

0x000004

A1 Value

A2 Value
B1 Value
B2 Value

0x000004

0x000001

Output Flip-Flop

0x000003

0x000015

0x000003
0x000015

0x000003

Selected
Counter Bus

Time

Write to B2

Time

Cycle n Cycle n+1 Cycle n+2

Dead-Time
Dead-Time

Dead-Time

Enhanced Modular Input/Output Subsystem (eMIOS)

MPC5534 Microcontroller Reference Manual, Rev. 2

16-64 Freescale Semiconductor

16.4.4.4.18 Output Pulse Width Modulation, Buffered Mode (OPWMB)

OPWMB mode is used to generate pulses with programmable leading and trailing edge placement. An
external counter is selected from one of the counter buses. The A1 register value defines the first edge and
B1 defines the second edge. The output signal polarity is defined by the EDPOL bit. If EDPOL is zero, a
negative edge occurs when A1 matches the selected counter bus and a positive edge occurs when B1
matches the selected counter bus.

The A1 and B1 registers are double buffered and updated from A2 and B2, respectively, at the cycle
boundary. The load operation is similar to the OPWFMB mode. See Figure 16-43 for more information on
A1 and B1 register updates.

Flags are generated at B1 matches when MODE[5] is cleared, or on both A1 and B1 matches when
MODE[5] is set. If subsequent matches occur on comparators A and B, the PWM pulses continue to be
generated regardless of the state of the FLAG bit.

The FORCMA and FORCMB bits allow software to force the output flip-flop to the level corresponding
to a match on A1 or B1 respectively. FLAG is not set by the FORCMA and FORCMB operations.

The following rules apply to the OPWMB mode:

• B1 matches have precedence over A1 matches if they occur at the same time within the same
counter cycle.

• A1 = 0 match from cycle (n) has precedence over a B1 match from cycle (n-1).

• A1 matches are masked if they occur after a B1 match within the same cycle.

• Values written to A2 or B2 on cycle (n) are loaded to A1 or B1 at the following cycle boundary
(assuming EMIOS_OUDR[n] is not asserted). Thus the new values is used for A1 and B1 matches
in cycle (n+1).

Figure 16-50 illustrates operation in OPWMB mode with A1/B1 matches and the transition of the channel
output flip-flop. In this example EDPOL is zero.

MODE[0:6] Unified Channel Mode of Operation

0b1100000 Output pulse width modulation, buffered
(FLAG set on second match)

0b1100001 Reserved

0b1100010 Output pulse width modulation, buffered
(FLAG set on both matches)

Enhanced Modular Input/Output Subsystem (eMIOS)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 16-65

Figure 16-50. eMIOS OPWMB Mode Example—Matches and Flags

The output flip-flop transitions are based on the negative edges of the A1 and B1 match signals.
Figure 16-50 shows the value of A1 being set to zero in cycle (n+1). In this case the match positive edge
is used instead of the negative edge to transition the output flip-flop.

Figure 16-51 illustrates the channel operation for 0% duty cycle. The A1 match signal positive edge occurs
at the same time as the B1 = 8 signal negative edge. In this case the A1 match has precedence over the B1
match, causing the output flip-flop to remain at the EDPOL value, thus generating a 0% duty cycle.

1

4

A1 Match Nega-

6

A1 Value 0x000004

A1 Match

Output Flip-Flop

Selected

Time

B1 Match
B1 Match

B1 Value 0x000006

System Clock

Prescaled Clock

A2 Value 0x000000

0x000000

A1 Match Positive Edge Detect

1

8
6

FLAG Bit Set

EDPOL = 0

A1 Match Negative

B1 Match Negative

A1 Match Positive

Edge Detection

Edge Detection

Edge Detection

Negative Edge Detect

Cycle n Cycle n+1
Write to A2

tive Edge Detect

Counter Bus

Enhanced Modular Input/Output Subsystem (eMIOS)

MPC5534 Microcontroller Reference Manual, Rev. 2

16-66 Freescale Semiconductor

Figure 16-51. eMIOS OPWMB Mode Example—0% Duty Cycle

Figure 16-52 shows the operation of the OPWMB mode with the output disable signal asserted. The output
disable forces a transition in the output flip-flop to the EDPOL bit value. After the output disable is
negated, the output flip-flop is allowed to transition at the next A1 or B1 match. The output disable does
not modify the flag bit behavior. There is one system clock delay between the assertion of the output
disable signal and the transition of the output flip-flop.

1

4

A1 Match Nega-

A1 Value 0x000004

A1 Match

Output Flip-Flop

Selected

Time

B1 Match
B1 Match

B1 Value 0x000006

System Clock

Prescaled Clock

A2 Value 0x000000

0x000000

A1 Match Positive Edge Detect

1

8

FLAG Bit Set

EDPOL = 0

A1 Match Negative

B1 Match Negative

A1 Match Positive

Edge Detection

Edge Detection

Edge Detection

Negative Edge Detect

Cycle n Cycle n+1
Write to A2

8

tive Edge Detect

Counter Bus

Enhanced Modular Input/Output Subsystem (eMIOS)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 16-67

Figure 16-52. eMIOS OPWMB Mode Example—Active Output Disable

Figure 16-53 shows a waveform changing from 100% to 0% duty cycle. In this case EDPOL is zero and
B1 is set to the same value as the period of the selected external time base.

Figure 16-53. eMIOS OPWMB Mode Example—100% to 0% Duty Cycle

In Figure 16-53 if B1 is set to a value lower than 0x000008 it is not possible to achieve 0% duty cycle by
only changing A1 register value. Since B1 matches have precedence over A1 matches, the output flip-flop
transitions to the compliment of EDPOL at B1 matches. In this example, if B1 = 0x000009, a B1 match
does not occur, and thus a 0% duty cycle signal is generated.

Cycle n Cycle n+1 Cycle n+2

A1 Value

B1 Value

B2 Value

0x000008

0x000002

0x000006

0x000008

0x000001

Selected

0x000004
0x000006

MODE[0] = 1

A2 Value 0x000002 0x000004

0x000002

0x000004 0x000006

0x000008 0x000006

Output Flip-Flop

Write to B2
 Match A1 Match B1

 Match B1

A1/B1

Due to B1 Match

FLAG Set Event

Cycle n-1

Time

Write to A2
Match A1

 Write to A2 Match B1

Load Signal

EDPOL = 0

0x000006

Counter Bus

0x000008 0x000007 0x000006 0x000005 0x000004 0x000003 0x000002 0x000001 0x000000

0%100%

Selected

EDPOL = 0

A1 Value

B1 Value

Output Flip-Flop

0x000008

Prescaler = 1

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

0x000007 0x000006 0x000005 0x000004 0x000003 0x000002 0x000001 0x000000A2 Value

Time

Counter Bus

Enhanced Modular Input/Output Subsystem (eMIOS)

MPC5534 Microcontroller Reference Manual, Rev. 2

16-68 Freescale Semiconductor

16.5 Initialization and Application Information
Upon reset all of the unified channels of the eMIOS default to general purpose inputs (GPIO input mode).

16.5.1 Considerations on Changing a UC Mode

Before changing an operating mode, the UC must be programmed to GPIO mode, and EMIOS_CADRn
and EMIOS_CBDRn must be updated with the correct values for the next operating mode. Then the
EMIOS_CCRn can be written with the new operating mode. If a UC is changed from one mode to another
without performing this procedure, the first operating cycle of the selected time base is unpredictable.

NOTE
When interrupts are enabled and an interrupt is generated, clear the FLAG
bits before exiting the interrupt service routine.

16.5.2 Generating Correlated Output Signals

Correlated output signals can be generated by all output operating modes. Bits ODISn can be used to
control the update of these output signals.

To guarantee that the internal counters of correlated channels are incremented in the same clock cycle, the
internal prescalers must be set up before enabling the global prescaler. If the internal prescalers are set after
enabling the global prescaler, the internal counters can increment in the same ratio, but at a different clock
cycle.

When an output disable condition occurs, the software interrupt routine must service the output channels
before servicing the channels running SAIC. This procedure avoid glitches in the output pins.

16.5.3 Time Base Generation

For all channel operation modes that generate a time base (MC, OPWFM, OPWM, MCB, OPWFMB and
OPWMB), the clock prescaler can use several ratios calculated as:

The prescaled clocks in Figure 16-55, Figure 16-56, and Figure 16-57 illustrate this ratio. For example, if
the ratio is 1, the prescaled clock is high and continuously enables the internal counter (EMIOS_CCNTRn)
(Figure 16-55); if the ratio is 3, then it pulses every 3 clock cycles (Figure 16-56) and the internal counter
increments every 3 clock cycles; if the ratio is 9, it pulses every 9 clock cycles, etc. This high pulse enables
the EMIOS_CCNTRn to increment as long as no other conditions disable this counter. The match signal
is generated by pulsing every time the internal counter matches the programmed match value. For the same
programmed match value, the period is shorter when using a prescaler ratio greater than one.

Ratio GPRE 1+() UCPRE 1+()×=

Enhanced Modular Input/Output Subsystem (eMIOS)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 16-69

Figure 16-54. eMIOS Time Base Generation Block Diagram

Figure 16-55. eMIOS Time Base Example—Fastest Prescaler Ratio

Figure 16-56. eMIOS Time Base Example—Prescale Ratio = 3, Match Value = 3

Global Prescaler

GPRENGPRE

System

Clock Prescaler

UCPRENUCPRE

Ratio = (GPRE + 1) × (UCPRE + 1)

Prescaled Clock CCNTRn
Internal Counter

Match Signal

Match Value

Clock

Prescaled Clock
(Ratio = 1 (Bypassed))

1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

NOTE: The period of the time base includes the match value. When a match occurs, the first
clock cycle is used to clear the internal counter, starting another period

Clock

See Note

Match Value = 3

Internal Counter
EMIOS_CCNTRn

Prescaled Clock

Internal Counter 1 2 0 3

NOTE: The period of the time base does not include the match value. When a match occurs,
the first clock cycle is used to clear the internal counter, starting another period

Clock

See Note

3 1 2 3 0 1 2EMIOS_CCNTRn

(Ratio = 3)

Match Value = 3

Enhanced Modular Input/Output Subsystem (eMIOS)

MPC5534 Microcontroller Reference Manual, Rev. 2

16-70 Freescale Semiconductor

Figure 16-57. eMIOS Time Base Example—Prescale Ratio = 2, Match Value = 5

Prescaled Clock

1 2 0 3

NOTE: The period of the time base does not include the match value. When a match occurs,
the first clock cycle is used to clear the internal counter, starting another period

Clock

See Note

3 1 2 3 0 1 2

(Ratio = 3)

Match Value = 3

Internal Counter
EMIOS_CCNTRn

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 17-1

Chapter 17
Enhanced Time Processing Unit (eTPU)

17.1 Introduction
The enhanced time processing unit (eTPU) is the timing unit featured on this microcontroller that operates
in parallel with the device core (CPU). The eTPU does the following:

• Executes programs independently from the host core

• Detects and precisely records timing of input events

• Generates complex output waveforms

• Is controlled by the core without a requirement for real-time host processing

The host core setup and service times for each input and output event are greatly minimized. This device
contains one eTPU.

The eTPU improves the performance of the device by providing high resolution timing:

• eTPU dedicated channels that include two match and two capture registers, as opposed to the
previous generation TPUs which only had one of each register

• eTPU engines that are optimized with specific instructions to service channel hardware

• The fast instruction execution rate of the eTPU engine that reduces service time

Because responding to hardware service requests is primarily done by the eTPU engine, the host is free to
handle higher level operations.

NOTE
All references to an eTPU Reference Manual are referring to the Enhanced
Time Processing Unit (eTPU) Reference Manual.

17.1.1 eTPU Implementation

For more detailed information regarding the eTPU module and compiler, see the Enhanced Time
Processing (eTPU) Reference Manual. The device contains a specific implementation of the eTPU’s full
functionality. This chapter focuses only on an eTPU overview and those details that are different than the
full instantiation of the module. These differences include the following:

• 2.5 KBs of shared data memory (SDM). This memory is alternately referred to as eTPU shared
parameter (data) RAM (SPRAM).

• 12 KBs of shared code memory (SCM).

Enhanced Time Processing Unit (eTPU)

MPC5534 Microcontroller Reference Manual, Rev. 2

17-2 Freescale Semiconductor

The eTPU debug interface is built into the device’s debug module. See Section 10.2.1 of the eTPU
reference manual for details on eTPU debug.

• Data transfer requests are implemented as a single DMA request to the DMA controller. All 32
channels’ data transfer request signals are logically ORed to produce the single DMA request.

• I/O channel pairs can be shared on a common pin. The output buffer enable (OBE) is not used in
this device. The outputs are enabled in the SIU; see Chapter 6, “System Integration Unit (SIU).”

Because of the above differences between this device’s implementation of the eTPU and the full eTPU,
full register bit descriptions are included within this chapter as well as in the Enhanced Time Processing
(eTPU) Reference Manual.

17.1.2 Block Diagram

Figure 17-1 shows a top-level eTPU block diagram. This device has a single eTPU engine configuration.

Figure 17-1. eTPU Block Diagram

eTPU Engine A
Shared

Data Memory

Slave Interface

Shared
BIURegisters

Host Core

Debug

eTPU A Ch. 0–31

STAC
Interface

Interface
(SPRAM)

SCM
Shared Code Memory

(12 KBs)

Enhanced Time Processing Unit (eTPU)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 17-3

Figure 17-2 shows the block diagram for the eTPU engine.

Figure 17-2. eTPU Engine Block Diagram

17.1.3 eTPU Operation Overview

The eTPU is a real-time microprocessor subsystem. Therefore it runs microengine code from instruction
memory (SCM) to handle specific events and accesses data memory (SDM) for parameters, work data, and
application state information. Events can originate from I/O channels (due to pin transitions and/or time
base matches), device core requests, or inter-channel requests. Events that call for local eTPU processing
activate the microengine by issuing a service request. The service request microcode can send an interrupt
to the device core, but the core cannot be directly interrupted by I/O channel events.

Each channel is associated with a function that defines its behavior. A function is a software entity
consisting of a set of microengine routines, called threads, that respond to eTPU service requests. Function
routines, which reside in the SCM, are also responsible for channel configuration. A function can be
assigned to several channels, but a channel can only be associated with one function at a given moment.

TCR1

TCR2/

Microengine

Code

Host

Interface

Channel
Control

 Time Base
 Configuration

Engine
Configuration

Scheduler

Control and Data

Control
Timer

Channels

Channel 0

Channel 1

Channel 31

C
ha

nn
el

Control

TCRCLK
Pin

Mul/Div/MAC

Angle Clock

Service Requests

(SCM)

Data

 Memory

Shared

(SDM)

Shared

Memory

Fetch and
Decode

Execution

D
at

a

C
od

e
Unit

Debug
InterfaceNDEDI

Control
and Data

Pins

STAC
Bus

STAC
Interface

To
Host

to

Enhanced Time Processing Unit (eTPU)

MPC5534 Microcontroller Reference Manual, Rev. 2

17-4 Freescale Semiconductor

If the device core reconfigures the channel function, the eTPU can change the function assigned to that
channel. The association between functions and channels is defined by the device core.

The eTPU hardware supplies resource sharing features that support concurrency:

• A hardware scheduler dispatches the service request microengine routines based on a set of
priorities defined by the device’s core. Each channel has its own unique priority assignment that
primarily depends on CPU assignment. The channel’s number is an inherent property also used to
determine priority.

• A service request routine cannot be interrupted by another service request until it ends, that is, until
an end instruction is executed. This sequence of uninterrupted instruction execution is called a
thread. The core can terminate the thread by writing 1 to the FEND bit in the ETPU_ECR register.

• Channel-specific contexts (registers and flags) are automatically switched between the end of a
thread and the beginning of the next one.

• SDM arbitration, a dual-parameter coherency controller, and semaphores can be used to ensure
coherent access to eTPU data shared by both eTPU engines and the device core.

17.1.3.1 eTPU Engine

The eTPU engine processes input pin transitions and generates output pin waveforms. These events are
triggered by eTPU timers (time bases) that are driven by a system clock to give absolute time control or
by an asynchronous counter such as an angle clock that can track the angle of a rotating shaft.

Each eTPU engine consists of the following blocks: 32 independent timer channels, a task scheduler, a host
interface, and a microprocessor (hereinafter called a microengine) that has dedicated hardware for input
signal processing and output signal generation over the 32 I/O channels. Each channel can also choose
between two 24-bit counter registers for a time base.

The microengines fetch microinstructions from shared code memory (SCM). eTPU application parameters
and global and local variables, referred to as work data, are held in 32-bit shared data memory (SDM),
which is also used for passing information between the device’s core and both (or one) microengines. The
bus interface unit (BIU) allows the device’s core to access eTPU registers, SDM, and SCM.

17.1.3.2 Time Bases

The eTPU engine has two 24-bit count registers TCR1 and TCR2 that provide reference time bases for all
match and input capture events. Prescalers for both time bases are controlled by the device core through
bit fields in the eTPU engine configuration registers.

The values for each of TCR1 and TCR2 counter registers can be independently derived from the system
clock or from an external input via the TCRCLK pin. In addition, the TCR2 time base can be derived from
special angle-clock hardware that enables implementing angle-based functions. This feature is added to
support advanced angle-based engine control applications.

The TCRs can also drive an eMIOS time base through the shared time and counter (STAC) bus, or they
can be written by eTPU function software.

Enhanced Time Processing Unit (eTPU)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 17-5

17.1.3.3 eTPU Timer Channels

Each eTPU engine has 32 identical, independent channels. Each channel corresponds to an input/output
signal pair. Every channel has access to two 24-bit counter registers, TCR1 and TCR2.

Each channel consists of event logic which supports a total of four events, two capture and two match
events. The event logic contains two 24-bit capture registers and two 24-bit match registers. The match
registers are compared to a selected TCR by greater-than-or-equal-to and equal-only comparators. The
match and compare register pairs enable many combinations of single and double-action functions.

The channel configuration can be changed by, with restrictions, the microengine. Each channel can
perform double capture, double match or a variety of other capture-match combinations. Service requests
can be generated on one or both of the match events and/or on one of the capture events.

Digital filters that have different filtering modes are provided for the input signals.

Every channel can use any time base or angle counter for either match or capture operation. For example,
a match on TCR1 can capture the value of TCR2. The channels can request service from the microengine
due to recognized pin transitions (input events) or time base matches.

Every eTPU channel can be configured with the following combinations:

• Single input capture, no match (TPU3 functionality)

• Single input capture with single match time-out (TPU3 functionality)

• Single input capture with double match time-out with several double match submodes

• Double input capture with single or double match time-out with several double match submodes

• Single output match (TPU3 functionality)

• Double output match with several double match submodes

• Input-dependent output generation

The double match functionality has various combinations for generation of service request and
determining pin actions.

17.1.3.3.1 Host Interface

The engine’s host interface allows the device core to control the operation of the eTPU. For the eTPU to
start operation, the device core must initialize the eTPU by writing to the appropriate host interface
registers to assign a function and priority to each channel. In addition, the device core writes to the host
service request and channel configuration registers to further define operation for each initialized channel.

NOTE
The host transfers the code image for the eTPU microcode to the SCM, then
the host enables eTPU access to the SCM (which also disables host access).

Enhanced Time Processing Unit (eTPU)

MPC5534 Microcontroller Reference Manual, Rev. 2

17-6 Freescale Semiconductor

17.1.3.3.2 Shared Data Memory (SDM)

The SDM works as data RAM that can be accessed by the device core and the eTPU engine. This memory
is used for either:

• Information transfer between the device core and the eTPU

• Data storage for the eTPU microcode program

The SDM width is 32 bits, and is accessible by the host in any of the three formats: byte, 16-bit, or 32-bit.
The eTPU can access the full 32 bits of the SDM, lower 24 bits or upper byte (8-bit).

The host can also access the SDM space mirrored in an alternate area with parameter sign extension (PSE).
PSE allows for 24-bit data to be accessed as 32 bit sign-extended data without using the device’s
bandwidth to extend the data.

Parameter signal extension accesses differ from the usual host accesses to the original SDM area as
follows:

• Writes are effective only to the lower 3 bytes of a word: the word’s most significant byte (byte
address) is kept unaltered in SDM.

Figure 17-3. SDM PSE Area Write

NOTE
For the most significant byte, the word format is big endian, as in the default
PowerPC word format.

• Reads return the lower 3 bytes of a word sign-extended to 32 bits, that is: the most significant bit
of the word’s second most significant byte (byte addresses) is copied in all 8 bits of the most
significant read byte.

[31:24] [23:16] [15:8] [7:0]

Write 24 bit data

SDM

Enhanced Time Processing Unit (eTPU)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 17-7

Figure 17-4. PSE Accesses

Each eTPU channel can be associated with a variable number of parameters located in the SDM, according
to its selected function. In addition, the SDM can be fully shared between two eTPU engines, enabling
communication between them. Each function can require a different number of parameters. During eTPU
initialization the host has to program channel base addresses, allocating proper parameters for each
channel according to its selected function.

In the host address space each parameter occupies four bytes (32 bits). eTPU usage of the upper byte is
achieved by having a 32-bit Preload (P) register that can access the upper byte, the lower 24 bits, or all the
32 bits. The microcode can switch between access sizes at any time.

Each function can require a different number of parameters. During the eTPU initialization the host has to
program channel base addresses, allocating proper parameters for each channel according to its selected
function.

17.1.3.3.3 Task Scheduler

As mentioned in Section 17.1.3, “eTPU Operation Overview,” every channel function is composed of one
or more threads, and threads cannot be interrupted by host or channel events, such as channel servicing.
The function of the task scheduler, therefore, is to recognize and prioritize the channels needing service
and grant execution time to each channel. The time given to an individual thread for execution or service
is called a time slot. The duration of a time slot is determined by the number of instructions executed in
the thread plus SDM wait-states received, and varies in length. Although several channels can request
service at the same time, the function threads must be executed serially.

At any time, an arbitrary number of channels can require service. The channel logic, eTPU microcode, or
the host application notifies the scheduler by issuing a service request.

Out of reset, all channels are disabled. The device core makes a channel active by assigning it one of three
priorities: high, middle, or low. The scheduler determines the order in which channels are serviced based
on channel number and assigned priority. The priority mechanism, implemented in hardware, ensures that
all requesting channels are serviced.

[31:24] [23:16] [15:8] [7:0]

SDM0 0 1 0 1 1 1 1 0 1 1 0 1 1 1 1 0 1 1 0 1 1 1 1

0 0 1 0 1 1 1 1 0 1 1 0 1 1 1 1 0 1 1 0 1 1 1 10 0 0 0 0 0 0 0

Example 1:
Read with
sign extension

[31:24] [23:16] [15:8] [7:0]

SDM1 0 1 0 1 1 1 1 0 1 1 0 1 1 1 1 0 1 1 0 1 1 1 1

1 0 1 0 1 1 1 1 0 1 1 0 1 1 1 1 0 1 1 0 1 1 1 11 1 1 1 1 1 1 1

Example 2:
Read with
sign extension

Enhanced Time Processing Unit (eTPU)

MPC5534 Microcontroller Reference Manual, Rev. 2

17-8 Freescale Semiconductor

17.1.3.3.4 Microengine

The eTPU microengine is a simple RISC implementation that performs each instruction in a microcycle
of two system clocks, while pre-fetching the next instruction through an instruction pipeline. Instruction
execution time is constant for the arithmetic logic unit (ALU) unless it gets wait states from SDM
arbitration.

Microcode is stored in shared code memory (SCM) that is 32 bits wide. The microengine instruction set
provides basic arithmetic and logic operations, flow control (jumps and subroutine calls), SDM access, and
channel configuration and control. The instruction formats are defined in such a way that allow particular
combinations of two or three of these operations with unconflicting resources to be executed in parallel in
the same microcycle, thus improving performance.

The microengine also has an independent multiply/divide/MAC unit that performs these complex
operations in parallel with other microengine instructions.

Channel functionality is integrated to the instruction set through channel control operations and
conditional branch operations, which support jumps/calls on channel-specific conditions. This allows
quick and terse channel configuration and control code, contributing to reduced service time.

17.1.3.4 Debug Interface

Nexus level 3 debug support is available through the eTPU Nexus development interface (NDEDI).
See Chapter 24, “Nexus Development Interface.”

17.1.4 Features

The eTPU includes these distinctive features:

• Up to 32 channels for each eTPU engine: each channel is associated with an I/O signal pair

— Enhanced input digital filters on the input pins for improved noise immunity. The eTPU digital
filter can use two samples, three samples, or work in continuous mode.

— Orthogonal channels, except for channel 0: each channel can perform any time function. Each
time function can be assigned to more than one channel at a given time, so each signal can have
any functionality. Channel 0 has the same capabilities of the others, but can also work with
special angle counter logic (see below).

— A link service request allows activation of a channel thread by request of another channel, even
between eTPU engines.

— A host service request allows activation of a channel thread by the device core request.

— Each channel has an event mechanism that supports single and double action functionality in
various combinations. It includes two 24-bit capture registers, two 24-bit match registers,
24-bit greater-equal or equal-only comparator.

Enhanced Time Processing Unit (eTPU)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 17-9

• Two independent 24-bit time bases for channel synchronization

— The first time base can be clocked by the system clock with programmable prescaler division
from 2 to 512 (in steps of 2).

— The first time base can also be clocked by an external signal with programmable prescaler
divisions of 1 to 256.

— The second time base can be clocked by an external signal with programmable prescaler
divisions from 1 to 64 or by the system clock divided by 8.

— The second time base has a programmable prescaler that applies to all TCR2 clock inputs
except the angle counter.

— The second time base counter can work as an angle counter, enabling angle-based applications
to match angle instead of time.

— The second time base can alternatively be used as a pulse accumulator gated by an external
signal.

— Either time base can be written or read by the eTPU engine at any time.

— Either time base can be read, but not written, by the host.

— Both time bases can be exported or imported from engine to engine through the STAC (shared
time and counter) bus.

NOTE
An engine cannot export/import to/from itself. An engine cannot import a
time base and/or angle count if it is in angle mode.

• Event-triggered RISC processor (microengine)

— 2-stage pipeline implementation (fetch and execution), with separate instruction memory
(SCM) and data memory (SDM).

— Two-system-clock microcycle fixed-length instruction execution for the ALU.

— 12 KBs of shared code memory (SCM).

— 2.5 KBs of shared data memory (SDM).

— Instruction set with embedded channel support, including specialized channel control
subinstructions and conditional branching on channel-specific flags.

— Channel-oriented addressing: channel-bound address mode with host configured channel base
address allows the same function to operate independently on different channels.

— Channel-bound data address space of up to 128 32-bit parameters (512 bytes).

— Global parameter address mode allows access to common channel data of up to 256 32-bit
parameters (1024 bytes).

— Support for indirect and stacked data access schemes.

— Parallel execution of: data access, ALU, channel control and flow control subinstructions in
selected combinations.

— 24-bit registers and ALU, plus one 32-bit register for full-width SDM access.
— Additional 24-bit multiply/MAC/divide unit which supports all signed/unsigned/

multiply/MAC combinations, and unsigned 24-bit divide. The MAC/divide unit works in
parallel with the regular microcode commands.

Enhanced Time Processing Unit (eTPU)

MPC5534 Microcontroller Reference Manual, Rev. 2

17-10 Freescale Semiconductor

• Resource sharing features resolve channel contention for common use of channel registers,
memory and microengine time

— Hardware scheduler works as a ‘task management’ unit, dispatching event service routines by
predefined, host-configured priority.

— Hardware breakpoints on data access, qualified by address and/or data values.

— Hardware breakpoints on instruction address.
— Automatic channel context switch when a ‘task switch’ occurs; that is, one function thread ends

and another begins to service a request from another channel. Channel-specific registers, flags
and parameter base address are automatically loaded for the next serviced channel.

— Individual channel priority setting in three levels: high, middle, and low.

— Scheduler priority scheme allows calculation of worst case latency for event servicing and
ensures servicing of all channels by preventing permanent blockage.

— SDM shared between host core and both eTPU engines, supporting channel-channel or
host-channel communication.

— Hardware implementation of four semaphores allows for resource arbitration between channels
in both eTPU engines.

— Hardware semaphores are directly supported by the microengine instruction set.

— Dual-parameter coherency hardware support allows coherent (to host) access to 2 parameters
by microengines in back-to-back accesses.

— Coherent dual-parameter controller allows coherent (to microengines) accesses to two
parameters by the host.

• Test and development support features

— Nexus level 3 debug support through the eTPU Nexus block (NDEDI)

— Software breakpoints

— SCM (code memory) continuous signature-check built-in code integrity test multiple input
signature calculator (MISC): runs concurrently with eTPU normal operation

17.2 Modes of Operation
The eTPU is capable of working in the following modes.

17.2.1 User Configuration Mode

By having access to the shared code memory (SCM), the core has the ability to program the eTPU cores
with time functions.

17.2.2 User Mode

In user mode the core does not access the eTPU shared code memory, and pre-defined eTPU functions are
used.

Enhanced Time Processing Unit (eTPU)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 17-11

17.2.3 Debug Mode

The core debugs eTPU code, accessing special trace/debug features via Nexus interface:

— Hardware breakpoint/watchpoint setting

— Access to internal registers

— Single-step execution

— Forced instruction execution

— Software breakpoint insertion and removal

17.2.4 Module Disable Mode

eTPU engine clocks are stopped through a register write to ETPU_ECR bit MDIS, saving power. Input
sampling stops. eTPU engines can be in disable mode independently. Module disable mode stops only the
engine clock, so that the shared BIU and global channel registers can be accessed, and interrupts and DMA
requests can be cleared and enabled/disabled. An engine only enters module disable mode when any
currently running thread is finished.

17.2.5 eTPU Mode Selection

User and user configuration are the production operating modes, and differ from each other only in access
to SCM. Module disable mode is entered by setting ETPU_ECR[MDIS].

17.3 External Signal Description
There are 65 external signals for the eTPU engine:

• 32 channel input signals
• 32 channel output signals
• TCRCLK clock input

Additionally there are four internal output disable signals that implement the output disable feature needed
for motor control. See Section 16.2.1.2, “Output Disable Input—eMIOS Output Disable Input Signals,”
for more information.

17.4 eTPU Detailed Signal Description

17.4.1 Output and Input Channel Signals

The channel signal connections for the eTPU engine are described in Table 17-1 and Table 19-3,
respectively. Each eTPU channel has an input and output associated with it. In Table 17-1 and Table 19-3
this is represented by the Input/output column. The eTPU channels can be connected to external pins or
wired internally to other peripheral devices. In the device, some of the eTPU channels are connected to
pins. The pin connections are represented by the Pin Number column in Table 17-1 and Table 19-22. To
the right of the pin number column is the eTPU channel connections column that shows the channel
number that corresponds to each input or output pin. Many of these pins are multipurpose, that is they are
multiplexed. Table 17-1 and Table 19-3 shows the other non-eTPU signals listed in the Signals with Which
eTPU Signal is Shared column.

Enhanced Time Processing Unit (eTPU)

MPC5534 Microcontroller Reference Manual, Rev. 2

17-12 Freescale Semiconductor

To reduce the number of pins required by the device’s eTPU while still maintaining the eTPU’s
functionality, the eTPU is also internally wired to the DSPI (Chapter 19, “Deserial Serial Peripheral
Interface (DSPI)”). The DSPI connections are shown in the column labeled DSPI Serial Channel
Connections in Table 17-1 and Table 19-22. The eTPU microcode can be programmed to set the output
level of an eTPU channel in one of two manners:

• By forcing the logic level to a specified value

• By specifying the logic level output action when a match or transition event occurs

Every eTPU channel input has a digital filter to filter out noise pulses that have a width less than a specified
value. This prevents small noise glitches from being recognized by the transition detect logic. Any pulses
wider than the specified filter width are passed to the channel transition detect logic.

Table 17-1. eTPU A Channel Connection Table 1

1 See the Signals chapter for package pin locations of these signals.

eTPU
Channel
Number

I/O
eTPU Channel
Connections

DSPI Serial
Channel

Connections

eTPU A
Signal

Signal muxed with the
eTPU Signal

0–9
Input 0, 1–4, 5–8, 9 Not connected

eTPUA[0:9]
eTPUA[12:21]_GPIO[114:123]2

2 These signals are output only

DSPI C[4:13]Output 0–9 eMIOS[0:9]_GPIO[179:188]

10–11
Input 10–11 Not connected

eTPUA[10:11]
GPIO[124:125]

Output 10–11 DSPI C[14:15] eTPUA[22:23]_GPIO[124:125]2

12–15
Input 12, 13–15 Not connected

eTPUA[12:15]
GPIO[126:129]

DSPI C[0:3]Output 12, 13–15 eTPUA[0:3]_GPIO[114:117]

16–19

Input 16, 17–19 Not connected

eTPUA[16:19]

GPIO[130:133]

DSPI B[7:4]1

DSPI D[5:2]1
Output 16, 17–19 eTPUA[4:7]_GPIO[118:121]

20–21

Input 20, 21 Not connected

eTPUA[20:21]

IRQ[8:9]_GPIO[134:135]3

3 These signals are input only

DSPI B[3:2]1

DSPI D[1:0]1
Output 20, 21 eTPU A[8:9]_GPIO[122:123]

22–23
Input 22, 23

Not connected eTPUA[22:23]
IRQ[10:11]_GPIO[136:137]3

Output 22, 23 eTPU A[10:11]_GPIO[124:125]

24–27

Input Not connected DSPI B[13:10]1 eTPUA[24:27] Not connected

Output 24, 25, 26, 27
DSPI B[13:10]1

DSPI D[15:12]1
eTPUA[24:27] IRQ[12:15]_GPIO[138:141]3

28–29

Input Not connected DSPI B[9:8]1

eTPUA[28:29]

Not connected

Output 28, 29
DSPI B[9:8]1

DSPI D[11:10]1
GPIO[142:143]

30–31
Input

30, 31 Not connected eTPUA[30:31] GPIO[144:145]
Output

Enhanced Time Processing Unit (eTPU)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 17-13

17.4.1.1 Time Base Clock Signal (TCRCLK[A])

The TCRCLK[A] input signals are used to control the TCR1 and TCR2 time bases for eTPU A.

NOTE
Throughout this document, TCRCLKA is referred to as TCRCLK.

There is one independent TCRCLK input for the engine. Table 17-2 shows the TCRCLK pin connections.
For pulse accumulator operations TCRCLK can be used as a gate for a counter based on the system clock
divided by eight. For angle operations TCRCLK can be used to get the tooth transition indications in angle
mode. See the eTPU reference manual, sections 5.9 and 5.10 for further details.

17.4.1.2 Channel Output Disable Signals

The eTPU engine has four input signals that are used to force the outputs of a group of eight channels to
an inactive level. These signals originate from the eMIOS. When an output disable signal is active, all eight
channels assigned to the disable signal that have their ODIS bits set to 1 in ETPU_CnCR register have their
outputs forced to the opposite of the value specified in the ETPU_CnCR[OPOL] bit. Therefore, individual
channels can be selected to be affected by the output disable signals, as well as their disabling forced
polarity.

The output disable channel groups are defined in Table 17-3.

Table 17-2. TCRCLK Signals

Signal Name
Pin Connection

Other Signals
Muxed on Same Pin

208 BGA 324 BGA

TCRCLKA L4 M2
IRQ[7] (input only)

GPIO[113]

Table 17-3. Output Disable Channel Groups

eMIOS Channel Engine eTPU Channels Disabled

11

A

0–7

10 8–15

9 16–23

8 24–31

Enhanced Time Processing Unit (eTPU)

MPC5534 Microcontroller Reference Manual, Rev. 2

17-14 Freescale Semiconductor

17.5 Memory Map and Register Definition

17.5.1 Memory Map

The eTPU system simplified memory map is shown in Table 17-4. The base address for the eTPU module
is listed as BASE. Each of the register areas shown can have their own reserved address areas.

Table 17-4 shows a high-level memory map.

NOTE
Devices with eTPU A engine only do not implement the eTPU B registers.
Do not access these addresses and treat the memory as reserved.

Table 17-4. eTPU High-Level Memory Map

Address Register Description

Base (0xC3FC_0000)–Base + 0x0000_001F eTPU system module configuration registers

Base + 0x0000_0020– 0x0000_002F eTPU A time base registers

Base + 0x0000_0030–0x0000_001FF Reserved

Base + 0x0000_0200–0x0000_02FF eTPU[A] global channel registers

Base + 0x0000_0300–0x0000_03FF Reserved

Base + 0x0000_0400–0x0000_07FF eTPU A channel registers

Base + 0x0000_0800–0x0000_7FFF Reserved

Base + 0x0000_8000–0x0000_8BFF1

1 Do not access addresses in the SDM memory block that are unused. These addresses are reserved.

SDM (2.5 KBs)

Base + 0x0000_8C00–0x0000_BFFF Reserved

Base + 0x0000_C000–0x0000_CBFF SDM PSE mirror2 (3 KBs)

2 Parameter Sign Extension access area. See the eTPU reference manual.

Base + 0xCC00–0xFFFF Reserved

Base + 0x0001_0000–0x0001_3FFF3

3 Do not access addresses in the SCM memory block that are unused. These addresses are reserved.

SCM (12 KBs)

Base + 0x0001_4000–0x0001_FFFF Not writable. Reads the return value of
ETPU_SCMOFFDATAR register.

Enhanced Time Processing Unit (eTPU)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 17-15

17.5.2 Register Description

Table 17-5 shows the eTPU registers and their locations, without examples or explanation of how the fields
are used. For a complete description of these registers, see the Enhanced Time Processing Unit (eTPU)
Reference Manual. The features are explained in detail there.

Table 17-5. Detailed Memory Map

Address Register Name Register Description Bits

Base (0xC3FC_0000) ETPU_MCR eTPU module configuration register 32

Base + 0x0000_0004 ETPU_CDCR eTPU coherent dual-parameter controller register 32

Base + 0x0000_0008 — Reserved —

Base + 0x0000_000C ETPU_MISCCMPR eTPU MISC compare register 32

Base + 0x0000_0010 ETPU_SCMOFFDATAR eTPU SCM off-range data register 32

Base + 0x0000_0014 ETPU_ECR_A eTPU A engine configuration register 32

Base + 0x0000_001C — Reserved —

Base + 0x0000_0020 ETPU_TBCR_A eTPU A time base configuration register 32

Base + 0x0000_0024 ETPU_TB1R_A eTPU A time base 1 32

Base + 0x0000_0028 ETPU_TB2R_A eTPU A time base 2 32

Base + 0x0000_002C ETPU_REDCR_A eTPU A STAC bus interface configuration 32

Base + 0x0000_0030–0x0000_01FF — Reserved —

Base + 0x0000_0200 ETPU_CISR_A eTPU A channel interrupt status 32

Base + 0x0000_0208–0x0000_020C — Reserved —

Base + 0x0000_0210 ETPU_CDTRSR_A eTPU A channel data transfer request status 32

Base + 0x0000_0218–0x0000_021C — Reserved —

Base + 0x0000_0220 ETPU_CIOSR_A eTPU A channel interrupt overflow status 32

Base + 0x0000_0228–0x0000_022C — Reserved —

Base + 0x0000_0230 ETPU_CDTROSR_A eTPU A channel data transfer request overflow
status register

32

Base + 0x0000_0238–0x0000_023C — Reserved —

Base + 0x0000_0240 ETPU_CIER_A eTPU A channel interrupt enable register 32

Base + 0x0000_0248–0x0000_024C — Reserved —

Base + 0x0000_0250 ETPU_CDTRER_A eTPU A channel data transfer request enable
register

32

Base + 0x0000_0258–0x0000_027F — Reserved —

Base + 0x0000_0280 ETPU_CPSSR_A eTPU A channel pending service status register 32

Base + 0x0000_0288–0x0000_028C — Reserved —

Base + 0x0000_0290 ETPU_CSSR_A eTPU A channel service status register 32

Base + 0x0000_0298–0x0000_03FF — Reserved —

Enhanced Time Processing Unit (eTPU)

MPC5534 Microcontroller Reference Manual, Rev. 2

17-16 Freescale Semiconductor

Base + 0x0000_0400 ETPU_C0CR_A eTPU A channel 0 configuration register 32

Base + 0x0000_0404 ETPU_C0SCR_A eTPU A channel 0 status and control register 32

Base + 0x0000_0408 ETPU_C0HSRR_A eTPU A channel 0 host service request register 32

Base + 0x0000_040C — Reserved —

Base + 0x0000_0410 ETPU_C1CR_A eTPU A channel 1 configuration register 32

Base + 0x0000_0414 ETPU_C1SCR_A eTPU A channel 1 status and control register 32

Base + 0x0000_0418 ETPU_C1HSRR_A eTPU A channel 1 host service request register 32

Base + 0x0000_041C — Reserved —

.

.

.

.

.

.

.

.

.

.

.

.

Base + 0x0000_05F0 ETPU_C31CR_A eTPU A channel 31 configuration register 32

Base + 0x0000_05F4 ETPU_C31SCR_A eTPU A channel 31 status and control register 32

Base + 0x0000_05F8 ETPU_C31HSRR_A eTPU A channel 31 host service request register 32

Base + 0x0000_05FC–0x0000_7FFF — Reserved —

Base + 0x0000_8000–0x0000_8BFF — Shared data memory (parameter RAM) 2.5 KBs

Base + 0x0000_8C00–0x0000_BFFF — Reserved —

Base + 0x0000_C000–0x0000_CBFF — SDM PSE mirror1 2.5 KBs

Base + 0x0000_CC00–0x0000_FFFF — Reserved —

Base + 0x0001_0000–0x0001_2FFF SCM Shared code memory2 12 KBs

Base + 0x0001_3000–0x0001_FFFF — Reserved —

1 Parameter sign extension access area. See the eTPU reference manual.
2 SCM access is only available under certain conditions when ETPU_MCR[VIS] = 1. The SCM can only be written in 32-bit

accesses.

Table 17-5. Detailed Memory Map (continued)

Address Register Name Register Description Bits

Enhanced Time Processing Unit (eTPU)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 17-17

17.5.2.1 System Configuration Registers

17.5.2.1.1 eTPU Module Configuration Register (ETPU_MCR)

This register is global to both eTPU engines, and resides in the shared BIU. ETPU_MCR gathers global
configuration and status in the eTPU system, including global exception. It is also used for configuring the
SCM (shared code memory) operation and test.

Address: Base + 0x0000_0000 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 MGE
A

MGE
B

ILFA ILFB 0 0 0 SCMSIZE

W GEC

Reset 0 0 0 0 0 0 0 0 0 0 0 SCMSIZE

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 SCMMI
SF

S
C

M
M

IS
E

N 0 0 VIS 0 0 0 0 0 GTBE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 17-5. ETPU_MCR Register

Table 17-6. ETPU_MCR Field Descriptions

Field Description

0
GEC

Global exception clear. Negates global exception request and clears global exception status bits MGEA, MGEB,
ILFA, ILFB and SCMMISF. A read always returns 0. Writes have the following effect:
0 Keep global exception request and status bits ILFA, ILFB, MGEA, MGEB, and SCMMISF as is.
1 Negate global exception, clear status bits ILFA, ILFB, MGEA, MGEB, and SCMMISF.
GEC works the same way with either one or both engines in stop mode.

1–3 Reserved

4
MGEA

Microcode global exception engine A. Indicates that a global exception was asserted by microcode executed on
the respective engine. The determination of the reason why the global exception was asserted is application
dependent: it can be coded in an SDM status parameter, for instance. This bit is cleared by writing 1 to GEC.
0 No microcode-requested global exception pending.
1 Global exception requested by microcode is pending.

5
MGEB

Microcode global exception engine B. Indicates that a global exception was asserted by microcode executed on
the respective engine. The determination of the reason why the global exception was asserted is application
dependent: it can be coded in an SDM status parameter, for instance. This bit is cleared by writing 1 to GEC.
0 No microcode requested global exception pending.
1 Global exception requested by microcode is pending.

6
ILFA

Illegal instruction flag eTPU A. Set by the microengine to indicate that an illegal instruction was decoded in engine
A. This bit is cleared by host writing 1 to GEC. For more information about illegal instructions, see Section 9.6 in
the eTPU reference manual.
0 Illegal Instruction not detected.
1 Illegal Instruction detected by eTPU A.

Enhanced Time Processing Unit (eTPU)

MPC5534 Microcontroller Reference Manual, Rev. 2

17-18 Freescale Semiconductor

7–10 Reserved

11–15
SCMSIZE

[0:4]

SCM size. Holds the number of 2 KB SCM Blocks minus 1. This value is MCU-dependent.

16–20 Reserved

21
SCMMISF

SCM MISC Flag. Set by the SCM MISC (multiple input signature calculator) logic to indicate that the calculated
signature does not match the expected value, at the end of a MISC iteration. For more details, see the eTPU
reference manual for more details.
0 Signature mismatch not detected.
1 MISC has read entire SCM array and the expected signature in ETPU_MISCCMPR does not match the value

calculated.
This bit is cleared by writing 1 to GEC.

22
SCM

MISEN

SCM MISC enable. Used for enabling/disabling the operation of the MISC logic. SCMMISEN is readable and
writable at any time. The MISC logic only operates when this bit is set to 1. When the bit is reset the MISC address
counter is set to the initial SCM address. When enabled, the MISC continuously cycles through the SCM
addresses, reading each and calculating a CRC. To save power, the MISC can be disabled by clearing the
SCMMISEN bit. For more details, see the eTPU reference manual.
0 MISC operation disabled. The MISC logic is reset to its initial state.
1 MISC operation enabled. (Toggling to 1 clears the SCMMISF bit)
SCMMISEN is cleared automatically when MISC logic detects an error; that is, when SCMMISF transitions from
0 to 1, disabling the MISC operation.

23–24 Reserved

25
VIS

SCM visibility. Determines SCM visibility to the slave bus interface and resets the MISC state (but SCMMISEN
keeps its value).
0 SCM is not visible to the slave bus. Accessing SCM address space issues a bus error.
1 SCM is visible to the slave bus. The MISC state is reset. This bit is write protected when any of the engines

are not in halt or stop states. When VIS=1, the ETPU_ECR MDIS bits are write protected, and only 32-bit
aligned SCM writes are supported. The value written to SCM is unpredictable if other transfer sizes are used.

26–30 Reserved

31
GTBE

Global time base enable. Enables time bases in both engines, allowing them to be started synchronously. An
assertion of GTBE also starts the eMIOS time base1. This enables the eTPU time bases and the eMIOS time
base to all start synchronously.
1 time bases in both eTPU engines and eMIOS are enabled to run.
0 time bases in both engines are disabled to run.
Note: When GTBE is turned off with Angle Mode enabled, the EAC must be reinitialized before GTBE is turned

on again.

1 The eMIOS also has an GTBE bit. Assertion of either the eMIOS or eTPU GTBE bit starts time bases for the eMIOS and
eTPU, see the eTPU reference manual.

Table 17-6. ETPU_MCR Field Descriptions (continued)

Field Description

Enhanced Time Processing Unit (eTPU)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 17-19

17.5.2.1.2 eTPU Coherent Dual-Parameter Controller Register (ETPU_CDCR)

ETPU_CDCR configures and controls dual-parameter coherent transfers. For more information, see the
eTPU reference manual.

Address: Base + 0x0000_0004 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R STS CTBASE PBBASE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R PWID
TH

PARM0 WR PARM1

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Figure 17-6. eTPU Coherent Dual-Parameter Controller Register (ETPU_CDCR)

Table 17-7. ETPU_CDCR Field Descriptions

Field Description

0
STS

Start. Set by the host to start the data transfer between the parameter buffer pointed by PBBASE and the target
addresses selected by the concatenation of fields CTBASE and PARM0/1. The host receives wait-states until the
data transfer is complete. Coherency logic resets STS once the data transfer is complete. For more information, see
the eTPU reference manual.
0 (Write) does not start a coherent transfer.
1 (Write) starts a coherent transfer.

1–5
CTBASE

[0:4]

Channel transfer base. This field concatenates with fields PARM0/PARM1 to determine the absolute offset (from the
SDM base) of the parameters to be transferred:
Parameter 0 address = {CTBASE, PARM0} × 4 + SDM base
Parameter 1 address = {CTBASE, PARM1} × 4 + SDM base

6–15
PBBASE

[0:9]

Parameter buffer base address. Points to the base address of the parameter buffer location, with granularity of 2
parameters (8 bytes). The host (byte) address of the first parameter in the buffer is PBBASE × 8 + SDM Base
Address.

16
PWIDTH

Parameter width selection. Selects the width of the parameters to be transferred between the PB and the target
address.
0 Transfer 24-bit parameters. The upper byte remains unchanged in the destination address.
1 Transfer 32-bit parameters. All 32 bits of the parameters are written in the destination address.

17–23
PARM0

[0:6]

Channel parameter number 0. This field in concatenation with CTBASE[3:0] determine the address offset (from the
SDM base address) of the parameter which is the destination or source (defined by WR) of the coherent transfer.
The SDM address offset of the parameter is {CTBASE, PARM0} × 4. PARM0 allows non-contiguous parameters to
be transferred coherently1.

Enhanced Time Processing Unit (eTPU)

MPC5534 Microcontroller Reference Manual, Rev. 2

17-20 Freescale Semiconductor

17.5.2.1.3 eTPU MISC Compare Register (ETPU_MISCCMPR)

The multiple input signature calculator compare register (ETPU_MISCCMPR) holds the 32-bit signature
expected from the whole shared code memory (SCM) array. This register must be written by the host with
the 32-bit word to be compared against the calculated signature at the end of the MISC cycle. For more
details, see the eTPU Reference Manual.

24
WR

Read/Write selection. This bit selects the direction of the coherent data transfer.
0 Read operation. Data transfer is from the selected parameter RAM address to the PB.
1 Write operation. Data transfer is from the PB to the selected parameter RAM address.

25–31
PARM1

[0:6]

Channel parameter number 1. This field in concatenation with CTBASE[3:0] determines the address offset (from the
SDM base) of the parameter which is the destination or source (defined by WR) of the coherent transfer. The SDM
address offset of the parameter is {CTBASE, PARM1} × 4. PARM1 allows non-contiguous parameters to be
transferred coherently1.

1 The parameter pointed by {CTBASE, PARM0} is the first transferred.

Address: Base + 0x0000_000C Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R EMISCCMP

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R EMISCCMP

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 17-7. eTPU MISC Compare Register (ETPU_MISCCMPR)

Table 17-8. ETPU_MISCCMPR Field Descriptions

Field Description

0–31
EMISCCMP

[0:31]

Expected multiple input signature calculator compare register value. For more information, see the eTPU reference
manual.

Table 17-7. ETPU_CDCR Field Descriptions (continued)

Field Description

Enhanced Time Processing Unit (eTPU)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 17-21

17.5.2.1.4 eTPU SCM Off-Range Data Register (ETPU_SCMOFFDATAR)

ETPU_SCMOFFDATAR holds the 32-bit value returned when the SCM array is accessed at non
implemented addresses, either by the host or by the microengine. This register can be written by the host
with the 32-bit instruction to be executed by the microengine to recover from runaway code.

NOTE
The ETPU_SCMOFFDATAR reset value is the opcode of an instruction that
disables matches, clears the TDLs and the MRLs; the opcode also issues an
illegal instruction Global Exception, and ends the thread.

Address: Base + 0x0000_0010 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R ETPUSCMOFFDATA[0:15]

W

Reset 1 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R ETPUSCMOFFDATA[16:31]

W

Reset 0 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1

Figure 17-8. eTPU SCM Off-Range Data Register (ETPU_SCMOFFDATAR)

Table 17-9. ETPU_SCMOFFDATAR Field Descriptions

Field Description

0–31
ETPU

SCMOFF
DATAR

SCM Off-range read data value.

Enhanced Time Processing Unit (eTPU)

MPC5534 Microcontroller Reference Manual, Rev. 2

17-22 Freescale Semiconductor

17.5.2.1.5 eTPU Engine Configuration Register (ETPU_ECR)

Each engine has its own ETPU_ECR. The ETPU_ECR holds configuration and status fields that are
programmed the eTPU engine.

Address: Base + 0x0000_0014 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R FEND MDIS 0 STF 0 0 0 0 HLTF 0 0 0 0 FPSCK

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R CDFC 0 0 0 0 0 0 0 0 0 ETB

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 17-9. eTPU Engine Configuration Register (ETPU_ECR)

Table 17-10. ETPU_ECR Field Descriptions

Field Description

0
FEND

Force end. Assertion terminates any current running thread as if an END instruction have been executed. For more
information, see the eTPU reference manual.
0 Normal operation.
1 Terminates current thread.
This bit is self-negating.

1
MDIS

Module disable internal stop. This is the low power stop bit. When MDIS is set, the engine shuts down its internal
clocks. TCR1 and TCR2 cease to increment, and input sampling stops. The engine asserts the stop flag (STF) bit
to indicate that it has stopped. However, the BIU continues to run, and the host can access all registers except for
the channel registers1 and writes to time base registers. Section 17.6.0.3, “Channel Configuration and Control
Registers.”After MDIS is set, even before STF asserts, data read from the channel registers is not meaningful, a Bus
Error is issued, and writes are unpredictable. When the MDIS bit is asserted while the microcode is executing, the
eTPU stops when the thread is complete.
0 eTPU engine runs.
1 Commands engine to stop its clocks.
Stop completes on the next system clock after the stop condition is valid. The MDIS bit is write-protected when
ETPU_MCR[VIS]=1.
Note: After the MDIS has been switched from 1 to 0 or vice-versa, do not switch its value again until STF is switched

to the same value.

2 Reserved

3
STF

Stop flag bit. Each engine asserts its stop flag (STF) to indicate that it has stopped. Only then the host can assume
that the engine has actually stopped. The eTPU system is fully stopped when the STF bits of the eTPU engine is
asserted. The engine only stops when any ongoing thread is complete in this case.
0 The engine is operating.
1 The engine has stopped (after the local MDIS bit has been asserted).
Summarizing engine stop conditions, which STF reflects:
STF A:= (after stop completed) MDIS A. STF A means the STF bit from engine A.

4–7 Reserved

Enhanced Time Processing Unit (eTPU)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 17-23

8
HLTF

Halt mode flag. If eTPU engine entered halt state, this flag is asserted. The flag remains asserted while the
microengine is in halt state, even during a single-step or forced instruction execution. See the eTPU reference
manual for further details about entering halt mode.
0 eTPU engine is not halted.
1 eTPU engine is halted.

9–12 Reserved

13–15
FPSCK

[0:2]

Filter prescaler clock control. Controls the prescaling of the clocks used in digital filters for the channel input signals
and TCRCLK input. The following table illustrates filter prescaler clock control.

Filtering can be controlled independently by the engine, but all input digital filters in the same engine have same clock
prescaling. For more details, see the eTPU reference manual.

16–17
CDFC
[0:1]

Channel digital filter control. Select a digital filtering mode for the channels when configured as inputs for improved
noise immunity. Channel digital filter control is illustrated in the following table.

The eTPU has three digital filtering modes for the channels which provide programmable trade-off between signal
latency and noise immunity. For more information on filtering, see the eTPU reference manual. Changing CDFC
during eTPU normal input channel operation is not recommended since it changes the behavior of the transition
detection logic while executing its operation.

Table 17-10. ETPU_ECR Field Descriptions (continued)

Field Description

Filter Control
Sample on System
Clock Divided by:

000 2

001 4

010 8

011 16

100 32

101 64

110 128

111 256

CDFC Selected Digital Filter

00 TPU2/3 two sample mode: Using the filter clock which is the system clock divided by
(2, 4, 8,..., 256) as a sampling clock (selected by FPSCK field in ETPU_ECR),
comparing two consecutive samples which agree with each other sets the input
signal state. This is the default reset state.

01 Invalid value.

10 eTPU three sample mode: Similar to the TPU2/3 two sample mode, but comparing
three consecutive samples which agree with each other sets the input signal state.

11 eTPU continuous mode: Signal needs to be stable for the whole filter clock period.
This mode compares all the values at the rate of system clock divided by two,
between two consecutive filter clock pulses. If all the values agree with each other,
input signal state is updated.

Enhanced Time Processing Unit (eTPU)

MPC5534 Microcontroller Reference Manual, Rev. 2

17-24 Freescale Semiconductor

17.6 Time Base Registers

17.6.0.1 Time Base Registers

Time base registers allow the configuration and visibility of internally-generated time bases TCR1 and
TCR2. There is one of these registers for the eTPU engine.

NOTE
Writes to this register issue a bus error and are ineffective when MDIS = 1.
Reads are always allowed.

18–26 Reserved

27–31
ETB
[0:4]

Entry table base. Determines the location of the microcode entry table for the eTPU functions in SCM. More
information about entry points is located in the eTPU reference manual. The following table shows the entry table
base address options.

1 The time base registers can still be read in stop mode, but writes are ineffective and a bus error is issued. Global channel
registers and SDM can be accessed normally.

Table 17-10. ETPU_ECR Field Descriptions (continued)

Field Description

ETB
Entry Table Base

Address for CPU Host
Address (byte format)

Entry Table Base Address
for Microcode Address

(word format)

00000 0x0000_0000 0x0000_0000

00001 0x0000_0800 0x0000_0200

00010 0x0000_1000 0x0000_0400

.

.

.

.

.

.

.

.

.

.

.

.

11110 0x0000_F000 0x0000_3C00

11111 0x0000_F800 0x0000_3E00

Enhanced Time Processing Unit (eTPU)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 17-25

17.6.0.1.1 eTPU Time Base Configuration Register (ETPU_TBCR)

This register configures several time base options.

Address: Base + 0x0000_0020 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R TCR2CTL TCRCF 0 AM 0 0 0 TCR2P

W

Reset 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R TCR1CTL 0 0 0 0 0 0 TCR1P

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 17-10. eTPU Time Base Configuration Register (ETPU_TBCR)

Table 17-11. ETPU_TBCR Field Descriptions

Field Description

0–2
TCR2CTL

TCR2 clock/gate control. Part of the TCR2 clocking system. These bits determine the clock source for TCR2
before the prescaler. TCR2 can count on any detected edge of the TCRCLK signal or use it for gating system
clock divided by 8. After reset, the TCRCLK signal rising edge is selected. TCR2 can also be clocked by the
system clock divided by 8. TCR2CTL also determines the TCRCLK edge selected for angle tooth detection
in angle mode. See the eTPU Reference Manual for more information. TCR2 clock sources are listed in the
following table.

TCR2CTL
AM=0

(TCR2 Clock)
AM=1

(Angle Tooth Detection)

000 Gated DIV8 clock (system clock / 8). When the external
TCRCLK signal is low, the DIV8 clock is blocked, preventing it
from incrementing the TCR2 prescaler. When the external
TCRCLK signal is high, TCR2 prescaler is incremented at the
frequency of the system clock divided by 8.

Do not use 000
with AM=1.

001 Rise transition on TCRCLK signal increments TCR2 prescaler. Rising Edge

010 Fall transition on TCRCLK signal increments TCR2 prescaler. Falling Edge

011 Rise or fall transition on TCRCLK signal increments TCR2
prescaler.

Rising or Falling Edge

100 DIV8 clock (system clock / 8) Do not use 1XX
with AM=1.

101 Invalid value

110 Invalid value

111 TCR2CTL shuts down TCR2 clocking, except on Angle Mode.
TCR2 can also change as STAC client.

Enhanced Time Processing Unit (eTPU)

MPC5534 Microcontroller Reference Manual, Rev. 2

17-26 Freescale Semiconductor

3–4
TCRCF

TCRCLK signal filter control. Controls the TCRCLK digital filter determining whether the TCRCLK signal
input (after a synchronizer) is filtered with the same filter clock as the channel input signals or uses the
system clock divided by 2, and also whether the TCRCLK digital filter works in integrator mode or two sample
mode. The following table describes TCRCLK filter clock/mode.

For more information, see the eTPU Reference Manual.

5 Reserved

6
AM

Angle mode selection. When the AM bit is set the EAC (eTPU Angle Clock) hardware provides angle
information to the channels using the TCR2 bus. When the AM bit is cleared (non-angle mode), EAC
operation is disabled, and its internal registers can be used as general purpose registers.
0 EAC operation is disabled
1 TCR2 works in angle mode
AM must not be changed when ETPU_MCR[GTBE] = 1.
Note: Changing AM can cause expurious transition detections on channel 0, depending on the channel
mode and state.
For more information, see the eTPU Reference Manual.

7–9 Reserved

10–15
TCR2P

Timer count register 2 prescaler control. Part of the TCR2 clocking system. TCR2 is clocked from the output
of a prescaler. The prescaler divides its input by (TCR2P+1) allowing frequency divisions from 1 to 64. The
prescaler input is the system clock divided by 8 (in gated or non-gated clock mode) or Internal Timebase
input, or TCRCLK filtered input. This field has no effect on TCCR2 in Angle Mode. For more information on
TCR2, see the eTPU Reference Manual.

16–23
TCR1CTL

TCR1 clock/gate control. Part of the TCR1 clocking system. It determines the clock source for TCR1. TCR1
can count on detected rising edge of the TCRCLK signal or the system clock divided by 2. After reset
TCRCLK signal is selected. The following table shows the selection of the TCR1 clock source.

For more information on the TCR1 clocking system, see the Reference User’s Manual.

24–31
TCR1P

Timer count register 1 prescaler control. Clocked from the output of a prescaler. The input to the prescaler is
the internal eTPU system clock divided by 2 or the output of TCRCLK filter, or Peripheral Timebase input.
The prescaler divides this input by (TCR1P+1) allowing frequency divisions from 1 up to 256.

Table 17-11. ETPU_TBCR Field Descriptions (continued)

Field Description

TCRCF Filter Input Filter Mode

00 system clock divided by 2 two sample

01 filter clock of the channels two sample

10 system clock divided by 2 integration

11 filter clock of the channels integration

TCR1CTL TCR1 Clock

00 selects TCRCLK as clock source for the TCR1 prescaler (must not be use
in Angle Mode)

01 Invalid value

10 selects system clock divided by 2 as clock source for the TCR1 prescaler

11 TCR1CTL shuts down TCR1 clock. TCR1 can still change if STAC client.

Enhanced Time Processing Unit (eTPU)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 17-27

17.6.0.1.2 eTPU Time Base 1 (TCR1) Visibility Register (ETPU_TB1R)

This register provides visibility of the TCR1 time base for core host read access. This register is read-only.
The value of the TCR1 time base shown can be driven by the TCR1 counter or imported, depending on
the configuration set in ETPU_REDCR. For more information, see the eTPU reference manual.

17.6.0.1.3 eTPU Time Base 2 (TCR2) Visibility Register (ETPU_TB2R)

This register provides visibility of the TCR2 time base for core host read access. This register is read-only.
The value of the TCR2 time base shown can be driven by the TCR2 counter, the angle mode logic, or
imported from the STAC interface, depending on angle mode (an engine cannot import when in angle
mode) and STAC interface configurations set in registers ETPU_TBCR and ETPU_REDCR. For more
information on time bases, see the eTPU reference manual.

Address: Base + 0x0000_0024 Access: R/O

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 TCR1

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R TCR1

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 17-11. eTPU Time Base 1 (TCR1) Visibility Register (ETPU_TB1R)

Table 17-12. ETPU_TB1R Field Descriptions

Field Description

0–7 Reserved

8–31
TCR1
[0:23]

TCR1 value. Used on matches and captures. For more information, see the eTPU reference manual.

Enhanced Time Processing Unit (eTPU)

MPC5534 Microcontroller Reference Manual, Rev. 2

17-28 Freescale Semiconductor

17.6.0.1.4 STAC Bus Configuration Register (ETPU_REDCR)

This register configures the eTPU STAC bus interface module and operation. For more information on the
STAC interface, see the eTPU reference manual.

Address: Base + 0x0000_0028 Access: R/O

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 TCR2

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R TCR2

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 17-12. eTPU Time Base 2 (TCR2) Visibility Register (ETPU_TB2R)

Table 17-13. ETPU_TB2R Bit Field Descriptions

Field Description

0–7 Reserved

8–31
TCR2
[0:23]

TCR2 value. Used on matches and captures. For information on TCR2, see the eTPU reference manual.

Address: Base + 0x0000_002C Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R REN1 RSC1 0 0 SERVER_ID1 0 0 0 0 SRV1

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R REN2 RSC2 0 0 SERVER_ID2 0 0 0 0 SRV2

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 17-13. STAC Bus Configuration Register (ETPU_REDCR)

Enhanced Time Processing Unit (eTPU)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 17-29

Table 17-14. ETPU_REDCR Field Descriptions

Field Description

0
REN1

TCR1 resource1 client/server operation enable. Enables or disables client/server operation for the eTPU STAC
interface. REN1 enables TCR1.
0 Server/client operation for resource 1 is disabled.
1 Server/client operation for resource 1 is enabled.

1 Resource identifies any parameter that changes in time and can be exported / imported from other device. For the eTPU, a
resource can be TCR1 or TCR2 (either time or angle values).

1
RSC1

TCR1 resource server/client assignment. Selects the eTPU data resource assignment to be used as a server or
client. RSC1 selects the functionality of TCR1. For server mode, external plugging determines the unique server
address assigned to each TCR. For a client mode, the SRV1 field determines the server address to which the client
listens.
0 Resource client operation.
1 Resource server operation.

2–3 Reserved

4–7
SERVER

_ID1

STAC bus address for TCR1 as a server.
For more information on the STAC interface, see the eTPU reference manual.

8–11 Reserved

12–15
SRV1
[0:3]

TCR1 resource server. Selects the address of the specific STAC Server the local TCR1 monitors when configured
as a STAC client. For more information on the STAC interface, see the eTPU reference manual.

16
REN2

TCR2 resource1 client/server operation enable. Enables or disables client/server operation for eTPU slave
resources. REN2 enables TCR2 slave bus operations.
1 Server/client operation for resource 2 is enabled.
0 Server/client operation for resource 2 is disabled.

17
RSC2

TCR22 resource server/client assignment. Selects the eTPU data resource assignment to be used as a server or
client. RSC2 selects the functionality of TCR2. For server mode, external plugging determines the unique server
address assigned to each TCR. For a client mode, the SRV2 field determines the Server address to which the client
listens.
0 Resource Client operation.
1 Resource Server operation.

2 When TCR2 is configured as a STAC bus client (REN2 = 1, RSC2 = 0) the angle clock hardware must be disabled
(ETPU_TBCR[AM] = 0).

18–19 Reserved

20–23
SERVER

_ID2

STAC bus address for TCR2 as a server.

24–27 Reserved

28–31
SRV2
[0:3]

TCR2 resource server. Selects the address of the specific STAC server the local TCR2 listens to when configured
as a STAC Client. For more information on the STAC interface, see the eTPU reference manual.

Enhanced Time Processing Unit (eTPU)

MPC5534 Microcontroller Reference Manual, Rev. 2

17-30 Freescale Semiconductor

17.6.0.2 Global Channel Registers

The registers in this section group, by type, the interrupt status and enable bits from all the channels. This
organization eases management of all channels or groups of channels by a single interrupt handler routine.
These bits are mirrored by the individual channel registers.

17.6.0.2.1 eTPU Channel Interrupt Status Register (ETPU_CISR)

Host interrupt status from all channels are grouped in ETPU_CISR. The bits are mirrored by the channels’
status/control registers. For more information, see Section 17.6.0.3.3, “eTPU Channel n Status Control
Register (ETPU_CnSCR),” and the eTPU reference manual.

NOTE
The host core must write 1 to clear an interrupt status bit.

Address: Base + 0x0000_0200 Access: R/W1c

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R CIS31 CIS30 CIS29 CIS28 CIS27 CIS26 CIS25 CIS24 CIS23 CIS22 CIS21 CIS20 CIS19 CIS18 CIS17 CIS16

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R CIS15 CIS14 CIS13 CIS12 CIS11 CIS10 CIS9 CIS8 CIS7 CIS6 CIS5 CIS4 CIS3 CIS2 CIS1 CIS0

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 17-14. eTPU Channel Interrupt Status Register (ETPU_CISR)

Table 17-15. ETPU_CISR Field Descriptions

Field Description

0–31
CISn

Channel n interrupt status.
0 indicates that channel n has no pending interrupt to the host core.
1 indicates that channel n has a pending interrupt to the host core.
To clear a status bit, the host must write 1 to it.
For details about interrupts see the eTPU reference manual.

Enhanced Time Processing Unit (eTPU)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 17-31

17.6.0.2.2 eTPU Channel Data Transfer Request Status Register (ETPU_CDTRSR)

Data transfer request status from all channels are grouped in ETPU_CDTRSR. The bits are mirrored by
the channels’ status/control registers. For more information on data transfers and channel control registers,
see the eTPU reference manual.

Address: Base + 0x0000_0210 Access: R/W1c

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R DTRS
31

DTRS
30

DTRS
29

DTRS
28

DTRS
27

DTRS
26

DTRS
25

DTRS
24

DTRS
23

DTRS
22

DTRS
21

DTRS
20

DTRS
19

DTRS
18

DTRS
17

DTRS
16

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R DTRS
15

DTRS
14

DTRS
13

DTRS
12

DTRS
11

DTRS
10

DTRS
9

DTRS
8

DTRS
7

DTRS
6

DTRS
5

DTRS
4

DTRS
3

DTRS
2

DTRS
1

DTRS
0

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 17-15. eTPU Channel Data Transfer Request Status Register (ETPU_CDTRSR)

Table 17-16. ETPU_CDTRSR Field Descriptions

Field Description

0–31
DTRSn

Channel n data transfer request status.
0 Indicates that channel n has no pending data transfer request.
1 Indicates that channel n has a pending data transfer request.
To clear a status bit, the host must write 1 to it.
For details about data transfer requests see the eTPU reference manual.

Enhanced Time Processing Unit (eTPU)

MPC5534 Microcontroller Reference Manual, Rev. 2

17-32 Freescale Semiconductor

17.6.0.2.3 eTPU Channel Interrupt Overflow Status Register (ETPU_CIOSR)

An interrupt overflow occurs when an interrupt is issued for a channel when the previous interrupt status
bit for the same channel has not been cleared. Interrupt overflow status from all channels are grouped in
ETPU_CIOSR. The bits are mirrored by the channels’ status/control registers. For information about
channel status registers and overflow, see Section 17.6.0.3.3, “eTPU Channel n Status Control Register
(ETPU_CnSCR),” and the eTPU reference manual.

NOTE
The host must write 1 to clear an interrupt overflow status bit.

Address: Base + 0x0000_0220 Access: R/W1c

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R CIOS
31

CIOS
30

CIOS
29

CIOS
28

CIOS
27

CIOS
26

CIOS
25

CIOS
24

CIOS
23

CIOS
22

CIOS
21

CIOS
20

CIOS
19

CIOS
18

CIOS
17

CIOS
16

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R CIOS
15

CIOS
14

CIOS
13

CIOS
12

CIOS
11

CIOS
10

CIOS
9

CIOS
8

CIOS
7

CIOS
6

CIOS
5

CIOS
4

CIOS
3

CIOS
2

CIOS
1

CIOS
0

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 17-16. eTPU Channel Interrupt Overflow Status Register (ETPU_CIOSR)

Table 17-17. ETPU_CIOSR Field Descriptions

Field Description

0–31
CIOSn

Channel n interrupt overflow status.
0 indicates that no interrupt overflow occurred in the channel.
1 indicates that an interrupt overflow occurred in the channel.
To clear a status bit, the host must write 1 to it.
For details about interrupts see the eTPU reference manual.

Enhanced Time Processing Unit (eTPU)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 17-33

17.6.0.2.4 eTPU Channel Data Transfer Request Overflow Status Register
(ETPU_CDTROSR)

Data transfer request overflow status from all channels are grouped in ETPU_CDTROSR. The bits are
mirrored by the channels’ status/control registers. For more information on channel status registers and
data transfer request overflow, see Section 17.6.0.3.3, “eTPU Channel n Status Control Register
(ETPU_CnSCR),” and the eTPU reference manual.

NOTE
The host must write 1 to clear a data transfer request overflow status bit.

Address: Base + 0x0000_0230 Access: R/W1c

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R DTR
OS31

DTR
OS30

DTR
OS29

DTR
OS28

DTR
OS27

DTR
OS26

DTR
OS25

DTR
OS24

DTR
OS23

DTR
OS22

DTR
OS21

DTR
OS20

DTR
OS19

DTR
OS18

DTR
OS17

DTR
OS16

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R DTR
OS15

DTR
OS14

DTR
OS13

DTR
OS12

DTR
OS11

DTR
OS10

DTR
OS9

DTR
OS8

DTR
OS7

DTR
OS6

DTR
OS5

DTR
OS4

DTR
OS3

DTR
OS2

DTR
OS1

DTR
OS0

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 17-17. eTPU Channel Data Transfer Request Overflow Status Register (ETPU_CDTROSR)

Table 17-18. ETPU_CDTROSR Field Descriptions

Field Description

0–31
DTROSn

Channel n data transfer request overflow status.
0 indicates that no data transfer request overflow occurred in the channel.
1 indicates that a data transfer request overflow occurred in the channel.
To clear a status bit, the host must write 1 to it.
For details about data transfer request overflow, see the eTPU reference manual.

Enhanced Time Processing Unit (eTPU)

MPC5534 Microcontroller Reference Manual, Rev. 2

17-34 Freescale Semiconductor

17.6.0.2.5 eTPU Channel Interrupt Enable Register (ETPU_CIER)

The host interrupt enable bits for all 32 channels are grouped in ETPU_CIER. The bits are mirrored by the
channel configuration registers. For more information on channel configuration registers and interrupt
enable, see Section 17.6.0.3.2, “eTPU Channel n Configuration Register (ETPU_CnCR),” and the eTPU
reference manual.

Address: Base + 0x0000_0240 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R CIE
31

CIE
30

CIE
29

CIE
28

CIE
27

CIE
26

CIE
25

CIE
24

CIE
23

CIE
22

CIE
21

CIE
20

CIE
19

CIE
18

CIE
17

CIE
16

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R CIE
15

CIE
14

CIE
13

CIE
12

CIE
11

CIE
10

CIE
9

CIE
8

CIE
7

CIE
6

CIE
5

CIE
4

CIE
3

CIE
2

CIE
1

CIE
0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 17-18. eTPU Channel Interrupt Enable Register (ETPU_CIER)

Table 17-19. ETPU_CIER Field Descriptions

Field Description

0–31
CIEn

Channel n interrupt enable. Enable the eTPU channels to interrupt the device core.
0 Interrupt disabled for channel n.
1 Interrupt enabled for channel n.
For details about interrupts see the eTPU reference manual.

Enhanced Time Processing Unit (eTPU)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 17-35

17.6.0.2.6 eTPU Channel Data Transfer Request Enable Register (ETPU_CDTRER)

Data transfer request enable status bits from all channels are grouped in ETPU_CDTRER. The bits are
mirrored in the channels’ configuration registers. For more on configuration registers and data transfer
request enable, see Section 17.6.0.3.2, “eTPU Channel n Configuration Register (ETPU_CnCR),” and the
eTPU reference manual.”

Address: Base + 0x0000_0250 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R DTRE
31

DTRE
30

DTRE
29

DTRE
28

DTRE
27

DTRE
26

DTRE
25

DTRE
24

DTRE
23

DTRE
22

DTRE
21

DTRE
20

DTRE
19

DTRE
18

DTRE
17

DTRE
16

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R DTRE
15

DTRE
14

DTRE
13

DTRE
12

DTRE
11

DTRE
10

DTRE
9

DTRE
8

DTRE
7

DTRE
6

DTRE
5

DTRE
4

DTRE
3

DTRE
2

DTRE
1

DTRE
0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 17-19. eTPU Channel Data Transfer Request Enable Register (ETPU_CDTRER)

Table 17-20. ETPU_CDTRER Field Descriptions

Field Description

0–31
DTREn

Channel n data transfer request enable. Enable data transfer requests for their respective channels.
0 Data transfer request disabled for channel n.
1 Data transfer request enabled for channel n.
For details about interrupts see the eTPU reference manual.

Enhanced Time Processing Unit (eTPU)

MPC5534 Microcontroller Reference Manual, Rev. 2

17-36 Freescale Semiconductor

17.6.0.2.7 eTPU Channel Pending Service Status Register (ETPU_CPSSR)

ETPU_CPSSR is a read-only register that holds the status of the pending channel service requests. For
information on channel service requests, see the eTPU reference manual.

NOTE
More than one source can request service when a channel’s service request
bit is set.

NOTE
The pending service status bit for a channel is set when a service request is
pending, even if the Channel is disabled (CPRn = 0).

17.6.0.2.8 eTPU Channel Service Status Register (ETPU_CSSR)

ETPU_CSSR holds the current channel service status on whether it is being serviced or not. Only one bit
can be asserted in this register at a given time. When no channel is being serviced the register read value
is 0x0000_0000. ETPU_CSSR is a read-only register. The register can be read during normal eTPU
operation for monitoring the scheduler activity. For more information on channels being serviced, see the
eTPU reference manual.

NOTE
The ETPU_CSSR is not an absolute indication of channel status. If more
than one source is requesting service, the asserted status bit only indicates
that one of the requests has been granted.

Address: Base + 0x0000_0280 Access: R/O

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R SR31 SR30 SR29 SR28 SR27 SR26 SR25 SR24 SR23 SR22 SR21 SR20 SR19 SR18 SR17 SR16

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R SR15 SR14 SR13 SR12 SR11 SR10 SR9 SR8 SR7 SR6 SR5 SR4 SR3 SR2 SR1 SR0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 17-20. eTPU Channel Pending Service Status Register (ETPU_CPSSR)

Table 17-21. ETPU_CPSSR Bit Field Descriptions

Field Description

0–31
SRn

Pending service request n. Indicates a pending service request for channel n. The SR status for the pending request
is negated at the time slot transition for the respective service thread.
0 no service request pending for channel n
1 pending service request for channel n

Enhanced Time Processing Unit (eTPU)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 17-37

NOTE
Channel service status does not always reflect decoding of the CHAN
register, since the CHAN register can be changed by the service thread
microcode.

17.6.0.3 Channel Configuration and Control Registers

Each channel, for both eTPU engines, has a group of three registers used to control, configure and check
status of that channel as shown in Table 17-23.

Address: Base + 0x0000_0290 Access: R/O

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R SS31 SS30 SS29 SS28 SS27 SS26 SS25 SS24 SS23 SS22 SS21 SS20 SS19 SS18 SS17 SS16

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R SS15 SS14 SS13 SS12 SS11 SS10 SS9 SS8 SS7 SS6 SS5 SS4 SS3 SS2 SS1 SS0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 17-21. ETPU_CSSR Register

Table 17-22. ETPU_CSSR Field Descriptions

Field Description

0–31
SSn

Service status n. Indicates that channel n is currently being serviced. It is updated at the 1st microcycle of a time slot
transition.
0 channel n is not currently being serviced
1 channel n is currently being serviced
See the eTPU reference manual for more information on time slot transitions.

Table 17-23. Channel Registers Structure

Channel
Offset

Register Name

0x0000 eTPU channel configuration register (ETPU_CnCR)

0x0004 eTPU channel status/control register (ETPU_CnSCR)

0x0008 eTPU channel host service request register (ETPU_CnHSRR)

0x000C Reserved

Enhanced Time Processing Unit (eTPU)

MPC5534 Microcontroller Reference Manual, Rev. 2

17-38 Freescale Semiconductor

17.6.0.3.1 Channel Registers Layout

One contiguous area is used to map all channel registers of each eTPU engine as shown in Table 17-24.

There are 32 structures defined, one for each available channel in the eTPU. The base address for the
structure presented can be calculated by using the following equation:

Channel_Register_Structure_Base_Address =

ETPU_Engine_Channel_Base + (channel_number × 0x0000_0010)

where:

ETPU_Engine_Channel_Base = ETPU_Base + (0x0000_0400).

17.6.0.3.2 eTPU Channel n Configuration Register (ETPU_CnCR)

The ETPU_CnCR is a collection of the configuration bits related to an individual channel. Some of these
bits are mirrored from the global channel registers.

Table 17-24. eTPU Channel Register Map

Address Registers Structure

Base + 0x0000_0400 eTPU A channel 0 register structure

Base + 0x0000_0410 eTPU A channel 1 register structure

Base + 0x0000_0420 eTPU A channel 2 register structure

Base + 0x0000_0430–0x0000_05D0 .
.
.

Base + 0x0000_05E0 eTPU A channel 30 register structure

Base + 0x0000_05F0 eTPU A channel 31 register structure

Base + 0x0000_0600–0x0000_07FF Reserved

Address: Channel_Register_Base + 0x0000 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R CIE DTRE CPR 0 0 ETPD ETCS 0 0 0 CFS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R ODIS OPOL 0 0 0 CPBA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 17-22. eTPU Channel n Configuration Register (ETPU_CnCR)

Enhanced Time Processing Unit (eTPU)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 17-39

Table 17-25. ETPU_CnCR Field Descriptions

Field Description

0
CIE

Channel interrupt enable. This bit is mirrored from the ETPU_CIER
0 Disable interrupt for this channel.
1 Enable interrupt for this channel.
For more information, see the eTPU reference manual.

1
DTRE

Channel data transfer request enable. This bit is mirrored from the ETPU_CDTRER.
0 Disable data transfer request for this channel.
1 Enable data transfer request for this channel.
See the eTPU reference manual for more information.

2–3
CPR
[0:1]

Channel priority. Defines the priority level for the channel. The priority level is used by the hardware scheduler. The
values for CPR[1:0] and levels are:

For more information on the hardware scheduler, see the eTPU reference manual.

4–5 Reserved

6
ETPD

This bit selects which channel signal, input or output, is used in the entry point selection. The ETPD value has to be
compatible with the function chosen for the channel, selected in the field CFS. For details about entry table and
condition encoding schemes, see the eTPU reference manual.
0 Use PSTI for entry point selection.
1 Use PSTO for entry point selection.

7
ETCS

Entry table condition select. Determines the channel condition encoding scheme that selects the entry point to be
taken in an entry table. The ETCS value has to be compatible with the function chosen for the channel, selected in
ETPU_CnCR[CFS]. Two condition encoding schemes are available.
1 Select alternate entry table condition encoding scheme.
0 Select standard entry table condition encoding scheme.For details about entry table and condition encoding

schemes, see the eTPU reference manual.

8–10 Reserved

11–15
CFS
[0:4]

Channel function select. Defines the function to be performed by the channel. The function assigned to the channel
has to be compatible with the channel condition encoding scheme, selected by ETPU_CnCR[ETCS]. For more
information about functions, see the eTPU reference manual.

16
ODIS

Output disable. Enables the channel to have its output forced to the value opposite to OPOL when the output disable
input signal corresponding to the channel group that it belongs is active.
0 Turns off the output disable feature for the channel.For more information on output disable, see the eTPU

reference manual.
1 Turns on the output disable feature for the channel.

17
OPOL

Output polarity. Determines the output signal polarity. The activation of the output disable signal forces, when
enabled by ETPU_CnCR[ODIS], the channel output signal to the opposite of this polarity.
0 Output active low (output disable drives output to high)
1 Output active high (output disable drives output to low)

CPR Priority

00 Disabled

01 Low

10 Middle

11 High

Enhanced Time Processing Unit (eTPU)

MPC5534 Microcontroller Reference Manual, Rev. 2

17-40 Freescale Semiconductor

17.6.0.3.3 eTPU Channel n Status Control Register (ETPU_CnSCR)

ETPU_CnSCR is a collection of the interrupt status bits of the channel, and also the function mode
definition (read-write). Bits CIS, CIOS, DTRS, and DTROS for each channel can also be accessed from
ETPU_CISR, ETPU_CIOSR, ETPU_CDTRSR, and ETPU_CDTROSR respectively. For more
information on the three previously mentioned registers, see the eTPU reference manual.

NOTE
The device core must write 1 to clear a status bit.

18–20 Reserved

21–31
CPBA
[0:10]

Channel n parameter base address. The value of this field multiplied by 8 specifies the SDM parameter base host
(byte) address for channel n (2-parameter granularity).
The formula for calculating the absolute channel parameter base (byte) address, as seen by the host, is
eTPU_Base + 0x8000 + CPBA x 8. The SDM is mirrored in the parameter sign extension (PSE) area. The formula
to calculate the absolute channel parameter base (byte) address in the PSE area is
eTPU_Base + 0xC000 + CPBA x 8.
For more information on SDM addresses, see the eTPU reference manual.

Address: Channel_Register_Base + 0x0004 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R CIS CIOS 0 0 0 0 0 0 DTRS DTROS 0 0 0 0 0 0

W w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R IPS OPS 0 0 0 0 0 0 0 0 0 0 0 0 FM

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 17-23. eTPU Channel n Status Control Register (ETPU_CnSCR)

Table 17-25. ETPU_CnCR Field Descriptions (continued)

Field Description

Enhanced Time Processing Unit (eTPU)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 17-41

Table 17-26. ETPU_CnSCR Field Descriptions

Field Description

0
CIS

Channel interrupt status.
0 Channel has no pending interrupt to the device core.
1 Channel has a pending interrupt to the device core.
CIS is mirrored in the ETPU_CISR. The core must write 1 to clear CIS.
For more information on ETPU_CISR and interrupts, see Section 17.6.0.2.1, “eTPU Channel Interrupt Status
Register (ETPU_CISR),” and the eTPU reference manual.

1
CIOS

Channel interrupt overflow status.
0 Interrupt overflow negated for this channel
1 Interrupt overflow asserted for this channel
CIOS is mirrored in the ETPU_CIOSR. The core must write 1 to clear CIOS.
For more information on the ETPU_CIOSR and interrupt overflow, see Section 17.6.0.2.3, “eTPU Channel Interrupt
Overflow Status Register (ETPU_CIOSR).” and the eTPU reference manual.

2–7 Reserved

8
DTRS

Data transfer request status.
0 Channel has no pending data transfer request.
1 Channel has a pending data transfer request.
DTRS is mirrored in the ETPU_CDTRSR. The core must write 1 to clear DTRS.
For more information on the ETPU_CDTRSR and data transfer, see Section 17.6.0.2.2, “eTPU Channel Data
Transfer Request Status Register (ETPU_CDTRSR).” and the eTPU reference manual.

9
DTROS

Data transfer request overflow status.
0 Data transfer request overflow negated for this channel.
1 Data transfer request overflow asserted for this channel.
DTROS is mirrored in the ETPU_CDTROSR. The core must write 1 to clear DTROS.
See Section 17.6.0.2.4, “eTPU Channel Data Transfer Request Overflow Status Register (ETPU_CDTROSR).” and
the eTPU reference manual for more information on ETPU_CDTROSR and data transfer overflows.

10–15 Reserved

16
IPS

Channel input pin state. Shows the current value of the filtered channel input signal state.

17
OPS

Channel output pin state. Shows the current value driven in the channel output signal, including the effect of the
external output disable feature. If the channel input and output signals are connected to the same pad, OPS reflects
the value driven to the pad. This is not necessarily the actual pad value, which drives the value in the IPS bit.

18–29 Reserved

30–31
FM
[0:1]

Channel function mode.1 Each function can use this field for specific configuration. These bits can be tested by
microengine code.

1 These bits are equivalent to the TPU/TPU2/TPU3 host sequence (HSQ) bits.

Enhanced Time Processing Unit (eTPU)

MPC5534 Microcontroller Reference Manual, Rev. 2

17-42 Freescale Semiconductor

17.7 Functional Description
See the eTPU User’s Manual for information regarding the functional description of the eTPU module.

17.8 Initialization and Application Information
After initial power-on reset, the eTPU remains in an idle state (except when debug is asserted on power-on
reset—in this case, the microengine awakens in halt state). In addition, the SCM must be initialized with
the eTPU application prior to configuring the eTPU.

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 18-1

Chapter 18
Enhanced Queued Analog-to-Digital Converter (eQADC)

18.1 Introduction
The enhanced queued analog-to-digital converter (eQADC) provides accurate and fast conversions for a
wide range of applications. The eQADC provides a parallel interface to two on-chip analog-to-digital
converters (ADCs), and a single master to single slave serial interface to an off-chip external device. The
two on-chip ADCs are architected to allow access to all the analog channels.

NOTE
The 324 package supports 40 channels in the dual eQADC engines. The 208
package supports 34 channels only.

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

18-2 Freescale Semiconductor

18.1.1 Block Diagram

Figure 18-1 shows the primary components inside the eQADC.

Figure 18-1. Simplified eQADC Block Diagram

18.1.2 Overview

The eQADC transfers commands from multiple command FIFOs (CFIFOs) to the on-chip ADCs or to the
external device. The module can also in parallel (independently of the CFIFOs) receive data from the
on-chip ADCs or from an off-chip external device into multiple result FIFOs (RFIFOs). The eQADC
supports software and external hardware triggers from other modules to initiate transfers of commands
from the CFIFOs to the on-chip ADCs or to the external device. (See Section 6.5.5.1, “eQADC External
Trigger Input Multiplexing.”) It also monitors the amount of memory currently in use by each the CFIFO
and RFIFO to detect underflow and overflow conditions.

Command
buffer 0

AN[8]_ANW
AN[9]_ANX

AN[10]_ANY
AN[11]_ANZ

AN[12:39]

REFBYPC

AN[7]_DAN3–
AN[6]_DAN3+
AN[5]_DAN2–
AN[4]_DAN2+
AN[3]_DAN1–
AN[2]_DAN1+
AN[1]_DAN0–
AN[0]_DAN0+

MUX
40:1

MA[0]
MA[1]
MA[2]

VDDA
VSSA
VRH
VRL

User-defined
command

queue

System
MemoryCFIFOn

ADC0

Result
format

and
calibration
submodule

Priority

ADC control
logic

FIFO control
unit

Decoder
BIAS
GEN

MUX
40:1 ADC1 Command

buffer 1

MUX
control
logic

User-defined
result
queue

eDMA and
Interrupt
requests

eDMA
transaction
done signals

eQADC SSI
transmit buffer

eQADC

Channel
number

(32-bits)

RFIFOn
(16-bits)

n = 0, 1, 2, 3, 4, 5

Signals at pins denoted by

NOTES:

eQADC
synchronous serial interface

(eQADC SSI)

FCK SDS SDO SDI

External Device

REF
GEN

Pre-charge

 are muxed on a single
package pin on some devices.

Command
buffer 2

Command
buffer 3

See the Signals chapter
for a complete list of muxed
signals.

GPIO[206:207]

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 18-3

A CFIFO underflow occurs when a CFIFO:

• Is in the TRIGGERED state; and

• Becomes empty.

An RFIFO overflow occurs when an RFIFO:

• Becomes full; and

• Host CPU or eDMA data is waiting to transmit to the RFIFO.

The eQADC generates eDMA or interrupt requests to control data movement between the FIFOs and the
system memory, which is external to the eQADC.

The eQADC consists of the FIFO control unit which controls the CFIFOs and the RFIFOs, two ADCs with
control logic, and the eQADC synchronous serial interface (eQADC SSI) which allows communication
with an external device. There are six CFIFOs and six RFIFOs, each with four entries.

The FIFO control unit performs the following functions:

• Prioritizes the CFIFOs to determine which CFIFOs transfer commands

• Supports software and hardware triggers to start command transfers from a particular CFIFO

• Decodes command data from the CFIFOs and sends the commands to one of the two on-chip ADCs
or to the external device

• Decodes result data from on-chip ADCs or from the external device, and transfers data to the
RFIFO

The ADC control logic manages the execution of commands bound for on-chip ADCs from the CFIFOs
and with the RFIFOs via the result format and calibration submodule. The ADC control logic performs the
following functions:

• Buffers command data for execution

• Decodes command data and accordingly generates control signals for the two on-chip ADCs

• Formats and calibrates conversion result data coming from the on-chip ADCs

• Generates the internal multiplexer control signals and the select signals used by the external
multiplexers

The eQADC SSI allows for a full duplex, synchronous, serial communication between the eQADC and an
external device.

Figure 18-1 also depicts data flow through the eQADC. Commands are contained in system memory in a
user-defined queue data structure. Command data is moved from the command queue you defined to the
CFIFOs by either the host CPU or by the eDMA. After a CFIFO is triggered and becomes the highest
priority, CFIFO command data is transferred from the CFIFO to the on chip ADCs, or to the external
device. The ADC executes the command, and the result is moved through the result format and calibration
submodule and to the RFIFO. The RFIFO target is specified by a field in the command that initiated the
conversion. Data from the external device bypasses the result format and calibration submodule and is
moved directly to its specified RFIFO. When data is stored in an RFIFO, data is moved from the RFIFO
by the host CPU or by the eDMA to a data structure in system memory depicted in Figure 18-1 as a
user-defined result queue.

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

18-4 Freescale Semiconductor

For users familiar with the QADC, the eQADC system upgrades the functionality provided by that
module. See Section 18.5.7, “eQADC versus QADC,” for a comparison between the eQADC and QADC.

18.1.3 Features

The eQADC includes these distinctive features:

• Two independent on-chip RSD cyclic ADCs

— 12 bit AD resolution.

— Targets up to 10 bit accuracy at 400 kilosamples per second (ADC_CLK = 6 MHz) and eight
bit accuracy at 800 kilosamples per second (ADC_CLK = 12 MHz) for differential
conversions.

— Differential conversions (range -2.5 V to +2.5 V).

— Single-ended signal range from 0–5 V.

— Sample times of two (default), 8, 64, or 128 ADC clock cycles.

— Sample time stamp information when requested.

— Parallel interface to eQADC CFIFOs and RFIFOs.

— Supports right-justified unsigned and signed formats for conversion results.

• Optional automatic application of ADC calibration constants: provision of reference voltages
(25% VREF

1
 and 75% VREF) for ADC calibration purposes

• 40 input channels available to the two on-chip ADCs

• Four pairs of differential analog input channels

• Full duplex synchronous serial interface to an external device

— A free-running clock is provided for use by the external device

— Supports a 26-bit message length

— Transmits a null message when there are no triggered CFIFOs with commands bound for
external command buffers, or when there are triggered CFIFOs with commands bound for
external command buffers but the external command buffers are full

• Priority-based CFIFOs

— Supports six CFIFOs with fixed priority. The lower the CFIFO number, the higher its priority.
Supports software and several hardware trigger modes to arm a particular CFIFO.

— Generates interrupt when command coherency is not achieved.

• External hardware triggers

— Supports rising edge, falling edge, high level and low level triggers

— Supports configurable digital filter

• Upgrades the functionality of the QADC

18.1.4 Modes of Operation

This section describes the operating modes of the eQADC.

1. VREF = VRH - VRL.

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 18-5

18.1.4.1 Normal Mode

This is the default operational mode when the eQADC is not in background debug or stop mode.

18.1.4.2 Debug Mode

Upon a debug mode entry request, eQADC behavior varies according to the status of the DBG field in
Section 18.3.2.1, “eQADC Module Configuration Register (EQADC_MCR).” If DBG is programmed to
0b00, the debug mode entry request is ignored. If DBG is programmed to 0b10 or to 0b11, the eQADC
enters debug mode. In case the eQADC SSI is enabled, the free running clock (FCK) output to external
device does not stop when DBG is programmed to 0b11, but FCK stops in low phase, when DBG is
programmed to 0b10.

During debug mode, the eQADC does not transfer commands from any CFIFOs, no null messages are
transmitted to the external device, no data is returned to any RFIFO, no hardware trigger event is captured,
and all eQADC registers can be accessed as in normal mode. Access to eQADC registers implies that
CFIFOs can still be triggered using software triggers, because no scheme is implemented to write-protect
registers during debug mode. eDMA and interrupt requests continue to be generated as in normal mode.

If at the time the debug mode entry request is detected, there are commands in the ADC that were already
under execution, these commands are completed but the generated results, if any, are not sent to the
RFIFOs until debug mode is exited. Commands that have not begun to execute are not executed until after
exiting debug mode. The clock with an on-chip ADC stops, during its low phase, after the ADC stops
executing commands. The time base counter only stops after all on-chip ADCs stop executing commands.

When exiting debug mode, the eQADC relies on the FIFO control unit and on the CFIFO status to
determine the next command entry to transfer.

The eQADC internal behavior after the debug mode entry request is detected differs depending on the
status of command transfers.

• No command transfer is in progress.

The eQADC immediately halts future command transfers from any CFIFO.

If a null message is being transmitted, eQADC completes the serial transmission before halting
future command transfers. If valid data (conversion result or data read from an ADC register) is
received by the result format and calibration submodule at the end of transmission, this data is not
sent to an RFIFO until debug mode is exited.

If the null message transmission is aborted, the eQADC completes the abort procedure before
halting future command transfers from any CFIFO. The message of the CFIFO that caused the
abort of the previous serial transmission is transmitted only after exiting debug mode.

• Command transfer is in progress.

eQADC completes the transfer and updates CFIFO status before halting future command transfers
from any CFIFO.

Command transfers to the external device are considered completed when the serial transmission
of the command is completed. If valid data (conversion result or data read from an ADC register)
is received at the end of a serial transmission, it is not sent to an RFIFO until debug mode is exited.
The CFIFO status bits are still updated after the completion of the serial transmission, therefore,

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

18-6 Freescale Semiconductor

after debug mode entry request is detected, the eQADC status bits stop changing several system
clock cycles after the on-going serial transmission completes.

If the command message transmission aborts, the eQADC completes the abort procedure before
halting future command transfers from any CFIFO. The message of the CFIFO that caused the
abort of the previous serial transmission is transmitted only after debug mode exits.

• Command/null message transfer through serial interface was aborted but next serial transmission
did not start.

If the debug mode entry request is detected between the time a previous serial transmission was
aborted and the start of the next transmission, the eQADC completes the abort procedure before
halting future command transfers from any CFIFO. The message of the CFIFO that caused the
abort of the previous serial transmission is transmitted only after debug mode exits.

18.1.4.3 Stop Mode

Upon a stop mode entry request detection, the eQADC progressively halts its operations until it reaches a
static, stable state from which it can recover when returning to normal mode. The eQADC then asserts an
acknowledge signal, indicating that it is static and that the clock input can be stopped. In stop mode, the
free running clock (FCK) output to external device stops during its low phase if the eQADC SSI is enabled,
and no hardware trigger events is captured. No capturing of hardware trigger events means that — as long
as the system clock is running — CFIFOs can still be triggered using software triggers because no scheme
is implemented to write-protect registers during stop mode.

If at the time the stop mode entry request is detected, there are commands in the ADC that were already
under execution, these commands are completed but the generated results, if any, are not sent to the
RFIFOs until stop mode is exited. Commands whose execution has not started do not execute until stop
mode exits.

After these remaining commands are executed, the clock input to the ADCs is stopped. The time base
counter stops after all on-chip ADCs cease executing commands and then the stop acknowledge signal is
asserted. When exiting stop mode, the eQADC relies on the CFIFO operation modes and on the CFIFO
status to determine the next command entry to transfer.

The eQADC internal behavior after the stop mode entry request is detected differs depending on the status
of the command transfer.

• No command transfer is in progress

The eQADC immediately halts future command transfers from any CFIFO.

If a null message is being transmitted, eQADC completes the transmission before halting future
command transfers. If valid data (conversion result or data read from an ADC register) is received
at the end of the transmission, it is not sent to an RFIFO until stop mode exits.

If the null message transmission is aborted, the eQADC completes the abort procedure before
halting future command transfers from any CFIFO. The message of the CFIFO that caused the
abort of the previous serial transmission is only transmitted after stop mode exits.

• Command transfer is in progress.

The eQADC completes the transfer and update CFIFO status before halting future command
transfers from any CFIFO.

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 18-7

Command transfers to the external device are considered completed when the serial transmission
of the command is completed. If valid data (conversion result or data read from an ADC register)
is received at the end of a serial transmission, it is not sent to an RFIFO until stop mode exits. The
CFIFO status bits are still updated after the completion of the serial transmission, therefore, after
stop mode entry request is detected, the eQADC status bits stop changing several system clock
cycles after the on-going serial transmission completes.

If the command message transmission is aborted, the eQADC completes the abort procedure before
halting future command transfers from any CFIFO. The message of the CFIFO that caused the
abort of the previous serial transmission are transmitted only after stop mode exits.

• Command/null message transfer through serial interface was aborted but next serial transmission
did not start.

If the stop mode entry request is detected between the time a previous serial transmission was
aborted and the start of the next transmission, the eQADC completes the abort procedure before
halting future command transfers from any CFIFO. The message of the CFIFO that caused the
abort of the previous serial transmission is transferred only after stop mode is exited.

18.2 External Signal Description
These signals are external to the eQADC module, but are not necessarily physical pins. See Chapter 2,
“Signals” for a complete list of all physical pins and signals.

Table 18-1. eQADC External Signals

Function Description
I/O

Type

Status
During
Reset1

Status
After

Reset2
Type Package

AN[0]_
DAN0+

Single-ended analog input 0
Positive terminal differential input

I
I / — AN[0] / — Analog

496
324
208

AN[1]_
DAN0-

Single-ended analog input 1
Negative terminal differential input

I
I / — AN[1] / — Analog

496
324
208

AN[2]_
DAN1+

Single-ended analog input 2
Positive terminal differential input

I
I / — AN[2] / — Analog

496
324
208

AN[3]_
DAN1-

Single-ended analog input 3
Negative terminal differential input

I
I / — AN[3] / — Analog

496
324
208

AN[4]_
DAN2+

Single-ended analog input 4
Positive terminal differential input

I
I / — AN[4] / — Analog

496
324
208

AN[5]_
DAN2-

Single-ended analog input 5
Negative terminal differential input

I
I / — AN[5] / — Analog

496
324
208

AN[6]_
DAN3+

Single-ended analog input 6
Positive terminal differential input

I
I / — AN[6] / — Analog

496
324
208

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

18-8 Freescale Semiconductor

AN[7]_
DAN3-

Single-ended analog input 7
Negative terminal differential input

I
I / — AN[7] / — Analog

496
324
208

AN[8]_
ANW

Single-ended analog input 8
External multiplexed analog input W

I
I / — AN[8] / — Analog

496
324

AN[9]_
ANX

Single-ended analog input 9
External multiplexed analog input X

I
I / — AN[9] / — Analog

496
324
208

AN[10]_
ANY

Single-ended analog input 10
External multiplexed analog input Y

I
I / — AN[10] / — Analog

496
324

AN[11]_
ANZ

Single-ended analog input 11
External multiplexed analog input Z

I
I / — AN[11] / — Analog

496
324
208

AN[12]_
MA[0]_
SDS

Single-ended analog input 12
Mux address 0
eQADC SSI serial data select

I
O
O

I / — AN[12] / —
Analog/
Digital/
Digital

496
324
208

AN[13]_
MA[1]_
SDO

Single-ended analog input 13
Mux address 1
eQADC SSI serial data out

I
O
O

I / — AN[13] / —
Analog/
Digital/
Digital

496
324
208

AN[14]_
MA[2]_
SDI

Single-ended analog input 14
Mux address 2
eQADC SSI serial data in

I
O
I

I / — AN[14] / —
Analog/
Digital/
Digital

496
324
208

AN[15]_
FCK

Single-ended analog input 15
eQADC free running clock

I
O I / — AN[15] / —

Analog/
Digital

496
324
208

AN[16] Single-ended analog input 16 I I / — AN[16] / — Analog
496
324
208

AN[17:18] Single-ended analog input 17–18 I I / —
AN[17:19] /

—
Analog

496
324
208

AN[19:20] Single-ended analog input 19–20 I I / —
AN[19:20] /

—
Analog

496
324

AN[21] Single-ended analog input I I / — AN[21] / — Analog
496
324
208

AN[22:25] Single-ended analog input I I / —
AN[22:25] /

—
Analog

496
324
208

AN[26] Single-ended analog input I I / — AN[26] / — Analog
496
324

Table 18-1. eQADC External Signals (continued)

Function Description
I/O

Type

Status
During
Reset1

Status
After

Reset2
Type Package

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 18-9

AN[27:28] Single-ended analog input I I / —
AN[27:28] /

—
Analog

496
324
208

AN[29] Single-ended analog input I I / — AN[29] / — Analog
496
324

AN[30:32] Single-ended analog input I I / —
AN[30:32] /

—
Analog

496
324
208

AN[33] Single-ended analog input I I / — AN[33] / — Analog
496
324
208

AN[34:35] Single-ended analog input I I / —
AN[34:35] /

—
Analog

496
324
208

AN[36] Single-ended analog input I I / — AN[36] / — Analog
496
324
208

AN[37:39] Single-ended analog input 37–39 I I / —
AN[37:39] /

—
Analog

496
324
208

Power Supplies

VRH
Voltage reference high I — / — VRH Power

496
324
208

VRL
Voltage reference low I — / — VRL Power

496
324
208

REFBYPC
Reference bypass capacitor input I — / — REFBYPC Power

496
324
208

VDDA
Analog positive power supply I — VDDA Power

496
324
208

VSSA
Analog negative power supply I — VSSA Power

496
324
208

1 Terminology is O — output, I — input, Up — weak pullup enabled, Down — weak pulldown enabled, Low — output driven
low, High — output driven high. A dash on the left side of the slash denotes that both the input and output buffers for the
pin are off. A dash on the right side of the slash denotes that there is no weak pullup/down enabled on the pin. The signal
name to the left or right of the slash indicates the pin is enabled.

2 Function after reset of GPI is general-purpose input. A dash on the left side of the slash denotes that both the input and
output buffers for the pin are off. A dash on the right side of the slash denotes that there is no weak pullup/down enabled
on the pin.

Table 18-1. eQADC External Signals (continued)

Function Description
I/O

Type

Status
During
Reset1

Status
After

Reset2
Type Package

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

18-10 Freescale Semiconductor

18.3 Memory Map and Register Definition
This section provides memory maps and detailed descriptions of all registers. Data written to or read from
reserved areas of the memory map is undefined.

18.3.1 eQADC Memory Map

This section provides memory maps for the eQADC.

Table 18-2. eQADC Memory Map

Address Register Name Register Description Bits

Base (0xFFF8_0000) EQADC_MCR EQADC module configuration register 32

Base + 0x0004 — Reserved —

Base + 0x0008 EQADC_NMSFR eQADC null message send format register 32

Base + 0x000C EQADC_ETDFR eQADC external trigger digital filter register 32

Base + 0x0010 EQADC_CFPR0 eQADC command FIFO push register 0 32

Base + 0x0014 EQADC_CFPR1 eQADC command FIFO push register 1 32

Base + 0x0018 EQADC_CFPR2 eQADC command FIFO push register 2 32

Base + 0x001C EQADC_CFPR3 eQADC command FIFO push register 3 32

Base + 0x0020 EQADC_CFPR4 eQADC command FIFO push register 4 32

Base + 0x0024 EQADC_CFPR5 eQADC command FIFO push register 5 32

Base + 0x0028 — Reserved —

Base + 0x002C — Reserved —

Base + 0x0030 EQADC_RFPR0 eQADC result FIFO pop register 0 32 1

Base + 0x0034 EQADC_RFPR1 eQADC result FIFO pop register 1 32 1

Base + 0x0038 EQADC_RFPR2 eQADC result FIFO pop register 2 32 1

Base + 0x003C EQADC_RFPR3 eQADC result FIFO pop register 3 32 1

Base + 0x0040 EQADC_RFPR4 eQADC result FIFO pop register 4 32 1

Base + 0x0044 EQADC_RFPR5 eQADC result FIFO pop register 5 32 1

Base + 0x0048 — Reserved —

Base + 0x004C — Reserved —

Base + 0x0050 EQADC_CFCR0 eQADC command FIFO control register 0 16

Base + 0x0052 EQADC_CFCR1 eQADC command FIFO control register 1 16

Base + 0x0054 EQADC_CFCR2 eQADC command FIFO control register 2 16

Base + 0x0056 EQADC_CFCR3 eQADC command FIFO control register 3 16

Base + 0x0058 EQADC_CFCR4 eQADC command FIFO control register 4 16

Base + 0x005A EQADC_CFCR5 eQADC command FIFO control register 5 16

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 18-11

Base + 0x005C — Reserved —

Base + 0x0060 EQADC_IDCR0 eQADC interrupt and eDMA control register 0 16

Base + 0x0062 EQADC_IDCR1 eQADC interrupt and eDMA control register 1 16

Base + 0x0064 EQADC_IDCR2 eQADC interrupt and eDMA control register 2 16

Base + 0x0066 EQADC_IDCR3 eQADC interrupt and eDMA control register 3 16

Base + 0x0068 EQADC_IDCR4 eQADC interrupt and eDMA control register 4 16

Base + 0x006A EQADC_IDCR5 eQADC interrupt and eDMA control register 5 16

Base + 0x006C — Reserved —

Base + 0x0070 EQADC_FISR0 eQADC FIFO and interrupt status register 0 32

Base + 0x0074 EQADC_FISR1 eQADC FIFO and interrupt status register 1 32

Base + 0x0078 EQADC_FISR2 eQADC FIFO and interrupt status register 2 32

Base + 0x007C EQADC_FISR3 eQADC FIFO and interrupt status register 3 32

Base + 0x0080 EQADC_FISR4 eQADC FIFO and interrupt status register 4 32

Base + 0x0084 EQADC_FISR5 eQADC FIFO and interrupt status register 5 32

Base + 0x0088 — Reserved —

Base + 0x008C — Reserved —

Base + 0x0090 EQADC_CFTCR0 eQADC command FIFO transfer counter register 0 16

Base + 0x0092 EQADC_CFTCR1 eQADC command FIFO transfer counter register 1 16

Base + 0x0094 EQADC_CFTCR2 eQADC command FIFO transfer counter register 2 16

Base + 0x0096 EQADC_CFTCR3 eQADC command FIFO transfer counter register 3 16

Base + 0x0098 EQADC_CFTCR4 eQADC command FIFO transfer counter register 4 16

Base + 0x009A EQADC_CFTCR5 eQADC command FIFO transfer counter register 5 16

Base + 0x009C — Reserved —

Base + 0x00A0 EQADC_CFSSR0 eQADC command FIFO status snapshot register 0 32

Base + 0x00A4 EQADC_CFSSR1 eQADC command FIFO status snapshot register 1 32

Base + 0x00A8 EQADC_CFSSR2 eQADC command FIFO status snapshot register 2 32

Base + 0x00AC EQADC_CFSR eQADC command FIFO status register 32

Base + 0x00B0 — Reserved —

Base + 0x00B4 EQADC_SSICR eQADC synchronous serial interface control register 32

Base + 0x00B8 EQADC_SSIRDR eQADC synchronous serial interface receive data
register

32

Base + (0x00BC–0x00FC) — Reserved —

Base + (0x0100–0x010C) EQADC_CF0Rn eQADC CFIFO0 registers 0–3 32

Table 18-2. eQADC Memory Map (continued)

Address Register Name Register Description Bits

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

18-12 Freescale Semiconductor

18.3.2 eQADC Register Descriptions

18.3.2.1 eQADC Module Configuration Register (EQADC_MCR)

The EQADC_MCR contains bits used to control how the eQADC responds to a debug mode entry request,
and to enable the eQADC SSI interface.

Base + (0x0110–0x013C) — Reserved —

Base + (0x0140–0x014C) EQADC_CF1Rn eQADC CFIFO1 registers 0–3 32

Base + (0x0150–0x017C) — Reserved —

Base + (0x0180–0x018C) EQADC_CF2Rn eQADC CFIFO2 registers 0–3 32

Base + (0x0190–0x01BC) — Reserved —

Base + (0x01C0–0x01CC) EQADC_CF3Rn eQADC CFIFO3 registers 0–3 32

Base + (0x01D0–0x01FC) — Reserved —

Base + (0x0200–0x020C) EQADC_CF4Rn eQADC CFIFO4 registers 0–3 32

Base + (0x0210–0x023C) — Reserved —

Base + (0x0240–0x024C) EQADC_CF5Rn eQADC CFIFO5 registers 0–3 32

Base + (0x0250–0x02FC) — Reserved —

Base + (0x0300–0x030C) EQADC_RF0Rn eQADC RFIFO0 registers 0–3 32

Base + (0x0310–0x033C) — Reserved —

Base + (0x0340–0x034C) EQADC_RF1Rn eQADC RFIFO1 registers 0–3 32

Base + (0x0350–0x037C) — Reserved —

Base + (0x0380–0x038C) EQADC_RF2Rn eQADC RFIFO2 registers 0–3 32

Base + (0x0390–0x03BC) — Reserved —

Base + (0x03C0–0x03CC) EQADC_RF3Rn eQADC RFIFO3 registers 0–3 32

Base + (0x03D0–0x03FC) — Reserved —

Base + (0x0400–0x040C) EQADC_RF4Rn eQADC RFIFO4 registers 0–3 32

Base + (0x0410–0x043C) — Reserved —

Base + (0x0440–0x044C) EQADC_RF5Rn eQADC RFIFO5 registers 0–3 32

Base + (0x0450–0x07FC) — Reserved —

1 Result FIFOs are 16-bits wide [0:15]; bits [16:31] are filled with zeros to allow for 32-bit read access.

Table 18-2. eQADC Memory Map (continued)

Address Register Name Register Description Bits

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 18-13

NOTE
Disabling the eQADC SSI (0b00 write to ESSIE) or serial transmissions
from the eQADC SSI (0b10 write to ESSIE) while a serial transmission is
in progress results in the abort of that transmission.

NOTE
When disabling the eQADC SSI, the FCK does not stop until it reaches its
low phase.

18.3.2.2 eQADC Null Message Send Format Register (EQADC_NMSFR)

The EQADC_NMSFR defines the format of the null message sent to the external device.

Address: Base+ 0x0000 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0
ESSIE

0
DBG

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 18-2. eQADC Module Configuration Register (EQADC_MCR)

Table 18-3. EQADC_MCR Field Descriptions

Field Description

0–26 Reserved

27–28
ESSIE
[0:1]

eQADC synchronous serial interface enable. Defines the eQADC synchronous serial interface operation.
00 eQADC SSI is disabled
01 Invalid value
10 eQADC SSI is enabled, FCK is free running, and serial transmissions are disabled
11 eQADC SSI is enabled, FCK is free running, and serial transmissions are enabled

29 Reserved

30–31
DBG
[0:1]

Debug enable. Defines the eQADC response to a debug mode entry request.
00 Do not enter debug mode
01 Invalid value
10 Enter debug mode. If the eQADC SSI is enabled, FCK stops while the eQADC is in debug mode.
11 Enter debug mode. If the eQADC SSI is enabled, FCK is free running while the eQADC is in debug mode

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

18-14 Freescale Semiconductor

NOTE
The eQADC null message send format register (eQADC_NMSFR) only
defines the format of the null message that eQADC sends. The null message
register does not control how the eQADC detects a null message from the
input source. The eQADC detects a null message by decoding the
MESSAGE_TAG field on the receive data. See Table 18-31 for more
information on the MESSAGE_TAG field.

NOTE
Writing to the eQADC null message send format register while serial
transmissions are enabled is not recommended. See EQADC_MCR[ESSIE]
field in Section 18.3.2.1, “eQADC Module Configuration Register
(EQADC_MCR).”

Address: Base + 0x0008 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0
NMF

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
NMF

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 18-3. eQADC Null Message Send Format Register (EQADC_NMSFR)

Table 18-4. EQADC_NMSFR Field Descriptions

Field Description

0–5 Reserved

6–31
NMF
[0:25]

Null message format. Contains the programmable null message send value for the eQADC. The value written to this
register is sent as a null message when serial transmissions from the eQADC SSI are enabled (ESSIE field is
configured to 0b11 in EQADC_MCR (Section 18.3.2.1, “eQADC Module Configuration Register (EQADC_MCR))
and either
 • there are no triggered CFIFOs with commands bound for external command buffers, or;
 • there are triggered CFIFOs with commands bound for external command buffers but the external command

buffers are full.
See Section , “Null Message Format for External Device Operation” for more information on the format of a null
message.

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 18-15

18.3.2.3 eQADC External Trigger Digital Filter Register (EQADC_ETDFR)

NOTE
This register is not available on the MPC5561 device due to pin limitations
on the 324 package. Do not read or write to this register.

The EQADC_ETDFR is used to set the minimum time a signal must be held in a logic state on the CFIFO
triggers inputs to be recognized as an edge or level gated trigger. The digital filter length field specifies the
minimum number of system clocks that must be counted by the digital filter counter to recognize a logic
state change.

18.3.2.4 eQADC CFIFO Push Registers 0–5 (EQADC_CFPRn)

The EQADC_CFPRs provide a mechanism to fill the CFIFOs with command messages from the command
queues. See Section 18.4.3, “eQADC Command FIFOs,” for more information on the CFIFOs and to
Section 18.4.1.2, “Message Format in eQADC,” for a description on command message formats.

Address: Base + 0x000C Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0
DFL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 18-4. eQADC External Trigger Digital Filter Register (EQADC_ETDFR)

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

18-16 Freescale Semiconductor

Address: Base + 0x0010 (EQADC_CFPR0)
Base + 0x0014 (EQADC_CFPR1);
Base + 0x0018 (EQADC_CFPR2)
Base + 0x001C (EQADC_CFPR3)
Base + 0x0020 (EQADC_CFPR4)
Base + 0x0024 (EQADC_CFPR5)

Access: WO

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W CF_PUSHn

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W CF_PUSHn

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 18-5. eQADC CFIFO Push Registers 0–5 (EQADC_CFPRn)

Table 18-5. EQADC_CFPRn Field Descriptions

Field Description

0–31
CF_PUSHn

[0:31]

CFIFO push data n. When CFIFOn is not full, writing to the whole word or any bytes of EQADC_CFPRn pushes
the 32-bit CF_PUSHn value into CFIFOn. Writing to the CF_PUSHn field also increments the corresponding
CFCTRn value by one in Section 18.3.2.8, “eQADC FIFO and Interrupt Status Registers 0–5 (EQADC_FISRn).”
When the CFIFOn is full, the eQADC ignores any write to the CF_PUSHn. Reading the EQADC_CFPRn always
returns 0.
Note: Write only whole words to the EQADC_CFPRn registers. Writing halfwords or bytes to EQADC_CFPR

pushes the entire 32-bit CF_PUSH field into the CFIFO, but undefined data fills the areas of CF_PUSH that
were not specifically designated as target locations for the write.

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 18-17

18.3.2.5 eQADC Result FIFO Pop Registers 0–5 (EQADC_RFPRn)

The eQADC_RFPRs allow you to retrieve data from RFIFOs.

NOTE
Do not read the EQADC_RFPRn unless absolutely necessary, since the data
is lost when the read occurs. For compatibility, configure the TLB entry for
the EQADC_RFPRn registers as guarded.

Address: Base + 0x0030 (EQADC_RFPR0)
Base + 0x0034 (EQADC_RFPR1)
Base + 0x0038 (EQADC_RFPR2)
Base + 0x003C (EQADC_RFPR3)
Base + 0x0040 (EQADC_RFPR4)
Base + 0x0044 (EQADC_RFPR5)

Access: RO

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R RF_POPn

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 18-6. eQADC RFIFO Pop Registers 0–5 (EQADC_RFPRn)

Table 18-6. EQADC_RFPRn Field Descriptions

Field Description

0–15 Reserved

16–31
RF_POPn

[0:15]

Result FIFO pop data n. When RFIFOn is not empty, the RF_POPn contains the next unread entry value of RFIFOn.
Reading the whole word, a halfword, or any bytes of EQADC_RFPRn pops one entry from RFIFOn, and the
RFCTRn value is decremented by 1. See Section 18.3.2.8, “eQADC FIFO and Interrupt Status Registers 0–5
(EQADC_FISRn).” When the RFIFOn is empty, any read on EQADC_RFPRn returns undefined data value and
does not decrement the RFCTRn value. Writing to EQADC_RFPRn has no effect.

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

18-18 Freescale Semiconductor

18.3.2.6 eQADC CFIFO Control Registers 0–5 (EQADC_CFCRn)

The eQADC_CFCRs contain bits that affect CFIFOs. These bits specify the CFIFO operation mode and
can invalidate all of the CFIFO contents.

Address: EQADC_BASE + 0x0050 (EQADC_CFCR0)
EQADC_BASE + 0x0052 (EQADC_CFCR1)
EQADC_BASE + 0x0054 (EQADC_CFCR2)
EQADC_BASE + 0x0056 (EQADC_CFCR3)
EQADC_BASE + 0x0058 (EQADC_CFCR4);
EQADC_BASE + 0x005A (EQADC_CFCR5)

Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0
MODEn

0 0 0 0

W SSEn CFINVn

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 18-7. eQADC CFIFO Control Registers (EQADC_CFCRn)

Table 18-7. EQADC_CFCRn Field Descriptions

Field Description

0–4 Reserved

5
SSEn

CFIFO single-scan enable bit n. Used to set the SSSn bit, as described in Section 18.3.2.8, “eQADC FIFO and
Interrupt Status Registers 0–5 (EQADC_FISRn).” Writing a 1 to SSEn sets the SSSn if the CFIFO is in single-scan
mode. When SSSn is already asserted, writing a 1 to SSEn has no effect. If the CFIFO is in continuous-scan mode
or is disabled, writing a 1 to SSEn does not set SSSn. Writing a 0 to SSEn has no effect. SSEn always is read as 0.
0 No effect.
1 Set the SSSn bit.

6
CFINVn

CFIFO invalidate bit n. Causes the eQADC to invalidate all entries of CFIFOn. Writing a 1 to CFINVn resets the value
of CFCTRn in the EQADC_FISR register (see Section 18.3.2.8, “eQADC FIFO and Interrupt Status Registers 0–5
(EQADC_FISRn).” Writing a 1 to CFINVn also resets the push next data pointer, transfer next data pointer to the first
entry of CFIFOn in Figure 18-35. Reading CFINVn always returns a 0. Writing a 0 has no effect.
0 No effect.
1 Invalidate all of the entries in the corresponding CFIFO.
Note: Writing CFINVn only invalidates commands stored in CFIFOn; previously transferred commands that are

waiting for execution (commands stored in the ADC command buffers) are executed, and the results are stored
in the RFIFO.

Note: Do not write to CFINVn unless MODEn is disabled, and CFIFO status is IDLE.

7 Reserved

8–11
MODEn

[0:3]

CFIFO operation mode n. Selects the CFIFO operation mode for CFIFOn. See Section 18.4.3.4, “CFIFO Scan
Trigger Modes,” for more information on CFIFO trigger mode.
Note: If MODEn is not disabled, it must not be changed to any other mode besides disabled. If MODEn is disabled

and the CFIFO status is IDLE, MODEn can be changed to any other mode.

12–15 Reserved

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 18-19

18.3.2.7 eQADC Interrupt and eDMA Control Registers 0–5 (EQADC_IDCRn)

The eQADC_IDCRs contain bits to enable the generation of interrupt or eDMA requests when the
corresponding flag bits are set in EQADC_FISRn. See Section 18.3.2.8, “eQADC FIFO and Interrupt
Status Registers 0–5 (EQADC_FISRn).”

Table 18-8. CFIFO Operation Mode Table

MODEn[0:3] CFIFO Operation Mode

0b0000 Disabled

0b0001 Software trigger, single scan

0b0010 Low level gated external trigger, single scan

0b0011 High level gated external trigger, single scan

0b0100 Falling edge external trigger, single scan

0b0101 Rising edge external trigger, single scan

0b0110 Falling or rising edge external trigger, single scan

0b0111–0b1000 Reserved

0b1001 Software trigger, continuous scan

0b1010 Low level gated external trigger, continuous scan

0b1011 High level gated external trigger, continuous scan

0b1100 Falling edge external trigger, continuous scan

0b1101 Rising edge external trigger, continuous scan

0b1110 Falling or rising edge external trigger, continuous scan

0b1111 Reserved

Address: EQADC_BASE + 0x0060 (EQADC_IDCR0)
EQADC_BASE + 0x0062 (EQADC_IDCR1)
EQADC_BASE + 0x0064 (EQADC_IDCR2)
EQADC_BASE + 0x0066 (EQADC_IDCR3)
EQADC_BASE + 0x0068 (EQADC_IDCR4)
EQADC_BASE + 0x006A (EQADC_IDCR5)

Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R NCI
En

TORI
En

PIEn
EOQI

En
CFUI
En

0 CFF
En

CFF
Sn

0 0 0 0 RFOI
En

0 RFD
En

RFD
SnW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 18-8. eQADC Interrupt and eDMA Control Registers 0–5 (EQADC_IDCRn)

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

18-20 Freescale Semiconductor

Table 18-9. EQADC_IDCRn Field Descriptions

Field Description

0
NCIEn

Non-coherency interrupt enable n. Enables the eQADC to generate an interrupt request when the corresponding
NCFn, described in Section 18.3.2.8, “eQADC FIFO and Interrupt Status Registers 0–5 (EQADC_FISRn),” is
asserted.
0 Disable non-coherency interrupt request
1 Enable non-coherency interrupt request

1
TORIEn

Trigger overrun interrupt enable n. Enables the eQADC to generate an interrupt request when the corresponding
TORFn (described in Section 18.3.2.8, “eQADC FIFO and Interrupt Status Registers 0–5 (EQADC_FISRn)”) is
asserted.
Apart from generating an independent interrupt request for a CFIFOn trigger overrun event, the eQADC also
provides a combined interrupt at which the result FIFO overflow interrupt, the command FIFO underflow interrupt,
and the command FIFO trigger overrun interrupt requests of all CFIFOs are ORed. When RFOIEn, CFUIEn, and
TORIEn are all asserted, this combined interrupt request is asserted whenever one of the following 18 flags becomes
asserted: RFOFn, CFUFn, and TORFn (assuming that all interrupts are enabled). See Section 18.4.7, “eQADC
eDMA or Interrupt Request,” for details.
0 Disable trigger overrun interrupt request
1 Enable trigger overrun interrupt request

2
PIEn

Pause interrupt enable n. Enables the eQADC to generate an interrupt request when the corresponding PFx in
EQADC_FISRn is asserted. See Section 18.3.2.8, “eQADC FIFO and Interrupt Status Registers 0–5
(EQADC_FISRn).”
0 Disable pause interrupt request
1 Enable pause interrupt request

3
EOQIEn

End-of-queue interrupt enable n. Enables the eQADC to generate an interrupt request when the corresponding
EOQFn in EQADC_FISRn is asserted. See Section 18.3.2.8, “eQADC FIFO and Interrupt Status Registers 0–5
(EQADC_FISRn).”
0 Disable end of queue interrupt request.
1 Enable end of queue interrupt request.

4
CFUIEn

CFIFO underflow interrupt enable n. Enables the eQADC to generate an interrupt request when the corresponding
CFUFn in EQADC_FISRn is asserted.
Apart from generating an independent interrupt request for a CFIFOn underflow event, the eQADC also provides a
combined interrupt at which the result FIFO overflow interrupt, the command FIFO underflow interrupt, and the
command FIFO trigger overrun interrupt requests of all CFIFOs are ORed. When RFOIEn, CFUIEn, and TORIEn
are all asserted, this combined interrupt request is asserted whenever one of the following 18 flags becomes
asserted: RFOFn, CFUFn, and TORFn (assuming that all interrupts are enabled). See Section 18.4.7, “eQADC
eDMA or Interrupt Request,” for details.
0 Disable underflow interrupt request
1 Enable underflow interrupt request

5 Reserved

6
CFFEn

CFIFO fill enable n. Enables the eQADC to generate an interrupt request (CFFSn is asserted) or eDMA request
(CFFSn is negated) when CFFFn in EQADC_FISRn is asserted. See Section 18.3.2.8, “eQADC FIFO and Interrupt
Status Registers 0–5 (EQADC_FISRn).”
0 Disable CFIFO fill eDMA or interrupt request
1 Enable CFIFO fill eDMA or interrupt request
Note: CFFEn must not be negated while an eDMA transaction is in progress.

7
CFFSn

CFIFO fill select n. Selects if an eDMA or interrupt request is generated when CFFFn in EQADC_FISRn (See
Section 18.3.2.8, “eQADC FIFO and Interrupt Status Registers 0–5 (EQADC_FISRn)”) is asserted. If CFFEn is
asserted, the eQADC generates an interrupt request when CFFSn is negated, or it generates an eDMA request if
CFFSn is asserted.
0 Generate interrupt request to move data from the system memory to CFIFOn.
1 Generate eDMA request to move data from the system memory to CFIFOn.
Note: CFFSn must not be negated while an eDMA transaction is in progress.

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 18-21

8–11 Reserved

12
RFOIEn

RFIFO overflow interrupt enable n. Enables the eQADC to generate an interrupt request when the corresponding
RFOFn in EQADC_FISRn is asserted. See Section 18.3.2.8, “eQADC FIFO and Interrupt Status Registers 0–5
(EQADC_FISRn).”
Apart from generating an independent interrupt request for an RFIFOn overflow event, the eQADC also provides a
combined interrupt at which the result FIFO overflow Interrupt, the command FIFO underflow interrupt, and the
command FIFO trigger overrun interrupt requests of all CFIFOs are ORed. When RFOIEn, CFUIEn, and TORIEn
are all asserted, this combined interrupt request is asserted whenever one of the following 18 flags becomes
asserted: RFOFn, CFUFn, and TORFn (assuming that all interrupts are enabled). See Section 18.4.7, “eQADC
eDMA or Interrupt Request,” for details.
0 Disable overflow interrupt request
1 Enable overflow Interrupt request

13 Reserved

14
RFDEn

RFIFO drain enable n. Enables the eQADC to generate an interrupt request (RFDSn is asserted) or eDMA request
(RFDSn is negated) when RFDFn in EQADC_FISRn (See Section 18.3.2.8, “eQADC FIFO and Interrupt Status
Registers 0–5 (EQADC_FISRn)”) is asserted.
0 Disable RFIFO drain eDMA or interrupt request
1 Enable RFIFO drain eDMA or interrupt request
Note: RFDEn must not be negated while an eDMA transaction is in progress.

15
RFDSn

RFIFO drain select n. Selects if an eDMA or interrupt request is generated when RFDFn in EQADC_FISRn (See
Section 18.3.2.8, “eQADC FIFO and Interrupt Status Registers 0–5 (EQADC_FISRn)”) is asserted. If RFDEn is
asserted, the eQADC generates an interrupt request when RFDSn is negated, or it generates an eDMA request
when RFDSn is asserted.
0 Generate interrupt request to move data from RFIFn to the system memory
1 Generate eDMA request to move data from RFIFOn to the system memory
Note: RFDSn must not be negated while an eDMA transaction is in progress.

Table 18-9. EQADC_IDCRn Field Descriptions (continued)

Field Description

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

18-22 Freescale Semiconductor

18.3.2.8 eQADC FIFO and Interrupt Status Registers 0–5 (EQADC_FISRn)

The EQADC_FISRs contain flag and status bits for each CFIFO and RFIFO pair. Writing 1 to a flag bit
clears it. Writing 0 has no effect. Status bits are read only. These bits indicate the status of the FIFO itself.

Address: Base + 0x0070 (EQADC_FISR0)
Base + 0x0074 (EQADC_FISR1)
Base + 0x0078 (EQADC_FISR2)
Base + 0x007C (EQADC_FISR3)
Base + 0x0080 (EQADC_FISR4)
Base + 0x0084 (EQADC_FISR5)

Access: R/W1c

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R NCFn TORFn PFn EOQFn CFUFn SSSn CFFFn 0 0 0 0 0 RFOFn 0 RFDFn 0

W w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R CFCTRn TNXTPTRn RFCTRn POPNXTPTRn

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 18-9. eQADC FIFO and Interrupt Status Registers 0–5 (EQADC_FISRn)

Table 18-10. EQADC_FISRn Field Descriptions

Field Description

0
NCFn

Non-coherency flag n. NCFn is set whenever a command sequence being transferred through CFIFOn becomes
non-coherent. If NCIEn in EQADC_IDCRn (See Section 18.3.2.7, “eQADC Interrupt and eDMA Control Registers
0–5 (EQADC_IDCRn)”) and NCFn are asserted, an interrupt request is generated. Writing a 1 clears NCFn. Writing
a 0 has no effect. More for information on non-coherency see Section 18.4.3.5.5, “Command Sequence
Non-Coherency Detection.”
0 Command sequence being transferred by CFIFOn is coherent
1 Command sequence being transferred by CFIFOn became non-coherent
Note: Non-coherency means that a command in the command FIFO was not immediately executed, but delayed.

This can occur if the command is pre-empted, where a higher priority queue is triggered and has a competing
conversion command for the same converter.

1
TORFn

Trigger overrun flag for CFIFO n. TORFn is set when trigger overrun occurs for the specified CFIFO in edge or level
trigger mode. Trigger overrun occurs when an already triggered CFIFO receives an additional trigger. When
EQADC_IDCRn[TORIEn] is set (See Section 18.3.2.7, “eQADC Interrupt and eDMA Control Registers 0–5
(EQADC_IDCRn)”) and TORFn are asserted, an interrupt request is generated.
Apart from generating an independent interrupt request for a CFIFOn trigger overrun event, the eQADC also
provides a combined interrupt at which the result FIFO overflow interrupt, the command FIFO underflow interrupt,
and the command FIFO trigger overrun Interrupt requests of all CFIFOs are ORed. When RFOIEn, CFUIEn, and
TORIEn are all asserted, this combined interrupt request is asserted whenever one of the following 18 flags becomes
asserted: RFOFn, CFUFn, and TORFn (assuming that all interrupts are enabled). See Section 18.4.7, “eQADC
eDMA or Interrupt Request,” for details.
Write 1 to clear the TORFn bit. Writing 0 has no effect.
0 No trigger overrun occurred
1 Trigger overrun occurred
Note: The trigger overrun flag is not set for CFIFOs configured for software trigger mode.

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 18-23

2
PFn

Pause flag n. PF behavior changes according to the CFIFO trigger mode.
 • In edge trigger mode, PFn is set when the eQADC completes the transfer of an entry with an asserted pause bit

from CFIFOn.
 • In level trigger mode, when CFIFOn is in the TRIGGERED state, PFn is set when CFIFO status changes from

TRIGGERED due to the detection of a closed gate.

An interrupt routine, generated due to the asserted PF, can be used to verify if a complete scan of the command
queue you defined was performed. If a closed gate is detected while no command transfers are taking place, it has
an immediate effect on the CFIFO status. If a closed gate is detected while a command transfer to an on-chip ADC
is taking place, it only affects the CFIFO status when the transfer completes. If a closed gate is detected during the
serial transmission of a command to the external device, it has no effect on the CFIFO status until the transmission
completes.

The transfer of entries bound for the on-chip ADCs is considered completed when they are stored in the appropriate
ADC command buffer. The transfer of entries bound for the external device is considered completed when the serial
transmission of the entry is completed. In software trigger mode, PFn is never asserted.

If PIEn (See Section 18.3.2.7, “eQADC Interrupt and eDMA Control Registers 0–5 (EQADC_IDCRn)”) and PFn are
asserted, an interrupt is generated. Writing a 1 clears the PFn. Writing a 0 has no effect. See Section 18.4.3.5.3,
“Pause Status,” for more information on pause flag.
0 Entry with asserted pause bit was not transferred from CFIFOn (CFIFO in edge trigger mode), or CFIFO status

did not change from the TRIGGERED state due to detection of a closed gate (CFIFO in level trigger mode).
1 Entry with asserted pause bit was transferred from CFIFOn (CFIFO in edge trigger mode), or CFIFO status

changes from the TRIGGERED state due to detection of a closed gate (CFIFO in level trigger mode).
Note: In edge trigger mode, an asserted PFn only implies that the eQADC has finished transferring a command with

an asserted pause bit from CFIFOn. It does not imply that result data for the current command and for all
previously transferred commands has been returned to the appropriate RFIFO.

Note: In software or level trigger mode, when the eQADC completes the transfer of an entry from CFIFOn with an
asserted pause bit, PFn is not set and commands continue to transfer without pausing.

3
EOQFn

End-of-queue flag n. Indicates that an entry with an asserted EOQ bit was transferred from CFIFOn to the on-chip
ADCs or to the external device. See Section 18.4.1.2, “Message Format in eQADC,” for details about command
message formats. When the eQADC completes the transfer of an entry with an asserted EOQ bit from CFIFOn,
EOQFn is set. The transfer of entries bound for the on-chip ADCs is considered completed when they are stored in
the appropriate command buffer. The transfer of entries bound for the external device is considered completed when
the serial transmission of the entry is completed. If the EOQIEn bit (See Section 18.3.2.7, “eQADC Interrupt and
eDMA Control Registers 0–5 (EQADC_IDCRn)”) and EOQFn are asserted, an interrupt is generated. Writing a 1
clears the EOQFn bit. Writing a 0 has no effect. See Section 18.4.3.5.2, “Command Queue Completion Status,” for
more information on end-of-queue flag.
0 Entry with asserted EOQ bit was not transferred from CFIFOn
1 Entry with asserted EOQ bit was transferred from CFIFOn
Note: An asserted EOQFn only implies that the eQADC has finished transferring a command with an asserted EOQ

bit from CFIFOn. It does not imply that result data for the current command and for all previously transferred
commands has been returned to the appropriate RFIFO.

Table 18-10. EQADC_FISRn Field Descriptions (continued)

Field Description

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

18-24 Freescale Semiconductor

4
CFUFn

CFIFO underflow flag n. Indicates an underflow event on CFIFOn. CFUFn is set when CFIFOn is in the TRIGGERED
state and it becomes empty. No commands are transferred from an underflowing CFIFO, and command transfers
from lower priority CFIFOs are not blocked. When CFUIEn (see Section Section 18.3.2.7, “eQADC Interrupt and
eDMA Control Registers 0–5 (EQADC_IDCRn)”) and CFUFn are both asserted, the eQADC generates an interrupt
request.
Apart from generating an independent interrupt request for a CFIFOn underflow event, the eQADC also provides a
combined interrupt at which the result FIFO overflow interrupt, the command FIFO underflow interrupt, and the
command FIFO trigger overrun interrupt requests of all CFIFOs are ORed. When RFOIEn, CFUIEn, and TORIEn
are all asserted, this combined interrupt request is asserted whenever one of the following 18 flags becomes
asserted: RFOFn, CFUFn, and TORFn (assuming that all interrupts are enabled). See Section 18.4.7, “eQADC
eDMA or Interrupt Request,” for details. Writing a 1 clears CFUFn. Writing a 0 has no effect.
0 No CFIFO underflow event occurred
1 A CFIFO underflow event occurred

5
SSSn

CFIFO single-scan status bit n. When asserted, enables the detection of trigger events for CFIFOs programmed into
single-scan level- or edge-trigger mode, and works as trigger for CFIFOs programmed into single-scan
software-trigger mode. See Section 18.4.3.4.2, “Single-Scan Mode,” for further details. The SSSn bit is set by writing
a 1 to the SSEn bit (see Section Section 18.3.2.6, “eQADC CFIFO Control Registers 0–5 (EQADC_CFCRn)”). The
eQADC clears the SSSn bit when a command with an asserted EOQ bit is transferred from a CFIFO in single-scan
mode, when a CFIFO is in single-scan level trigger mode and its status changes from the TRIGGERED state due to
the detection of a closed gate, or when the value of the CFIFO operation mode MODEn (see Section 18.3.2.6,
“eQADC CFIFO Control Registers 0–5 (EQADC_CFCRn)”) is changed to disabled. Writing to SSSn has no effect.
SSSn has no effect in continuous-scan or in disabled mode.
0 CFIFO in single-scan, level-, or edge-trigger mode ignores trigger events, or CFIFO in single-scan software-trigger

mode is not triggered.
1 CFIFO in single-scan level- or edge-trigger mode detects a trigger event, or CFIFO in single-scan software-trigger

mode is triggered.

6
CFFFn

CFIFO fill flag n. CFFFn is set when the CFIFOn is not full. When CFFEn (see Section 18.3.2.7, “eQADC Interrupt
and eDMA Control Registers 0–5 (EQADC_IDCRn)”) and CFFFn are both asserted, an interrupt or an eDMA request
is generated depending on the status of the CFFSn bit. When CFFSn is negated (interrupt requests selected),
software clears CFFFn by writing a 1 to it. Writing a 0 has no effect. When CFFSn is asserted (eDMA requests
selected), CFFFn is automatically cleared by the eQADC when the CFIFO becomes full.
0 CFIFOn is full.
1 CFIFOn is not full.
Note: When generation of interrupt requests is selected (CFFSn=0), CFFFn must only be cleared in the ISR after

the CFIFOn push register is accessed.

Note: Do not clear CFFFn when CFFSn is asserted (eDMA requests selected).

7–11 Reserved

Table 18-10. EQADC_FISRn Field Descriptions (continued)

Field Description

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 18-25

12
RFOFn

RFIFO overflow flag n. Indicates an overflow event on RFIFOn. RFOFn is set when RFIFOn is already full, and a
new data is received from the on-chip ADCs or from the external device. The RFIFOn does not overwrite older data
in the RFIFO, and the new data is ignored. When RFOIEn (see Section 18.3.2.7, “eQADC Interrupt and eDMA
Control Registers 0–5 (EQADC_IDCRn)”) and RFOFn are both asserted, the eQADC generates an interrupt
request.
Apart from generating an independent interrupt request for an RFIFOn overflow event, the eQADC also provides a
combined interrupt at which the result FIFO overflow interrupt, the command FIFO underflow interrupt, and the
command FIFO trigger overrun interrupt requests of all CFIFOs are ORed. When RFOIEn, CFUIEn, and TORIEn
are all asserted, this combined interrupt request is asserted whenever one of the following 18 flags becomes
asserted: RFOFn, CFUFn, and TORFn (assuming that all interrupts are enabled). See Section 18.4.7, “eQADC
eDMA or Interrupt Request,” for details.
Write 1 to clear RFOFn. Writing a 0 has no effect.
0 No RFIFO overflow event occurred.
1 An RFIFO overflow event occurred.

13 Reserved

14
RFDFn

RFIFO drain flag n. Indicates if RFIFOn has valid entries that can be drained or not. RFDFn is set when the RFIFOn
has at least one valid entry in it. When RFDEn (see Section 18.3.2.7, “eQADC Interrupt and eDMA Control Registers
0–5 (EQADC_IDCRn)”) and RFDFn are both asserted, an interrupt or an eDMA request is generated depending on
the status of the RFDSn bit. When RFDSn is negated (interrupt requests selected), software clears RFDFn by writing
a 1 to it. Writing a 0 has no effect. When RFDSn is asserted (eDMA requests selected), RFDFn is automatically
cleared by the eQADC when the RFIFO becomes empty.
0 RFIFOn is empty.
1 RFIFOn has at least one valid entry.
Note: In the interrupt service routine, RFDF must be cleared only after the RFIFOn pop register is read.
Note: Do not clear RFDFn when RFDSn is asserted (eDMA requests selected).

15 Reserved

16–19
CFCTRn

[0:3]

CFIFOn entry counter. Indicates the number of commands stored in the CFIFOn. When the eQADC completes
transferring a piece of new data from the CFIFOn, it decrements CFCTRn by 1. Writing a word or any bytes to the
corresponding CFIFO Push Register (see Section 18.3.2.4, “eQADC CFIFO Push Registers 0–5
(EQADC_CFPRn)”) increments CFCTRn by 1. Writing any value to CFCTRn has no effect.

20–23
TNX

TPTRn
[0:3]

CFIFOn transfer next pointer. Indicates the index of the next entry to be removed from CFIFOn when it completes a
transfer. When TNXTPTRn is 0, it points to the entry with the smallest memory-mapped address inside CFIFOn.
TNXTPTRn is only updated when a command transfer is completed. If the maximum index number (CFIFO depth
minus 1) is reached, TNXTPTRn is wrapped to 0, else, it is incremented by 1. For details, see Section 18.4.3.1,
“CFIFO Basic Functionality.” Writing any value to TNXTPTRn has no effect.

24–27
RFCTRn

[0:3]

RFIFOn entry counter. Indicates the number of data items stored in the RFIFOn. When the eQADC stores a piece
of new data into RFIFOn, it increments RFCTRn by 1. Reading the whole word, halfword or any bytes of the
corresponding Result FIFO pop register (see Section 18.3.2.5, “eQADC Result FIFO Pop Registers 0–5
(EQADC_RFPRn)”) decrements RFCTRn by 1. Writing any value to RFCTRn itself has no effect.

28–31
POPNX
TPTRn

[0:3]

RFIFOn pop next pointer. Indicates the index of the entry that is returned when EQADC_RFPRn is read. When
POPNXTPTRn is 0, it points to the entry with the smallest memory-mapped address inside RFIFOn. POPNXTPTRn
is updated when EQADC_RFPRn is read. If the maximum index number (RFIFO depth minus 1) is reached,
POPNXTPTRn is wrapped to 0, else, it is incremented by 1. For details see Section 18.4.4.1, “RFIFO Basic
Functionality.” Writing any value to POPNXTPTRn has no effect.

Table 18-10. EQADC_FISRn Field Descriptions (continued)

Field Description

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

18-26 Freescale Semiconductor

18.3.2.9 eQADC CFIFO Transfer Counter Registers 0–5 (EQADC_CFTCRn)

The EQADC_CFTCRs record the number of commands transferred from a CFIFO. The EQADC_CFTCR
supports the monitoring of command transfers from a CFIFO.

18.3.2.10 eQADC CFIFO Status Snapshot Registers 0–2

The eQADC_CFSSRs contain status fields to track the operation status of each CFIFO and the transfer
counter of the last CFIFO to initiate a command transfer to the internal ADCs and the external command
buffers. EQADC_CFSSR0–1 are related to the on-chip ADC command buffers (buffers 0 and 1) while
EQADC_CFSSR2 is related to the external command buffers (buffers 2 and 3). All fields of a particular
EQADC_CFSSR are captured at the beginning of a command transfer to the buffer associated with that
register.

Captured status register values are associated with a previous command transfer. This means that the
eQADC_CFSSR registers capture the status registers before the status registers change, because of the
transfer of the current command that is about to be popped from the CFIFO. The EQADC_CFSSRs are
read only. Writing to the EQADC_CFSSRs has no effect.

Address: EQADC_BASE + 0x0090 (EQADC_CFTCR0)
EQADC_BASE + 0x0092 (EQADC_CFTCR1)
EQADC_BASE + 0x0094 (EQADC_CFTCR2)
EQADC_BASE + 0x0096 (EQADC_CFTCR3)
EQADC_BASE + 0x0098 (EQADC_CFTCR4)
EQADC_BASE + 0x009A (EQADC_CFTCR5)

Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0
TC_CFn

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 18-10. eQADC CFIFO Transfer Counter Registers (EQADC_CFTCRn)

Table 18-11. EQADC_CFTCRn Field Descriptions

Field Description

0–4 Reserved

5–15
TC_CFn

[0:10]

Transfer counter for CFIFOn. TC_CFn counts the number of commands that have been completely transferred from
CFIFOn. TC_CFn=2, for example, signifies that two commands have been transferred. The transfer of entries bound
for the on-chip ADCs is considered completed when they are stored in the appropriate command buffer. The transfer
of entries bound for an external device is considered completed when the serial transmission of the entry is
completed. The eQADC increments the TC_CFn value by 1 after a command is transferred. TC_CFn resets to 0 after
eQADC completes transferring a command with an asserted EOQ bit. Writing any value to TC_CFn sets the counter
to that written value.
Note: If CFIFOn is in the TRIGGERED state when its MODEn field is programmed to disabled, the exact number of

entries transferred from the CFIFO until that point (TC_CFn) is only known after the CFIFO status changes to
IDLE, as indicated by CFSn. For details see Section 18.4.3.4.1, “Disabled Mode.”

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 18-27

18.3.2.10.1 eQADC CFIFO Status Snapshot Registers 0
EQADC_CFSSR0

The first eQADC CFIFO status snapshot register is displayed in Figure 18-11.

The first eQADC CFIFO status snapshot register is described in Table 18-12.

Address: Base + 0x00A0 Access: RO

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R CFS0_T0 CFS1_T0 CFS2_T0 CFS3_T0 CFS4_T0 CFS5_T0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 LCFT0 TC_LCFT0

W

Reset 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

Figure 18-11. eQADC CFIFO Status Snapshot Register 0 (EQADC_CFSSR0)

Table 18-12. EQADC_CFSSR0 Field Descriptions

Field Description

0–11
CFSn_T0

[0:1]

CFIFO status at transfer to ADCn command buffer. Indicates the CFIFOn status at the time a command transfer to
ADCn command buffer is initiated. CFSn_T0 is a copy of the corresponding CFSn in EQADC_CFSR (see
Section 18.3.2.11, “eQADC CFIFO Status Register EQADC_CFSR”) captured at the time a command transfer to
buffern is initiated.

12–16 Reserved

17–20
LCFT0
[0:3]

Last CFIFO to transfer to ADCn command buffer. Holds the CFIFO number of last CFIFO to have initiated a
command transfer to ADCn command buffer. LCFT0 has the following values:

21–31
TC_LCFT0

[0:10]

Transfer counter for last CFIFO to transfer commands to ADCn command buffer. Indicates the number of
commands which have been completely transferred from CFIFOn when a command transfer from CFIFOn to ADCn
command buffer is initiated. TC_LCFT0 is a copy of the corresponding TC_CFn in EQADC_CFTCRn (see Section
18.3.2.9) captured at the time a command transfer from CFIFOn to ADCn command buffer is initiated. This field
has no meaning when LCFT0 is 0b1111.

LCFT0[0:3] LCFT0 Meaning

0b0000 Last command was transferred from CFIFO0

0b0001 Last command was transferred from CFIFO1

0b0010 Last command was transferred from CFIFO2

0b0011 Last command was transferred from CFIFO3

0b0100 Last command was transferred from CFIFO4

0b0101 Last command was transferred from CFIFO5

0b0110–0b1110 Reserved

0b1111 No command was transferred to ADCn command buffer

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

18-28 Freescale Semiconductor

18.3.2.10.2 eQADC CFIFO Status Snapshot Registers 1
EQADC_CFSSR1

The second eQADC CFIFO status snapshot register is displayed in Figure 18-12.

The second eQADC CFIFO status snapshot register is described in Table 18-13.

Address: Base + 0x00A4 Access: RO

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R CFS0_T1 CFS1_T1 CFS2_T1 CFS3_T1 CFS4_T1 CFS5_T1 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 LCFT1 TC_LCFT1

W

Reset 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

Figure 18-12. eQADC CFIFO Status Snapshot Register 1 (EQADC_CFSSR1)

Table 18-13. EQADC_CFSSR1 Field Descriptions

Field Description

0–11
CFSn_T1

[0:1]

CFIFO status at transfer to ADCn command buffer. Indicates the CFIFOn status at the time a command transfer to
ADCn command buffer is initiated. CFSn_T1 is a copy of the corresponding CFSn in EQADC_CFSR (see
Section 18.3.2.11, “eQADC CFIFO Status Register EQADC_CFSR”) captured at the time a command transfer to
buffern is initiated.

12–16 Reserved

17–20
LCFT1

[0:3]

Last CFIFO to transfer to ADCn command buffer. Holds the CFIFO number of last CFIFO to have initiated a
command transfer to ADCn command buffer. LCFT1 has the following values:

21–31
TC_LCFT1

[0:10]

Transfer counter for last CFIFO to transfer commands to ADCn command buffer. Indicates the number of commands
which have been completely transferred from CFIFOn when a command transfer from CFIFOn to ADCn command
buffer is initiated. TC_LCFT1 is a copy of the corresponding TC_CFn in EQADC_CFTCRn (see Section 18.3.2.9,
“eQADC CFIFO Transfer Counter Registers 0–5 (EQADC_CFTCRn)”) captured at the time a command transfer
from CFIFOn to ADCn command buffer is initiated. This field has no meaning when LCFT1 is 0b1111.

LCFT1[0:3] LCFT1 Meaning

0b0000 Last command was transferred from CFIFO0

0b0001 Last command was transferred from CFIFO1

0b0010 Last command was transferred from CFIFO2

0b0011 Last command was transferred from CFIFO3

0b0100 Last command was transferred from CFIFO4

0b0101 Last command was transferred from CFIFO5

0b0110–0b1110 Reserved

0b1111 No command was transferred to ADCn command buffer

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 18-29

18.3.2.10.3 eQADC CFIFO Status Snapshot Registers 2
EQADC_CFSSR2

The third eQADC CFIFO status snapshot register is displayed in Figure 18-13.

The third eQADC CFIFO status snapshot register is described in Table 18-14.

Address: Base + 0x00A8 Access: RO

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R CFS0_TSSI CFS1_TSSI CFS2_TSSI CFS3_TSSI CFS4_TSSI CFS5_TSSI 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R ENI LCFTSSI TC_LCFTSSI

W

Reset 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

Figure 18-13. eQADC CFIFO Status Snapshot Register 2 (EQADC_CFSSR2)

Table 18-14. EQADC_CFSSR2 Field Descriptions

Field Description

0–11
CFSn_TSSI

[0:1]

CFIFO Status at Transfer through the eQADC SSI. Indicates the CFIFOn status at the time a serial transmission
through the eQADC SSI is initiated. CFSn_TSSI is a copy of the corresponding CFSn in EQADC_CFSR (see
Section 18.3.2.11, “eQADC CFIFO Status Register EQADC_CFSR”) captured at the time a serial transmission
through the eQADC SSI is initiated.

12–15 Reserved

16
ENI

External command buffer Number Indicator. Defines the external command buffer the last command was sent.
0 Last command was transferred to command buffer 2.
1 Last command was transferred to command buffer 3.

17–20
LCFTSSI

[0:3]

Last CFIFO to transfer commands through the eQADC SSI. Holds the CFIFO number of last CFIFO to have
initiated a command transfer to an external command buffer through the eQADC SSI. LCFTSSI does not
indicate the transmission of null messages. LCFTSSI has the following values:

LCFTSSI[0:3] LCFTSSI Meaning

0b0000 Last command was transferred from CFIFO0

0b0001 Last command was transferred from CFIFO1

0b0010 Last command was transferred from CFIFO2

0b0011 Last command was transferred from CFIFO3

0b0100 Last command was transferred from CFIFO4

0b0101 Last command was transferred from CFIFO5

0b0110–0b1110 Reserved

0b1111 No command was transferred to an external command buffer

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

18-30 Freescale Semiconductor

18.3.2.11 eQADC CFIFO Status Register
EQADC_CFSR

The EQADC_CFSR contains the current CFIFO status. The EQADC_CFSRs are read only. Writing to the
EQADC_CFSR has no effect.

21–31
TC_LCFTSSI

[0:10]

Transfer counter for last CFIFO to transfer commands through eQADC SSI. Indicates the number of commands
which have been completely transferred from a particular CFIFO at the time a command transfer from that
CFIFO to an external command buffer is initiated. TC_LCFTSSI is a copy of the corresponding TC_CFn in
EQADC_CFTCRn (see Section 18.3.2.9, “eQADC CFIFO Transfer Counter Registers 0–5 (EQADC_CFTCRn)”)
captured at the time a command transfer to an external command buffer is initiated. This field has no meaning
when LCFTSSI is 0b1111.

Address: Base + 0x00AC Access: RO

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R CFS0 CFS1 CFS2 CFS3 CFS4 CFS5 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 18-14. eQADC CFIFO Status Register (EQADC_CFSR)

Table 18-15. EQADC_CFSR Field Descriptions

Field Description

0–11
CFSn
[0:1]

CFIFO status. Indicates the current status of CFIFOn.

12–31 Reserved

Table 18-14. EQADC_CFSSR2 Field Descriptions (continued)

Field Description

Value Status Explanation

0b00 IDLE • CFIFO is disabled.
 • CFIFO is in single-scan edge or level trigger mode and EQADC_FISRn[SSS] is not

asserted.
 • eQADC completes transferring the last entry of the command queue you defined in

single-scan mode.

0b01 Reserved Not applicable

0b10 WAITING
FOR

TRIGGER

 • CFIFO mode changes to continuous-scan edge or level trigger mode.
 • CFIFO mode changes to single-scan edge or level trigger mode and

EQADC_FISRn[SSS] asserts.
 • CFIFO mode changes to single-scan software trigger mode and EQADC_FISRn[SSS]

negates.
 • CFIFO pauses.
 • eQADC transfers the last entry of the queue in continuous-scan edge trigger mode.

0b11 TRIGGERED CFIFO is triggered

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 18-31

18.3.2.12 eQADC SSI Control Register
EQADC_SSICR

The EQADC_SSICR configures the SSI submodule.

Address: Base + 0x00B4 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0
MDT

0 0 0 0
BR

W

Reset 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1

Figure 18-15. eQADC SSI Control Register (EQADC_SSICR)

Table 18-16. EQADC_SSICR Field Descriptions

Field Description

0–20 Reserved

21–23
MDT
[0:2]

Minimum delay after transmission. Defines the minimum delay after transmission time (tMDT) expressed in serial
clock (FCK) periods. tMDT is the minimum time SDS must be kept negated between two consecutive serial
transmissions. Table 18-17 lists the minimum delay after transfer time according to how MDT is set.
The MDT field must only be written when the serial transmissions from the eQADC SSI are disabled - See
EQADC_MCR[ESSIE] field in Section 18.3.2.1, “eQADC Module Configuration Register (EQADC_MCR)”.

24–27 Reserved

28–31
BR

[0:3]

Baud rate. Selects system clock divide factor as shown in Table 18-18. The baud clock is calculated by dividing the
system clock by the clock divide factor specified with the BR field.
Note: The BR field must only be written when the eQADC SSI is disabled - See EQADC_MCR[ESSIE] field in

Section 18.3.2.1, “eQADC Module Configuration Register (EQADC_MCR).”

Table 18-17. Minimum Delay After Transmission (tMDT) Time

MDT
tMDT

(FCK period)

0b000 1

0b001 2

0b010 3

0b011 4

0b100 5

0b101 6

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

18-32 Freescale Semiconductor

0b110 7

0b111 8

Table 18-18. System Clock Divide Factor for Baud Clock

BR[0:3] System Clock Divide Factor 1

1 If the system clock is divided by a odd number
then the serial clock has a duty cycle different
from 50%.

0b0000 2

0b0001 3

0b0010 4

0b0011 5

0b0100 6

0b0101 7

0b0110 8

0b0111 9

0b1000 10

0b1001 11

0b1010 12

0b1011 13

0b1100 14

0b1101 15

0b1110 16

0b1111 17

Table 18-17. Minimum Delay After Transmission (tMDT) Time (continued)

MDT
tMDT

(FCK period)

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 18-33

18.3.2.13 eQADC SSI Receive Data Register
EQADC_SSIRDR

The eQADC SSI receive data register (EQADC_SSIRDR) records the last message received from the
external device.

18.3.2.14 eQADC CFIFO Registers (EQADC_CF[0–5]Rn)

EQADC_CF[0–5]Rn provide visibility of the contents of a CFIFO for debugging purposes. Each CFIFO
has four registers that are uniquely mapped to its four 32-bit entries. See Section 18.4.3, “eQADC
Command FIFOs,” for more information on CFIFOs. These registers are read only. Data written to these
registers is ignored.

Address: Base + 0x00B8 Access: RO

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R RDV 0 0 0 0 0 R_DATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R R_DATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 18-16. eQADC SSI Receive Data Register (EQADC_SSIRDR)

Table 18-19. EQADC_SSIRDR Field Descriptions

Field Description

0
RDV

Receive data valid. Indicates if the last received data is valid. This bit is cleared automatically whenever the
EQADC_SSIRDR is read. Writes have no effect.
0 Receive data is not valid.
1 Receive data is valid.

1–5 Reserved

6–31
R_DATA

[0:25]

eQADC receive DATA. Contains the last result message that was shifted in. Writes to the R_DATA have no effect.
Messages that were not completely received due to a transmission abort is not copied into EQADC_SSIRDR.

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

18-34 Freescale Semiconductor

Address: CFIFO0: Base + 0x0100 (CF0R0)
Base + 0x0104 (CF0R1)
Base + 0x0108 (CF0R2)
Base + 0x010C (CF0R3)
CFIFO1: Base + 0x0140 (CF1R0)
Base + 0x0144 (CF1R1)
Base + 0x0148 (CF1R2)
Base + 0x014C (CF1R3)
CFIFO2: Base + 0x0180 (CF2R0)
Base + 0x0184 (CF2R1)
Base + 0x0188 (CF2R2)
Base + 0x018C (CF2R3)

Access: RO

CFIFO3: Base + 0x01C0 (CF3R0)
Base + 0x01C4 (CF3R1)
Base + 0x01C8 (CF3R2)
Base + 0x01CC (CF3R3)
CFIFO4: Base + 0x0200 (CF4R0)
Base + 0x0204 (CF4R1)
Base + 0x0208 (CF4R2)
Base + 0x020C (CF4R3)
CFIFO5: Base + 0x0240 (CF5R0)
Base + 0x0244 (CF5R1)
Base + 0x0248 (CF5R2)
Base + 0x024C (CF5R3)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R CFIFO[0–5]_DATAn

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R CFIFO[0–5]_DATAn

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 18-17. eQADC CFIF0[0–5] Registers (EQADC_CF[0–5]Rn)

Table 18-20. EQADC_CF[0–5]Rn Field Descriptions

Field Description

0–31
CFIFO[0–5]_DATAn

[0:31]

CFIFO[0–5]_datan. Returns the value stored within the entry of CFIFO[0–5]. Each CFIFO is
composed of four 32-bit entries, with register 0 being mapped to the entry with the smallest memory
mapped address.

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 18-35

18.3.2.15 eQADC RFIFO Registers (EQADC_RF[0–5]Rn)

EQADC_RF[0–5]Rn allows you to read the contents of a RFIFO for debugging purposes. Each RFIFO
has four registers that are uniquely mapped to its four 16-bit entries. See Section 18.4.4, “Result FIFOs,”
for more information on RFIFOs. These registers are read only. Data written to these registers is ignored.

The following table lists the field descriptions in the eQADC receive FIFO registers.

Address: RFIFO0: Base + 0x0300 (RF0R0)
Base + 0x0304 (RF0R1)
Base + 0x0308 (RF0R2)
Base+0x030C (RF0R3)
RFIFO1: Base + 0x0340 (RF1R0)
Base + 0x0344 (RF1R1)
Base + 0x0348 (RF1R2)
Base + 0x034C (RF1R3)
RFIFO2: Base + 0x0380 (RF2R0)
Base + 0x0384 (RF2R1)
Base + 0x0388 (RF2R2)
Base + 0x038C (RF2R3)

Access: RO

RFIFO3: Base + 0x03C0 (RF3R0)
Base + 0x03C4 (RF3R1)
Base + 0x03C8 (RF3R2)
Base + 0x03CC (RF3R3)
RFIFO4: Base + 0x0400 (RF4R0)
Base + 0x0404 (RF4R1)
Base + 0x0408 (RF4R2
Base + 0x040C (RF4R3)
RFIFO5: Base + 0x0440 (RF5R0)
Base + 0x0444 (RF5R1)
Base + 0x0448 (RF5R2)
Base + 0x044C (RF5R3)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R RFIFO[0–5]_DATAn

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 18-18. eQADC RFIFOn Registers (EQADC_RF[0–5]Rn)

Table 18-21. EQADC_RF[0–5]Rn Field Descriptions

Field Description

0–15 Reserved

16–31
RFIFO[0–5]_DATAn

[0:15]

RFIFO[0–5] data n. Returns the value in the RFIFO[0–5] entry. Each RFIFO has four 16-bit entries,
with register 0 being mapped to the entry with the smallest memory mapped address.

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

18-36 Freescale Semiconductor

18.3.3 On-Chip ADC Registers

This section describes a list of registers that control on-chip ADC operation. The ADC registers are not
part of the CPU accessible memory map. These registers can only be accessed indirectly through
configuration commands. There are five non memory mapped registers per ADC, five for ADC0 and five
for ADC1. The address, usage, and access privilege of each register is shown in Table 18-22 and
Table 18-23. Data written to or read from reserved areas of the memory map is undefined.

Their assigned addresses are the values used to set the ADC_REG_ADDRESS field of the read/write
configuration commands bound for the on-chip ADCs. These are halfword addresses. Further, the
following restrictions apply when accessing these registers:

• Registers ADC0_CR, ADC0_GCCR, and ADC0_OCCR can only be accessed by configuration
commands sent to the ADC0 command buffer.

• Registers ADC1_CR, ADC1_GCCR, and ADC1_OCCR can only be accessed by configuration
commands sent to the ADC1 command buffer.

• Registers ADC_TSCR and ADC_TBCR can be accessed by configuration commands sent to the
ADC0 command buffer or to the ADC1 command buffer. A data write to ADC_TSCR through a
configuration command sent to the ADC0 command buffer writes the same memory location as
when writing to it through a configuration command sent to the ADC1 command buffer. The same
is valid for ADC_TBCR.

NOTE
Simultaneous write accesses from the ADC0 and ADC1 command buffers
to ADC_TSCR or to ADC_TBCR are not allowed.

Table 18-22. ADC0 Registers

ADC0 Register
Address

Use Access

0x0000 ADC0 Address 0x00 is used for conversion command messages. —

0x0001 ADC0 Control Register (ADC0_CR) Write/Read

0x0002 ADC Time Stamp Control Register (ADC_TSCR) 1

1 This register is also accessible by configuration commands sent to the ADC1 command buffer.

Write/Read

0x0003 ADC Time Base Counter Register (ADC_TBCR) 1 Write/Read

0x0004 ADC0 Gain Calibration Constant Register (ADC0_GCCR) Write/Read

0x0005 ADC0 Offset Calibration Constant Register (ADC0_OCCR) Write/Read

0x0006–0x00FF Reserved —

Table 18-23. ADC1 Registers

ADC1 Register
Address

Use Access

0x0000 ADC1 Address 0x00 is used for conversion command messages. —

0x0001 ADC1 Control Register (ADC1_CR) Write/Read

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 18-37

18.3.3.1 ADCn Control Registers (ADC0_CR and ADC1_CR)

The ADCn control registers (ADCn_CR) are used to configure the on-chip ADCs.

0x0002 ADC Time Stamp Control Register (ADC_TSCR) 1 Write/Read

0x0003 ADC Time Base Counter Register (ADC_TBCR) 1 Write/Read

0x0004 ADC1 Gain Calibration Constant Register (ADC1_GCCR) Write/Read

0x0005 ADC1 Offset Calibration Constant Register (ADC1_OCCR) Write/Read

0x0006–0x00FF Reserved —

1 This register is also accessible by configuration commands sent to the ADC0 command buffer.

Address: 0x0001 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R ADC0
_EN

0 0 0

A
D

C
0_

E
M

U
X 0 0 0 0 0 0 ADC0_CLK_PS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R ADC1
_EN

0 0 0

A
D

C
1_

E
M

U
X 0 0 0 0 0 0 ADC1_CLK_PS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

Figure 18-19. ADCn Control Registers (ADC0_CR and ADC1_CR)

Table 18-24. ADCn_CR Field Descriptions

Field Description

0
ADCn_

EN

ADCn enable. Enables ADCn to perform A/D conversions. See Section 18.4.5.1, “Enabling and Disabling the on-chip
ADCs,” for details.
0 ADC is disabled. Clock supply to ADC0/1 is stopped.
1 ADC is enabled and ready to perform A/D conversions.
Note: The bias generator circuit inside the ADC ceases functioning when both ADC0_EN and ADC1_EN bits are

negated.
Note: Conversion commands sent to a disabled ADC are ignored by the ADC control hardware.

Note: When the ADCn_EN status is changed from asserted to negated, the ADC clock does not stop until it reaches
its low phase.

1–3 Reserved

Table 18-23. ADC1 Registers (continued)

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

18-38 Freescale Semiconductor

4
ADCn_
EMUX

ADCn external multiplexer enable. When ADCn_EMUX is asserted, the MA pins output digital values to the external
channel number selected to convert external multiplexer inputs. See Section 18.4.6, “Internal and External
Multiplexing,” for a detailed description about how ADCn_EMUX affects channel number decoding.
0 External multiplexer disabled; no external multiplexer channels can be selected.
1 External multiplexer enabled; external multiplexer channels can be selected.
Note: Both ADCn_EMUX bits must not be asserted at the same time.

Note: The ADCn_EMUX bit must only be written when the ADCn_EN bit is negated. ADCn_EMUX can be set during
the same write cycle used to set ADCn_EN.

5–10 Reserved

11–15
ADCn_

CLK_PS
[0:4]

ADCn clock prescaler. The ADCn_CLK_PS field controls the system clock divide factor for the ADCn clock as in
Table 18-25. See Section 18.4.5.2, “ADC Clock and Conversion Speed,” for details about how to set
ADC0/1_CLK_PS.
The ADCn_CLK_PS field must only be written when the ADCn_EN bit is negated. This field can be configured during
the same write cycle used to set ADCn_EN.

Table 18-25. System Clock Divide Factor for ADC Clock

ADCn_CLK_PS[0:4]
System Clock
Divide Factor

0b00000 2

0b00001 4

0b00010 6

0b00011 8

0b00100 10

0b00101 12

0b00110 14

0b00111 16

0b01000 18

0b01001 20

0b01010 22

0b01011 24

0b01100 26

0b01101 28

0b01110 30

0b01111 32

0b10000 34

0b10001 36

0b10010 38

Table 18-24. ADCn_CR Field Descriptions (continued)

Field Description

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 18-39

18.3.3.2 ADC Time Stamp Control Register (ADC_TSCR)

The ADC_TSCR contains a system clock divide factor used in the making of the time base counter clock.
It determines at what frequency the time base counter runs. ADC_TSCR can be accessed by configuration
commands sent to ADC0 or to ADC1. A data write to ADC_TSCR using a configuration command sent
to ADC0 writes to the same memory location as a write using a configuration command sent to ADC1.

NOTE
Simultaneous write accesses from ADC0 and ADC1 to ADC_TSCR are not
allowed.

0b10011 40

0b10100 42

0b10101 44

0b10110 46

0b10111 48

0b11000 50

0b11001 52

0b11010 54

0b11011 56

0b11100 58

0b11101 60

0b11110 62

0b11111 64

Address: 0x0002 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0
TBC_CLK_PS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 18-20. ADC Time Stamp Control Register (ADC_TSCR)

Table 18-25. System Clock Divide Factor for ADC Clock (continued)

ADCn_CLK_PS[0:4]
System Clock
Divide Factor

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

18-40 Freescale Semiconductor

NOTE
If TBC_CLK_PS is not set to disabled, it must not be changed to any other
value besides disabled. If TBC_CLK_PS is set to disabled it can be changed
to any other value.

Table 18-26. ADC_TSCR Field Descriptions

Field Description

0–11 Reserved

12–15
TBC_

CLK_PS
[0:3]

 Time base counter clock prescaler. Contains the system clock divide factor for the time base counter. It controls the
accuracy of the time stamp. The prescaler is disabled when TBC_CLK_PS is set to 0b0000.

Table 18-27. Clock Divide Factor for Time Stamp

TBC_CLK_PS[0:3]
System Clock Divide

Factor

Clock to Time Stamp
Counter for a 120 MHz
System Clock (MHz)

0b0000 Disabled Disabled

0b0001 1 120

0b0010 2 60

0b0011 4 30

0b0100 6 20

0b0101 8 15

0b0110 10 12

0b0111 12 10

0b1000 16 7.5

0b1001 32 3.75

0b1010 64 1.88

0b1011 128 0.94

0b1100 256 0.47

0b1101 512 0.23

0b1110–0b1111 Reserved —

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 18-41

18.3.3.3 ADC Time Base Counter Registers (ADC_TBCR)

The ADC_TBCR contains the current value of the time base counter. ADC_TBCR can be accessed by
configuration commands sent to ADC0 or to ADC1. A data write to ADC_TBCR using a configuration
command sent to ADC0 writes the same memory location as a write using a configuration command sent
to ADC1.

NOTE
Simultaneous write accesses from ADC0 and ADC1 to ADC_TBCR are not
allowed.

Address: 0x0003 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
TBC_VALUE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 18-21. ADC Time Base Counter Register (ADC_TBCR)

Table 18-28. ADC_TBCR Field Descriptions

Field Description

0–15
TBC_

VALUE
[0:15]

Time base counter VALUE. Contains the current value of the time base counter. Reading TBC_VALUE returns the
current value of time base counter. Writes to TBC_VALUE register load the written data to the counter. The time base
counter counts from 0x0000 to 0xFFFF and wraps when reaching 0xFFFF.

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

18-42 Freescale Semiconductor

18.3.3.4 ADCn Gain Calibration Constant Registers
(ADC0_GCCR and ADC1_GCCR)

The ADCn_GCCR contains the gain calibration constant used to fine-tune the ADCn conversion results.
See Section 18.4.5.4, “ADC Calibration Feature,” for details about the calibration scheme used in the
eQADC.

Address: 0x0004 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0
GCC0

W

Reset 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0
GCC1

W

Reset 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 18-22. ADCn Gain Calibration Constant Registers (ADCn_GCCR)

Table 18-29. ADCn_GCCR Field Descriptions

Field Description

0 Reserved

1–15
GCCn
[0:14]

ADCn gain calibration constant (GCC1) is an unsigned 15-bit fixed pointed number expressed in the
GCC_INT.GCC_FRAC binary format. Use the gain calibration constant to fine-tune ADCn conversion results. The
integer part of the gain constant (GCC_INT) contains a single binary digit while its fractional part (GCC_FRAC)
contains 14 digits. For details about the GCC data format see Section 18.4.5.4.2, “MAC Unit and Operand Data
Format.”

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 18-43

18.3.3.5 ADCn Offset Calibration Constant Registers
(ADC0_OCCR and ADC1_OCCR)

The ADCn_OCCR contains the offset calibration constant used to fine-tune of ADC0/1 conversion results.
The offset constant is a signed 14-bit integer value. See Section 18.4.5.4, “ADC Calibration Feature,” for
details about the calibration scheme used in the eQADC.

18.4 Functional Description
The eQADC provides a parallel interface to two on-chip ADCs, and a single master to single slave serial
interface to an off-chip external device. The two on-chip ADCs can access all the analog channels.

Initially, command data is contained in system memory in a user defined data queue structure. Command
data is moved between queues you defined and CFIFOs by the host CPU or by the eDMA which responds
to interrupt and eDMA requests generated by the eQADC. The eQADC supports software and hardware
triggers from other modules or external pins to initiate transfers of commands from the multiple CFIFOs
to the on-chip ADCs or to the external device.

CFIFOs can be configured to be in single-scan or continuous-scan mode. When a CFIFO is configured to
single-scan mode, the eQADC scans the command queue you defined once. The eQADC stops transferring
commands from the triggered CFIFO after detecting the EOQ bit set in the last transfer. After an EOQ bit
is detected, software involvement is required to rearm the CFIFO so that it can detect new trigger events.

Address: 0x0005 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0
OCC0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0
OCC1

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 18-23. ADCn Offset Calibration Constant Registers (ADCn_OCCR)

Table 18-30. ADCn_OCCR Field Descriptions

Field Description

0–1 Reserved

2–15
OCCn
[0:13]

ADCn offset calibration constant. Contains the offset calibration constant used to fine-tune ADCn conversion results.
Use the two’s complement representation for expressing negative values.

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

18-44 Freescale Semiconductor

When a CFIFO is configured for continuous-scan mode, the whole user command queue is scanned
multiple times. After the detection of an asserted EOQ bit in the last command transfer, command transfers
can continue or not depending on the mode of operation of the CFIFO.

The eQADC can also in parallel and independently of the CFIFOs receive data from the on-chip ADCs or
from off-chip external device into multiple RFIFOs. Result data is moved from the RFIFOs to the result
queues you defined in system memory by the host CPU or by the eDMA.

18.4.1 Data Flow in the eQADC

Figure 18-24 shows how command data flows inside the eQADC system. A command message is the
predefined format in which command data is stored in command queues you defined. A command message
has 32 bits and is composed of two parts: a CFIFO header and an ADC command. Command messages
are moved from command queues you defined to the CFIFOs by the host CPU or by the eDMA as they
respond to interrupt and eDMA requests generated by the eQADC. The eQADC generates these requests
whenever a CFIFO is not full. The FIFO control unit transfers only the command part of the command
message to the ADC. Information in the CFIFO header together with the upper bit of the ADC command
is used by the FIFO control unit to arbitrate which triggered CFIFO transfers the next command. Because
command transfer through the serial interface can take significantly more time than a parallel transfer to
the on-chip ADCs, command transfers for on-chip ADCs occur concurrently with the transfers through the
serial interface. Commands sent to the ADCs are executed in a first-in-first-out (FIFO) basis and three
types of results can be expected: data read from an ADC register, a conversion result, or a time stamp. The
order at which ADC commands sent to the external device are executed, and the type of results that can be
expected depends on the architecture of that device with the exception of unsolicited data like null
messages for example.

NOTE
While the eQADC pops commands out from a CFIFO, it also is checking
the number of entries in the CFIFO and generating requests to fill it. The
process of pushing and popping commands to and from a CFIFO can occur
simultaneously.

The FIFO control unit expects all incoming results to be shaped in a pre-defined result message format.
Figure 18-25 shows how result data flows inside the eQADC system. Results generated on the on-chip
ADCs are formatted into result messages inside the result format and calibration submodule. Results
returning from the external device are already formatted into result messages and therefore bypass the
result format and calibration submodule located inside the eQADC. A result message is composed of an
RFIFO header and an ADC Result. The FIFO control unit decodes the information contained in the RFIFO
header to determine the RFIFO to which the ADC result are sent. After in an RFIFO, the ADC result is
moved to the corresponding user result queue by the host CPU or by the eDMA as they respond to interrupt
and eDMA requests generated by the eQADC. The eQADC generates these requests whenever an RFIFO
has at least one entry.

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 18-45

NOTE
While conversion results are returned, the eQADC is checking the number
of entries in the RFIFO and generating requests to empty it. The process of
pushing and popping ADC results to and from an RFIFO can occur
simultaneously.

Figure 18-24. Command Flow During eQADC Operation

Command
Queue

System
MemoryCFIFOn

ADC Priority

Command
Buffer

(32-bits)

(32-bits)

FIFO
Control

Unit
To

ADCs

eQADC SSI

eQADC

ADC

eQADC SSIExternal Device

Logic
&

Buffers

DMA
Transaction
Done Signals

Host CPU
or

DMACDMA
or Interrupt

Requests

NOTES:
n = 0, 1, 2, 3, 4, 5

ADC Command
CFIFO Header

Command
Message

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

18-46 Freescale Semiconductor

Figure 18-25. Result Flow During eQADC Operation

18.4.1.1 Assumptions/Requirements Regarding the External Device

The external device exchanges command and result data with the eQADC through the eQADC SSI
interface. This section explains the minimum requirements an external device must meet to correctly
interface with the eQADC. Some assumptions about the architecture of the external device are also
described.

18.4.1.1.1 eQADC SSI Protocol Support

The external device must fully support the eQADC SSI protocol as specified in Section 18.4.8, “eQADC
Synchronous Serial Interface (SSI) Submodule,” section of this document. Support for the abort feature is
optional. When aborts are not supported, all command messages bound for an external command buffer
must have the ABORT_ST bit negated. See Section , “ Command Message Format for External Device
Operation.”

18.4.1.1.2 Number of Command Buffers and Result Buffers

The external device must have a minimum of one and a maximum of two command buffers to store
command data sent from the eQADC. If more than two command buffers are implemented in the external
device, they are not recognized by the eQADC as valid destinations for commands. In this document, the
two valid external command buffers are referred to as command buffer 2 and command buffer 3 (the two
on-chip ADCs being command buffer 0 and 1). The external device decides to which external command
buffer a command is sent by decoding the upper bit (BN bit) of the ADC command. See Section ,

Result
Queue

System
MemoryRFIFOn

ADC Decoder

(16-bits)

(16-bits)

FIFO
Control

Unit

eQADC SSI

eQADC

ADC

eQADC SSIExternal Device

Logic
&

Buffers

DMA
Transaction
Done Signals

Host CPU
or

DMACDMA
or Interrupt

Requests

NOTES:
n = 0, 1, 2, 3, 4, 5

ADC Result
RFIFO Header

Result
Message

Result
Format

&
Calibration
Submodule

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 18-47

“ Command Message Format for External Device Operation.” An external device that only implements
one command buffer can ignore the BN bit.

The limit of two command buffers does not limit the number of result buffers in the slave device.

18.4.1.1.3 Command Execution and Result Return

Commands sent to a specific external command buffer must be executed in the order they were received.

Results generated by the execution of commands in an external command buffer must be returned in the
order that the command buffer received these commands.

18.4.1.1.4 Null and Result Messages

The external device must be capable of correctly processing null messages as specified in the
Section 18.3.2.2, “eQADC Null Message Send Format Register (EQADC_NMSFR).”

In case no valid result data is available to be sent to the eQADC, the external device must send data in the
format specified in Section , “Null Message Format for External Device Operation.”

In case valid result data is available to sent to the eQADC, the external device must send data in the format
specified in Section , “Result Message Format for External Device Operation.”

The BUSY0/1 fields of all messages sent from the external device to the eQADC must be correctly
encoded according to the latest information on the fullness state of the command buffers. For example, if
external command buffer 2 is empty before the end of the current serial transmission and if at the end of
this transmission the external device receives a command to command buffer 2, then the BUSY0 field, that
is to be sent to the eQADC on the next serial transmission, must be encoded assuming that the external
command buffer has one entry.

18.4.1.2 Message Format in eQADC

This section explains the command and result message formats used for on-chip ADC operation and for
external device operation.

A command message is the pre-defined format at which command data is stored in the command queues
you defined. A command message has 32 bits and is composed of two parts: a CFIFO header and an ADC
command. The size of the CFIFO header is fixed to 6 bits, and it works as inputs to the FIFO control unit.
The header controls when a command queue ends, when it pauses, if commands are sent to internal or
external buffers, and if it can abort a serial data transmission. Information contained in the CFIFO header,
together with the upper bit of the ADC command, is used by the FIFO control unit to arbitrate which
triggered CFIFO transfers the next command. ADC commands are encoded inside the least significant 26
bits of the command message.

A result message is composed of an RFIFO header and an ADC result. The FIFO control unit decodes the
information contained in the RFIFO header to determine the RFIFO to which the ADC result is sent. The
ADC result field is always 16 bits.

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

18-48 Freescale Semiconductor

18.4.1.2.1 Message Formats for On-Chip ADC Operation

This section describes the command/result message formats used for on-chip ADC operation.

NOTE
Although this subsection describes how the command and result messages
are formatted to communicate with the on-chip ADCs, nothing prevents the
programmer from using a different format when communicating with an
external device through the serial interface. See Section 18.4.1.2.2,
“Message Formats for External Device Operation.” Apart from the BN bit,
the ADC command of a command message can be formatted to
communicate to an arbitrary external device provided that the device returns
an RFIFO header in the format expected by the eQADC. When the FIFO
control unit receives return data message, it decodes the message tag field
and stores the 16-bit data into the corresponding RFIFO.

Conversion Command Message Format for On-Chip ADC Operation

Figure 18-26 describes the command message format for conversion commands when interfacing with the
on-chip ADCs. A conversion result is always returned for conversion commands and time stamp
information can be optionally requested. Conversion commands are sent to the ADC internal memory map
address zero, therefore the lower byte of the lower byte of conversion commands is always cleared to 0 to
distinguish it from configuration commands.

Address: 0x0005 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

EOQ PAUSE Reserved
EB

(0b0)
BN CAL MESSAGE_TAG LST TSR FMT

CFIFO Header ADC Command

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

CHANNEL_NUMBER ADC_REG_ADDRESS

ADC Command 0 0 0 0 0 0 0 0

Figure 18-26. Conversion Command Message Format for On-Chip ADC Operation

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 18-49

Table 18-31. On-Chip ADC Field Descriptions: Conversion Command Message Format

Field Description

0
EOQ

End-of-queue. Asserted in the last command of a command queue to indicate to the eQADC that a scan of
the queue is completed. EOQ instructs the eQADC to reset its current CFIFO transfer counter value (TC_CF)
to 0. Depending on the CFIFO operating mode, the CFIFO status changes when it detects when the EOQ
bit on the last transferred command is asserted. See Section 18.4.3.4, “CFIFO Scan Trigger Modes,” for
details.
0 Not the last entry of the command queue.
1 Last entry of the command queue.
Note: If both the pause and EOQ bits are asserted in the same command message the respective flags are

set, but the CFIFO status changes as if only the EOQ bit were asserted.

1
PAUSE

Pause. Allows software to create sub-queues within a command queue. When the eQADC completes the
transfer of a command with an asserted pause bit, the CFIFO enters the WAITING FOR TRIGGER state.
See Section 18.4.3.5.1, “CFIFO Operation Status,” for a description of the state transitions. The pause bit is
only valid when CFIFO operation mode is configured to single or continuous-scan edge trigger mode.
0 Do not enter WAITING FOR TRIGGER state after transfer of the current command message.
1 Enter WAITING FOR TRIGGER state after transfer of the current command message.
Note: If both the pause and EOQ bits are asserted in the same command message the respective flags are

set, but the CFIFO status changes as if only the EOQ bit were asserted.

2–4 Reserved

5
EB

External buffer bit. A negated EB bit indicates that the command is sent to an on chip ADC.
0 Command is sent to an internal buffer.
1 Command is sent to an external buffer.

6
BN

Buffer number. For internal commands, indicates the ADC to which the message is sent. For external
commands, indicates to which command FIFO the messages is sent. ADCs 0 and 1 can be internal or
external depending on the EBI bit setting.
0 Message sent to ADC 0.
1 Message sent to ADC 1.

7
CAL

Calibration. Indicates if the returning conversion result must be calibrated.
0 Do not calibrate conversion result.
1 Calibrate conversion result.

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

18-50 Freescale Semiconductor

8–11
MESSAGE_

TAG
[0:3]

MESSAGE_TAG field. Allows the eQADC to separate returning results into different RFIFOs. When the
eQADC transfers a command, the MESSAGE_TAG is included as part of the command. Eventually the
external device/on-chip ADC returns the result with the same MESSAGE_TAG. The eQADC separates
incoming messages into different RFIFOs by decoding the MESSAGE_TAG of the incoming data.

12–13
LST
[0:1]

Long sampling time. These two bits determine the duration of the sampling time in ADC clock cycles.
Note: For external mux mode, 64 or 128 sampling cycles is recommended.

14
TSR

Time stamp request. TSR indicates the request for a time stamp. When TSR is asserted, the on-chip ADC
control logic returns a time stamp for the current conversion command after the conversion result is sent to
the RFIFOs. See Section 18.4.5.3, “Time Stamp Feature,” for details.
0 Return conversion result only.
1 Return conversion time stamp after the conversion result.

15
FMT

Conversion data format. FMT specifies to the eQADC how to format the 12-bit conversion data returned by
the ADCs into the 16-bit format which is sent to the RFIFOs. See Section , “ADC Result Format for On-Chip
ADC Operation,” for details.
0 Right justified unsigned.
1 Right justified signed.

Table 18-31. On-Chip ADC Field Descriptions: Conversion Command Message Format (continued)

Field Description

MESSAGE_TAG[0:3] MESSAGE_TAG Meaning

0b0000 Result is sent to RFIFO 0

0b0001 Result is sent to RFIFO 1

0b0010 Result is sent to RFIFO 2

0b0011 Result is sent to RFIFO 3

0b0100 Result is sent to RFIFO 4

0b0101 Result is sent to RFIFO 5

0b0110–0b0111 Reserved

0b1000 Null message received

0b1001 Reserved for customer use. 1

1 These messages are treated as null messages. Therefore, they must obey the
format for incoming null messages and return valid BUSY0/1 fields. See Section ,
“Null Message Format for External Device Operation.”

0b1010 Reserved for customer use. 1

0b1011–0b1111 Reserved

LST[0:1] Sampling cycles (ADC Clock Cycles)

0b00 2

0b01 8

0b10 64

0b11 128

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 18-51

Write Configuration Command Message Format for On-Chip ADC Operation

Figure 18-27 describes the command message format for a write configuration command when interfacing
with the on-chip ADCs. A write configuration command is used to set the control registers of the on-chip
ADCs. No conversion data is returned for a write configuration command. Write configuration commands
are differentiated from read configuration commands by a negated R/W bit.

16–23
CHANNEL_
NUMBER

[0:7]

Channel number. Selects the analog input channel. The software programs this field with the channel number
corresponding to the analog input pin to be sampled and converted. See Section 18.4.6.1, “Channel
Assignment,” for details.

24–31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

EOQ PAUSE Reserved
EB

(0b0)
BN

R/W
(0b0)

ADC_REGISTER_HIGH_BYTE

CFIFO Header ADC Command

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

ADC_REGISTER_LOW_BYTE ADC_REG_ADDRESS

ADC Command ADC Address

Figure 18-27. Write Configuration Command Message Format for On-chip ADC Operation

Table 18-32. On-Chip ADC Field Descriptions: Write Configuration

Field Description

0
EOQ

End-of-queue. Asserted in the last command of a command queue to indicate to the eQADC that a scan
of the queue is completed. EOQ instructs the eQADC to reset its current CFIFO transfer counter value
(TC_CF) to 0. Depending on the CFIFO mode of operation, the CFIFO status also changes upon the
detection of an asserted EOQ bit on the last transferred command. See Section 18.4.3.4, “CFIFO Scan
Trigger Modes,” for details.
0 Not the last entry of the command queue.
1 Last entry of the command queue.
Note: If both the pause and EOQ bits are asserted in the same command message the respective flags

are set, but the CFIFO status changes as if only the EOQ bit were asserted.

1
PAUSE

Pause bit. Allows software to create sub-queues within a command queue. When the eQADC
completes the transfer of a command with an asserted pause bit, the CFIFO enters the WAITING FOR
TRIGGER state. See Section 18.4.3.5.1, “CFIFO Operation Status,” for a description of the state
transitions. The pause bit is only valid when CFIFO operation mode is configured to single or
continuous-scan edge trigger mode.
0 Do not enter WAITING FOR TRIGGER state after transfer of the current command message.
1 Enter WAITING FOR TRIGGER state after transfer of the current command message.
Note: If both the pause and EOQ bits are asserted in the same command message, the respective flags

are set, but the CFIFO status changes as if only the EOQ bit were asserted.

2–4 Reserved

Table 18-31. On-Chip ADC Field Descriptions: Conversion Command Message Format (continued)

Field Description

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

18-52 Freescale Semiconductor

5
EB

External buffer bit. Always clear this bit for messages sent to an on-chip ADC.
0 Command is sent to an internal command buffer.
1 Command is sent to an external command buffer.

6
BN

Buffer number. Indicates to which buffer the message is sent.Buffers 1 and 0 can either be internal or
external depending on the EBI bit setting.
0 Message buffer 0.
1 Message buffer 1.

7
R/W

Read/write. A negated R/W indicates a write configuration command.
0 Write
1 Read

8–15
ADC_REGISTER_

HIGH_BYTE
[0:7]

ADC register high byte. The value to be written into the most significant 8 bits of control/configuration
register when the R/W bit is negated.

16–23
ADC_REGISTER_

LOW_BYTE
[0:7]

ADC register low byte. The value to be written into the least significant 8 bits of a control/configuration
register when the R/W bit is negated.

24–31
ADC_REG_
ADDRESS

[0:7]

ADC register address. Identifies to which ADC register the read or write is performed. Only use 16-bit
(halfword) addresses. See Table 18-22. See Table 18-22.

Table 18-32. On-Chip ADC Field Descriptions: Write Configuration (continued)

Field Description

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 18-53

Read Configuration Command Message Format for On-Chip ADC Operation

Figure 18-28 describes the command message format for a read configuration command when interfacing
with the on-chip ADCs. A read configuration command is used to read the contents of the on-chip ADC
registers which are only accessible via command messages. Read configuration commands are
differentiated from write configuration commands by an asserted R/W bit.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

EOQ PAUSE Reserved
EB

(0b0)
BN

R/W
(0b1)

MESSAGE_TAG Reserved

CFIFO Header ADC Command

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reserved ADC_REG_ADDRESS

ADC Address

Figure 18-28. Read Configuration Command Message Format for On-Chip ADC Operation

Table 18-33. On-Chip ADC Field Descriptions: Read Configuration

Field Description

0
EOQ

End-of-queue. Asserted in the last command of a command queue to indicate to the eQADC that a scan of
the queue is completed. EOQ instructs the eQADC to reset its current CFIFO transfer counter value
(TC_CF) to 0. Depending on the CFIFO mode of operation, the CFIFO status changes upon the detection
of an asserted EOQ bit on the last transferred command. See Section 18.4.3.4, “CFIFO Scan Trigger
Modes,” for details.
0 Not the last entry of the command queue.
1 Last entry of the command queue.
Note: If both the pause and EOQ bits are asserted in the same command message the respective flags are

set, but the CFIFO status changes as if only the EOQ bit were asserted.

1
PAUSE

Pause bit. Allows software to create sub-queues within a command queue. When the eQADC completes
the transfer of a command with an asserted pause bit, the CFIFO enters the WAITING FOR TRIGGER
state. See Section 18.4.3.5.1, “CFIFO Operation Status,” for a description of the state transitions. The
pause bit is only valid when CFIFO operation mode is configured to single or continuous-scan edge trigger
mode.
0 Do not enter WAITING FOR TRIGGER state after transfer of the current command message.
1 Enter WAITING FOR TRIGGER state after transfer of the current command message.
Note: If both the pause and EOQ bits are asserted in the same command message the respective flags are

set, but the CFIFO status changes as if only the EOQ bit were asserted.

2–4 Reserved

5
EB

External buffer bit. Always clear this bit for messages sent to an on-chip ADC.
0 Command is sent to an internal command buffer.
1 Command is sent to an external command buffer.

6
BN

Buffer number. Indicates to which buffer the message is sent. Buffers 1 and 0 can either be internal or
external depending on the EBI bit setting.
0 Message buffer 0.
1 Message buffer 1.

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

18-54 Freescale Semiconductor

ADC Result Format for On-Chip ADC Operation

When the FIFO control unit receives a return data message, it decodes the MESSAGE_TAG field and
stores the 16-bit data into the appropriate RFIFO. This section describes the ADC result portion of the
result message returned by the on-chip ADCs.

The 16-bit data stored in the RFIFOs can be the following:

• Data read from an ADC register with a read configuration command. In this case, the stored 16-bit
data corresponds to the contents of the ADC register that was read.

• A time stamp. In this case, the stored 16-bit data is the value of the time base counter latched when
the eQADC detects the end of the analog input voltage sampling. For details see Section 18.4.5.3,
“Time Stamp Feature.”

7
R/W

Read/write. An asserted R/W bit indicates a read configuration command.
0 Write
1 Read

8–11
MESSAGE_TAG

[0:3]

MESSAGE_TAG field. Allows the eQADC to separate returning results into different RFIFOs. When the
eQADC transfers a command, the MESSAGE_TAG is included as part of the command. Eventually the
external device/on-chip ADC returns the result with the same MESSAGE_TAG. The eQADC separates
incoming messages into different RFIFOs by decoding the MESSAGE_TAG of the incoming data.

12–23 Reserved

24–31
ADC_REG_
ADDRESS

[0:7]

ADC register address. Identifies to which ADC register the read or write is performed. Only use 16-bit
(halfword) addresses. See Table 18-22. See Table 18-22.

Table 18-33. On-Chip ADC Field Descriptions: Read Configuration (continued)

Field Description

MESSAGE_TAG[0:3] MESSAGE_TAG Meaning

0b0000 Result is sent to RFIFO 0

0b0001 Result is sent to RFIFO 1

0b0010 Result is sent to RFIFO 2

0b0011 Result is sent to RFIFO 3

0b0100 Result is sent to RFIFO 4

0b0101 Result is sent to RFIFO 5

0b0110–0b0111 Reserved

0b1000 Null message received

0b1001 Reserved for customer use. 1

1 These messages are treated as null messages. Therefore, they must obey the
format for incoming null messages and return valid BUSY0/1 fields. See Section ,
“Null Message Format for External Device Operation.”

0b1010 Reserved for customer use. 1

0b1011–0b1111 Reserved

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 18-55

• A conversion result. In this case, the stored 16-bit data contains a right justified 14-bit result data.
The conversion result can be calibrated or not depending on the status of CAL bit in the command
that requested the conversion. When the CAL bit is negated, this 14-bit data is obtained by
executing a 2-bit left-shift on the 12-bit data received from the ADC. When the CAL bit is asserted,
this 14-bit data is the result of the calculations performed in the EQADC MAC unit using the12-bit
data received from the ADC and the calibration constants GCC and OCC (See Section 18.4.5.4,
“ADC Calibration Feature”). Then, this 14-bit data is further formatted into a 16-bit format
according to the status of the FMT bit in the conversion command. When FMT is asserted, the
14-bit result data is reformatted to look as if it was measured against an imaginary ground at VREF
/ 2 (the most significant bit (MSB) bit of the 14-bit result is inverted), and is sign-extended to a
16-bit format as in Figure 18-29. When FMT is negated, the eQADC zero-extends the 14-bit result
data to a 16-bit format as in Figure 18-30. Correspondence between the analog voltage in a channel
and the calculated digital values is shown in Table 18-36.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SIGN_EXT CONVERSION_RESULT (With inverted MSB bit) 0 0

ADC Result

Figure 18-29. ADC Result Format when FMT = 1 (Right Justified Signed)—On-Chip ADC Operation

Table 18-34. ADC Result Format when FMT = 1 Field Descriptions

Field Description

0–1
SIGN_EXT

[0:1]

Sign extension. Only has meaning when FMT is asserted. SIGN_EXT is 0b00 when
CONVERSION_RESULT is positive, and 0b11 when CONVERSION_RESULT is negative.

2–15
CONVERSION_

RESULT
[0:13]

Conversion result. A digital value corresponding to the analog input voltage in a channel when the
conversion command was initiated. The two’s complement representation is used to express negative
values.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 CONVERSION_RESULT 0 0

ADC Result

Figure 18-30. ADC Result Format when FMT = 0 (Right Justified Unsigned)—On-Chip ADC Operation

Table 18-35. ADC Result Format when FMT = 0 Field Descriptions

Field Description

0–1
SIGN_EXT

[0:1]

Sign extension. These two bits are always zero for FMT=0 because unsigned results are positive.

2–15
CONVERSION_

RESULT
[0:13]

Conversion result. A digital value corresponding to the analog input voltage in a channel when the
conversion command was initiated.

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

18-56 Freescale Semiconductor

18.4.1.2.2 Message Formats for External Device Operation

This section describes the command messages, data messages, and null messages formats used for external
device operation.

Command Message Format for External Device Operation

Figure 18-31 describes the command message format for external device operation. Command message
formats for on-chip operation and for external device operation share the same CFIFO header format.
However, there are no limitations regarding the format an ADC Command used to communicate to an
arbitrary external device. Only the upper bit of an ADC Command has a fixed format (BN field) to indicate
the FIFO control unit/external device to which the command and the external command buffer is sent. The
remaining 25 bits can be anything decodable by the external device. Only the ADC command portion of
a command message is transferred to the external device.

Table 18-36. Correspondence between Analog Voltages and Digital Values1, 2

1 VREF = VRH - VRL = 5.12 V. Resulting in one 12-bit count (LSB) = 1.25 mV.
2 The two’s complement representation is used to express negative values.

Voltage Level on
Channel

(V)

Corresponding 12-bit
Conversion Result

Returned by the ADC

16-bit Result
Sent to RFIFOs

(FMT=0) 3

3 Assuming an accurately calibrated ADC with an ideal gain and a zero offset.

16-bit Result
Sent to RFIFOs

(FMT=1) 3

Single-ended
Conversions

5.12 0xFFF 0x3FFC 0x1FFC

5.12 – LSB 0xFFF 0x3FFC 0x1FFC

...

2.56 0x800 0x2000 0x0000

...

1 LSB 0x001 0x0004 0xE004

0 0x000 0x0000 0xE000

Differential
Conversions

2.56 0xFFF 0x3FFC 0x1FFC

2.56 – LSB 0xFFF 0x3FFC 0x1FFC

...

0 0x800 0x2000 0x0000

...

-2.56 + LSB 0x001 0x0004 0xE004

-2.56 0x000 0x0000 0xE000

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 18-57

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

EOQ PAUSE Reserved
ABORT

_ST
EB

(0b1)
BN OFF_CHIP_COMMAND

CFIFO Header ADC Command

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

OFF_CHIP_COMMAND

ADC Command

Figure 18-31. Command Message Format for External Device Operation

Table 18-37. On-Chip ADC Field Descriptions: External Device Operation

Field Description

0
EOQ

End-of-queue. Asserted in the last command of a command queue to indicate to the eQADC that a scan of the
queue is completed. EOQ instructs the eQADC to reset its current CFIFO transfer counter value (TC_CF) to 0.
Depending on the CFIFO mode of operation, the CFIFO status changes upon the detection of an asserted EOQ
bit on the last transferred command. See Section 18.4.3.4, “CFIFO Scan Trigger Modes,” for details.
0 Not the last entry of the command queue.
1 Last entry of the command queue.
Note: If both the pause and EOQ bits are asserted in the same command message the respective flags are set,

but the CFIFO status changes as if only the EOQ bit were asserted.

1
PAUSE

Pause bit. Allows software to create sub-queues within a command queue. When the eQADC completes the
transfer of a command with an asserted pause bit, the CFIFO enters the WAITING FOR TRIGGER state. See
Section 18.4.3.5.1, “CFIFO Operation Status,” for a description of the state transitions. The pause bit is only valid
when CFIFO operation mode is configured to single or continuous-scan edge trigger mode.
0 Do not enter WAITING FOR TRIGGER state after transfer of the current command message.
1 Enter WAITING FOR TRIGGER state after transfer of the current command message.
Note: If both the pause and EOQ bits are asserted in the same command message the respective flags are set,

but the CFIFO status changes as if only the EOQ bit were asserted.

2–3 Reserved

4
ABORT

_ST

ABORT serial transmission. Indicates whether to abort an on-going serial transmission. All CFIFOs can abort
null message transmissions when triggered but only CFIFO0 can abort command transmissions of lower priority
CFIFOs. For more on serial transmission aborts, see Section 18.4.3.2, “CFIFO Prioritization and Command
Transfer.”
0 Do not abort current serial transmission.
1 Abort current serial transmission.

5
EB

External buffer. Always set this bit for messages sent to an external ADC.
0 Command is sent to an internal command buffer.
1 Command is sent to an external command buffer.

6
BN

See Section , “Conversion Command Message Format for On-Chip ADC Operation.”

7–31
OFF_CHIP_
COMMAND

[0:24]

OFF-CHIP COMMAND Field. The OFF_CHIP_COMMAND field can be anything decodable by the external
device. It is 25 bits long and it is transferred together with the BN bit to the external device when the CFIFO is
triggered. See Section , “Conversion Command Message Format for On-Chip ADC Operation,” for a description
of the command message used when interfacing with the on-chip ADCs.

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

18-58 Freescale Semiconductor

Result Message Format for External Device Operation

Data is returned from the ADCs in the form of result messages. A result message is composed of an RFIFO
header and an ADC result. The FIFO control unit decodes the information contained in the RFIFO header
and sends the contents of the ADC result to the appropriate RFIFO. Only data stored on the
ADC_RESULT field is stored in the RFIFOs result queues. The ADC result of any received message with
a null data message tag is ignored. The format of a result message returned from the external device is
shown in Figure 18-32. It is 26 bits long, and is composed of a MESSAGE_TAG field, information about
the status of the buffers (BUSY fields), and result data. The BUSY fields are needed to inform the eQADC
about when it is appropriate to transfer commands to the external command buffers.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Reserved MESSAGE_TAG BUSY1 BUSY0

RFIFO Header

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

ADC_RESULT

ADC Result

Figure 18-32. Result Message Format for External Device Operation

Table 18-38. Result Message Format for External Device Operation

Field Description

6–7 Reserved

8–11
MESSAGE_TAG

[0:3]

MESSAGE_TAG Field. See Section , “Conversion Command Message Format for On-Chip ADC
Operation.”

12–13
BUSY1

[0:1]

BUSY1 status. The BUSY1 field indicates if the external device can receive more commands.
Table 18-39 shows how these two bits are encoded. When an external device cannot accept any
more commands, it must set BUSY1 to “Do not send commands” in the returning message. The
BUSY1 field of values 0b10 and 0b10can be set by the external device to view the BUSY1 status of
the external command buffers for debug. As an example, set the BUSY1 status to the number of
entries in an external command buffer.

14–15
BUSY0

[0:1]

BUSY status. The BUSY fields indicate if the external device can receive more commands.
Table 18-39 shows how these two bits are encoded. When an external device cannot accept any
more new commands, it must set BUSYn to a value indicating “Do not send commands” in the
returning message. The BUSY fields of values 0b10 and 0b10 can be freely encoded by the external
device to allow visibility of the status of the external command buffers for debug. As an example, they
could indicate the number of entries in an external command buffer.

16–31
ADC_

RESULT
[0:15]

ADC RESULT Field. The result data received from the external device or on-chip ADC can be any
value produced by the external device, such as the result of a conversion command, data requested
via a read configuration command, or a time stamp value. The ADC_RESULT of any incoming
message with a null message tag is ignored. When the MESSAGE_TAG is for an RFIFO, the eQADC
extracts the 16-bit ADC_RESULT from the raw message and stores it into the appropriate RFIFO.

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 18-59

Null Message Format for External Device Operation

Null messages are only transferred through the serial interface to allow results and unsolicited control data,
like the status of the external command buffers, to return when there are no more commands pending to
transfer. Null messages are only transmitted when serial transmissions from the eQADC SSI are enabled
(see ESSIE field in Section 18.3.2.1, “eQADC Module Configuration Register (EQADC_MCR),”), and
when one of the following conditions apply:

• There are no triggered CFIFOs with commands bound for external command buffers.

• There are triggered CFIFOs with commands bound for external command buffers but the external
buffers are full. The eQADC detected returning BUSYn fields indicating “Do not send
commands.”

Figure 18-33 illustrates the null message send format. When the eQADC transfers a null message, it
directly shifts out the 26-bit data content inside the Section 18.3.2.2, “eQADC Null Message Send Format
Register (EQADC_NMSFR).” The register must be programmed with the null message send format of the
external device.

Figure 18-34 illustrates the null message receive format. It has the same fields found in a result message
with the exception that the ADC result is not used. See section “Result Message Format for External
Device Operation,” for more information. The MESSAGE_TAG field must be set to the null message tag
(0b1000). The eQADC does not store into an RFIFO any incoming message with a null message tag.

Table 18-39. Command BUFFERn BUSY Status1

BUSYn[0:1] Meaning

0b00 Send available commands—command buffer is empty

0b01 Send available commands

0b10 Send available commands

0b11 Do not send commands

1 After reset, the eQADC always assumes that the external command buffers are full and cannot
receive commands.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CONTENTS OF EQADC_NMSFR REGISTER

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

CONTENTS OF EQADC_NMSFR REGISTER

Figure 18-33. Null Message Send Format for External Device Operation

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

18-60 Freescale Semiconductor

18.4.2 Command and Result Queues

The command and result queues are actually part of the eQADC system although they are not hardware
implemented inside the eQADC. Instead command and result queues are user-defined queues located in
system memory. Each command queue entry is a 32-bit command message.The last entry of a command
queue has the EOQ bit asserted to indicate that it is the last entry of the queue. The result queue entry is a
16-bit data item.

See Section 18.1.4, “Modes of Operation,” for a description of the message formats and their flow in
eQADC.

See Section 18.5.5, “Command Queue and Result Queue Usage,” for examples of how command queues
and result queues can be used.

18.4.3 eQADC Command FIFOs

18.4.3.1 CFIFO Basic Functionality

There are six prioritized CFIFOs located in the eQADC. Each CFIFO is four entries deep, and each CFIFO
entry is 32 bits long. A CFIFO serves as a temporary storage location for the command messages stored
in the command queues in system memory. When a CFIFO is not full, the eQADC sets the corresponding
CFFF bit in Section 18.3.2.8, “eQADC FIFO and Interrupt Status Registers 0–5 (EQADC_FISRn).” If

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Reserved
MESSAGE_TAG

(0b1000)
BUSY1 BUSY0

RFIFO Header

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

DETERMINED BY THE EXTERNAL DEVICE

ADC Result

Figure 18-34. Null Message Receive Format for External Device Operation

Table 18-40. Null Message Receive Format for External Device Operation

Field Description

6–7 Reserved

8–11
MESSAGE_

TAG[0:3]

MESSAGE_TAG field. See Section , “Conversion Command Message Format for On-Chip ADC Operation.”

12–15
BUSYn

[0:1]

BUSY status. See Section , “Result Message Format for External Device Operation.”

16–31 Determined by the external device.

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 18-61

CFFE is asserted as in Section 18.3.2.7, “eQADC Interrupt and eDMA Control Registers 0–5
(EQADC_IDCRn),” the eQADC generates requests for more commands from a command queue. An
interrupt request, served by the host CPU, is generated when CFFS is negated, and a eDMA request, served
by the eDMA, is generated when CFFS is asserted. The host CPU or the eDMA respond to these requests
by writing to the Section 18.3.2.4, “eQADC CFIFO Push Registers 0–5 (EQADC_CFPRn),” to fill the
CFIFO.

NOTE
Only whole words must be written to EQADC_CFPR. Writing halfwords or
bytes to EQADC_CFPR pushes the entire 32-bit CF_PUSH field into the
corresponding CFIFO, but undefined data fills the areas of CF_PUSH that
were not specifically designated as target locations for writing.

Figure 18-35 describes the important components in the CFIFO. Each CFIFO is implemented as a circular
set of registers to avoid the need to move all entries at each push/pop operation. The push next data pointer
points to the next available CFIFO location for storing data written into the eQADC command FIFO push
register. The transfer next data pointer points to the next entry to be removed from CFIFOn when it
completes a transfer. The CFIFO transfer counter control logic counts the number of entries in the CFIFO
and generates eDMA or interrupt requests to fill the CFIFO. TNXTPTR in Section 18.3.2.8, “eQADC
FIFO and Interrupt Status Registers 0–5 (EQADC_FISRn),” indicates the index of the entry that is
currently being addressed by the transfer next data pointer, and CFCTR, in the same register, provides the
number of entries stored in the CFIFO.

Using TNXTPTR and CFCTR, the absolute addresses for the entries indicated by the transfer next data
pointer and by the push next data pointer can be calculated using the following formulas:

Transfer Next Data Pointer Address = CFIFOn_BASE_ADDRESS + TNXTPTRn x 4
Push Next Data Pointer Address = CFIFOn_BASE_ADDRESS +
[(TNXTPTRn+CFCTRn) mod CFIFO_DEPTH] x 4

where

• a mod b returns the remainder of the division of a by b.

• CFIFOn_BASE_ADDRESS is the smallest memory mapped address allocated to a CFIFOn entry.

• CFIFO_DEPTH is the number of entries contained in a CFIFO - four in this implementation.

When CFSn in Section 18.3.2.11, “eQADC CFIFO Status Register EQADC_CFSR,” is in the
TRIGGERED state, the eQADC generates the proper control signals for the transfer of the entry pointed
by transfer next data pointer. CFUFn in Section 18.3.2.8, “eQADC FIFO and Interrupt Status Registers
0–5 (EQADC_FISRn),” is set when a CFIFOn underflow event occurs. A CFIFO underflow occurs when
the CFIFO is in the TRIGGERED state and it becomes empty. No commands are transferred from an
underflowing CFIFO, and command transfers from lower priority CFIFOs are not blocked. CFIFOn is
empty when the transfer next data pointer n equals the push next data pointer n and CFCTRn is 0. CFIFOn
is full when the transfer next data pointer n equals the push next data pointer n and CFCTRn is not 0.

When the eQADC completes the transfer of an entry from CFIFOn: the transferred entry is popped from
CFIFOn, the CFIFO counter CFCTR in the Section 18.3.2.8, “eQADC FIFO and Interrupt Status Registers
0–5 (EQADC_FISRn),” is decremented by 1, and transfer next data pointer n is incremented by 1 (or
wrapped around) to point to the next entry in the CFIFO. The transfer of entries bound for the on-chip

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

18-62 Freescale Semiconductor

ADCs is considered completed when they are stored in the appropriate ADC command buffer. The transfer
of entries bound for the external device is considered completed when the serial transmission of the entry
is completed.

When the EQADC_CFPRn is written and CFIFOn is not full, the CFIFO counter CFCTRn is incremented
by 1, and the push next data pointer n then is incremented by 1 (or wrapped around) to point to the next
entry in the CFIFO.

When the EQADC_CFPRn is written but CFIFOn is full, the eQADC does not increment the counter value
and does not overwrite any entry in CFIFOn.

Figure 18-35. CFIFO Diagram

The detailed behavior of the push next data pointer and transfer next data pointer is described in the
example shown in Figure 18-36 where a CFIFO with 16 entries is shown for clarity of explanation, the
actual hardware implementation has only four entries. In this example, CFIFOn with 16 entries is shown
in sequence after pushing and transferring entries.

Push Next

32-bit Entry 2

32-bit Entry 1

Control Signals

CFIFO
Transfer Counter

Control Logic

Data Pointer *

Transfer Next
Data Pointer *

CFIFO
Push Register

Data to
External
Device or
to On-Chip
ADCs

Write
to Bus

Interface
by CPU
or DMA

DMA Done

Interrupt/DMA Request

All CFIFO entries are memory mapped and the entries addressed by these pointers
can have their absolute addresses calculated using TNXTPTR and CFCTR.

*

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 18-63

Figure 18-36. CFIFO Entry Pointer Example

First In Transfer
Next
Data
Pointer

Last In
Push
Next
Data

Pointer

CFIFOn
Transfer
Next
Data
Pointer

Push
Next
Data

Pointer

CFIFOn

First In Transfer
Next
Data
Pointer

Last In
Push
Next
Data

Pointer

CFIFOn

After Reset or
Invalidation

Some Entries Pushed
but None Executed

No Entries Pushed
but Some Executed

First In Transfer
Next
Data
Pointer

Push
Next
Data

Pointer

CFIFOn

Transfer
Next
Data
Pointer

Push
Next
Data

Pointer

CFIFOn

First In Transfer
Next
Data
Pointer

Last In
Push
Next
Data

Pointer

CFIFOn

No Entries Pushed
but Some Executed

Some Entries Pushed
and Some Executed

Entries Pushed Until
Full and None Executed

First In
Last In Last In

Valid Entry
Empty Entry

NOTE:
n = 0, 1, 2, 3, 4, 5

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

18-64 Freescale Semiconductor

18.4.3.2 CFIFO Prioritization and Command Transfer

The CFIFO priority is fixed according to the CFIFO number. A CFIFO with a smaller number has a higher
priority. When commands from different CFIFOs are sent to the same destination (such as the same
on-chip ADC), the higher priority CFIFO is always served first. A triggered, not-underflowing CFIFO
starts to transfer commands when the following occur:

• Its commands are bound for an internal command buffer that is not full, and it is the highest priority
triggered CFIFO sending commands to that buffer.

• Its commands are bound for an external command buffer that is not full, and it is the highest priority
triggered CFIFO sending commands to an external buffer that is not full.

A triggered CFIFO with commands bound for a certain command buffer consecutively transfers its
commands to the buffer until one of the following occurs:

• An asserted end of queue bit is reached.

• An asserted pause bit is encountered and the CFIFO is configured for edge trigger mode.

• CFIFO is configured for level trigger mode and a closed gate is detected.

• In case its commands are bound for an internal command buffer, a higher priority CFIFO that uses
the same internal buffer is triggered.

• In case its commands are bound for an external command buffer, a higher priority CFIFO that uses
an external buffer is triggered.

The prioritization logic of the eQADC, depicted in Figure 18-37, is composed of three independent
submodules: one that prioritizes CFIFOs with commands bound for ADC0, another that prioritizes
CFIFOs with commands for ADC1, and a last one that prioritizes CFIFOs with commands for external
command buffer 2 and buffer 3. As these three submodules are independent, simultaneous commands to
ADC0, to ADC1, and to eQADC SSI transmit buffer are allowed. The hardware identifies the destination
of a command by decoding the EB and BN bits in the command message (see Section 18.4.1.2, “Message
Format in eQADC,” for details).

NOTE
Triggered but empty CFIFOs, underflowing CFIFOs, are not considered for
prioritization. No data from these CFIFOs is sent to the on-chip ADCs or the
external command buffers, and lower priority CFIFOs are not stopped from
transferring commands.

Whenever ADC0 is able to receive new commands, the prioritization submodule selects the
highest-priority triggered CFIFO with a command bound for ADC0, and sends it to the ADC. In case
ADC0 is able to receive new entries but there are no triggered CFIFOs with commands bound for it,
nothing is sent. The submodule prioritizing ADC1 usage behaves in the same way.

When the eQADC SSI is enabled and ready to start serial transmissions, the submodule prioritizing
eQADC SSI usage writes command or null messages into the eQADC SSI transmit buffer. Data written to
the eQADC SSI transmit buffer is subsequently transmitted to the external device through the eQADC SSI
link. The submodule writes commands to the eQADC SSI transmit buffer when there are triggered CFIFOs
with commands bound for not-full external command buffers. The command written to the transmit buffer
belongs to the highest priority CFIFO sending commands to an external buffer that is not full. This implies

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 18-65

that a lower priority CFIFO can have its commands sent if a higher priority CFIFO cannot send its
commands due to a full command buffer. The submodule writes null messages to the eQADC SSI transmit
buffer when there are no triggered CFIFOs with commands bound for external command buffers, or when
there are triggered CFIFOs with commands bound for external buffers but the external buffers are full. The
eQADC monitors the status of the external buffers by decoding the BUSY fields of the incoming result
messages from the external device (see Section , “Result Message Format for External Device Operation,”
for details).

NOTE
When a higher priority CFIFO cannot send commands due to a full external
command buffer, a lower priority CFIFO is served. When the higher priority
CFIFO is ready to send commands, an interrupt to the command transfers
from the lower priority CFIFO can result in CFIFO incoherence. Whether
the lower priority CFIFO becomes non-coherent depends on the following:

•Rate at which commands on the external ADCs are executed

•Rate at which commands are transmitted to the external command buffers

•Depth of the buffers

After a serial transmission starts, the submodule monitors triggered CFIFOs and manages the abort of the
serial transmissions. If a null message is transmitted, the serial transmission is aborted when all of the
following conditions are met:

• A not-underflowing CFIFO in the TRIGGERED state has commands bound for an external
command buffer that is not full, and it is the highest priority CFIFO sending commands to an
external buffer that is not full.

• The ABORT_ST bit of the command to be transmitted is asserted.

• The 26th bit of the currently transmitting null message is not shifted out.

The command from the CFIFO is then written into eQADC SSI transmit buffer, allowing for a new serial
transmission to initiate.

In case a command is being transmitted, the serial transmission is aborted when all following conditions
are met:

• CFIFO0 is in the TRIGGERED state, is not underflowing, and its current command is bound for
an external command buffer that is not full.

• The ABORT_ST bit of the command to be transmitted is asserted.

• The 26th bit of the currently transmitting command has not being shifted out.

The command from CFIFO0 is then written into eQADC SSI transmit buffer, allowing for a new serial
transmission to initiate.

NOTE
The aborted command is not popped from the pre-empted CFIFO, but is
retransmitted as soon as it’s the highest priority CFIFO sending commands
to an unfilled external command buffer.

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

18-66 Freescale Semiconductor

After a serial transmission is completed, the eQADC prioritizes the CFIFOs and schedules a command or
a null message to be sent in the next serial transmission. After the data for the next transmission has been
defined and scheduled, the eQADC can, under certain conditions, stretch the SDS negation time to allow
the schedule of new data for that transmission. This occurs when the eQADC acknowledges that the status
of a higher-priority CFIFO has changed to the TRIGGERED state and attempts to schedule that CFIFO
command before SDS is asserted. Only commands of CFIFOs that have the ABORT_ST bit asserted can
be scheduled in this manner. Under such conditions:

1. A CFIFO0 command is scheduled for the next transmission independently of the type of data that
was previously scheduled. The time during which SDS is negated is stretched to allow the eQADC
to load the CFIFO0 command and start its transmission.

2. CFIFO1-5 commands are only scheduled for the next transmission if the previously scheduled data
was a null message. The time during which SDS is negated is stretched to allow the eQADC to load
that command and start its transmission. However, if the previously scheduled data was a
command, no rescheduling occurs and the next transmission starts without delays.

If a CFIFO becomes triggered while SDS is negated, but the eQADC only attempts to reschedule that
CFIFO command after SDS is asserted, then the current transmission is aborted depending on if the
conditions for that are met or not.

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 18-67

Figure 18-37. CFIFO Prioritization Logic

18.4.3.3 External Trigger from eTPU or eMIOS Channels

The six eQADC external trigger inputs can be connected to either an external pin (GPIO206, or GPIO207),
an eTPU channel, or an eMIOS channel. The input source for each eQADC external trigger is individually
specified in the eQADC trigger input select register (SIU_ETISR) in the SIU block.

The eQADC trigger numbers specified by SIU_ETISR[TSEL(0–5)] correspond to CFIFO numbers 0–5.
To calculate the CFIFO number that each trigger is connected to, divide the eDMA channel number by 2.

A complete description of the eTPU and eMIOS trigger function and configuration is found in
Section 6.5.5.1, “eQADC External Trigger Input Multiplexing.”

ADC0

Command Buffer0
(2 Entries)

eQADC
Prioritization

Logic

Prioritization
for ADC0

Usage

Command

6 x Command

Command
CFIFO0

Command
CFIFO1

Command
CFIFO2

Command
CFIFO3

Command
CFIFO4

Command
CFIFO5

ADC1

Command Buffer1
(2 Entries)

Prioritization
for ADC1

Usage

Command

EQADC SSI
Transmit Buffer

Prioritization
for EQADC
SSI Usage

Command
(1 Entry)

eQADC SSI

Serial Link

External Device
SSI Interface

Command Buffer2

ADC2
Command

Command Buffer3

ADC3
Command

External
Device

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

18-68 Freescale Semiconductor

18.4.3.4 CFIFO Scan Trigger Modes

The eQADC supports two different scan modes, single-scan and continuous-scan. See Table 18-41 for a
summary of these two scan modes. When a CFIFO is triggered, the eQADC scan mode determines
whether the eQADC stops command transfers from a CFIFO, and waits for software intervention to rearm
the CFIFO to detect new trigger events, upon detection of an asserted EOQ bit in the last transfer. See
Section 18.4.1.2, “Message Format in eQADC,” for details about command formats.

CFIFOs can be configured in single-scan or continuous-scan mode. When a CFIFO is configured in
single-scan mode, the eQADC scans the command queue one time. The eQADC stops future command
transfers from the triggered CFIFO after detecting the EOQ bit set in the last transfer. After a EOQ bit is
detected, software involvement is required to rearm the CFIFO so that it can detect new trigger events.

When a CFIFO is configured for continuous-scan mode, no software involvement is necessary to rearm
the CFIFO to detect new trigger events after an asserted EOQ is detected. In continuous-scan mode the
whole command queue is scanned multiple times.

The eQADC also supports different triggering mechanisms for each scan mode. The eQADC does not
transfer commands from a CFIFO until the CFIFO is triggered. The combination of scan modes and
triggering mechanisms allows the support of different requirements for scanning input channels. The scan
mode and trigger mechanism are configured by programming the MODEn field in Section 18.3.2.6,
“eQADC CFIFO Control Registers 0–5 (EQADC_CFCRn).”

Enabled CFIFOs can be triggered by software or external trigger events. The elapsed time from detecting
a trigger to transferring a command is a function of clock frequency, trigger synchronization, trigger
filtering, programmable trigger events, command transfer, CFIFO prioritization, ADC availability, etc.
Fast and predictable transfers can be achieved by ensuring that the CFIFO is not underflowing and that the
target ADC can accept commands when the CFIFO is triggered.

18.4.3.4.1 Disabled Mode

The MODEn field in Section 18.3.2.6, “eQADC CFIFO Control Registers 0–5 (EQADC_CFCRn),” for
all of the CFIFOs can be changed from any other mode to disabled at any time. No trigger event can initiate
command transfers from a CFIFO which has its MODE field programmed to disabled.

NOTE
If MODEn is not disabled, it must not be changed to any other mode besides
disabled. If MODEn is disabled and the CFIFO status is IDLE, MODEn can
be changed to any other mode.

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 18-69

If MODEn is changed to disabled:

• The CFIFO execution status changes to IDLE. The timing of this change depends on whether a
command is being transferred or not:

— When no command transfer is in progress, the eQADC switches the CFIFO to IDLE status
immediately.

— When a command transfer to an on-chip ADC is in progress, the eQADC completes the
transfer, updates TC_CF, and switches CFIFO status to IDLE. Command transfers to the
internal ADCs are considered completed when a command is written to the relevant buffer.

— When a command transfer to an external command buffer is in progress, the eQADC aborts the
transfer and switches CFIFO status to IDLE. If the eQADC cannot abort the transfer, that is
when the 26th bit of the serial message has being already shifted out, the eQADC completes
the transfer, updates TC_CF and then switches CFIFO status to IDLE.

• The CFIFOs are not invalidated automatically. The CFIFO still can be invalidated by writing a 1
to the CFINVn bit (see Section 18.3.2.6, “eQADC CFIFO Control Registers 0–5
(EQADC_CFCRn)”). Certify that CFS has changed to IDLE before setting CFINVn.

• The TC_CFn value also is not reset automatically, but it can be reset by writing 0 to it.

• The EQADC_FISRn[SSS] bit (see Section 18.3.2.8, “eQADC FIFO and Interrupt Status Registers
0–5 (EQADC_FISRn)”) is negated. The SSS bit can be set even if a 1 is written to the
EQADC_CFCR[SSE] bit (see Section 18.3.2.6, “eQADC CFIFO Control Registers 0–5
(EQADC_CFCRn)”) in the same write that the MODEn field is changed to a value other than
disabled.

• The trigger detection hardware is reset. If MODEn is changed from disabled to an edge trigger
mode, a new edge, matching that edge trigger mode, is needed to trigger the command transfers
from the CFIFO.

NOTE
CFIFO fill requests, generated when the CFFF asserts, are not automatically
halted when MODEn is changed to disabled. CFIFO fill requests are still
generated until EQADC_IDCRn[CFFE] bit is cleared. See Section
Section 18.3.2.7, “eQADC Interrupt and eDMA Control Registers 0–5
(EQADC_IDCRn).”

18.4.3.4.2 Single-Scan Mode

In single-scan mode, a single pass through a sequence of command messages in command queue you
defined is performed.

In single-scan software trigger mode, the CFIFO is triggered by an asserted single-scan status bit,
EQADC_FISRn[SSS] (see Section 18.3.2.8, “eQADC FIFO and Interrupt Status Registers 0–5
(EQADC_FISRn)”). The SSS bit is set by writing 1 to the single-scan enable bit, EQADC_CFCRn[SSE]
(see Section 18.3.2.6, “eQADC CFIFO Control Registers 0–5 (EQADC_CFCRn)”).

In single-scan edge or level trigger mode, the respective triggers are only detected when the SSS bit is
asserted. When the SSS bit is negated, all trigger events for that CFIFO are ignored. Writing a 1 to the SSE
bit can be done during the same write cycle that the CFIFO operation mode is configured.

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

18-70 Freescale Semiconductor

Only the eQADC can clear the SSS bit. After SSS is asserted, it remains asserted until the eQADC
completes the command queue scan, or the CFIFO operation mode, EQADC_CFCRn[MODEn] (see
Section 18.3.2.6) is changed to disabled. The SSSn bit is negated while MODEn is disabled.

Single-Scan Software Trigger

When single-scan software trigger mode is selected, the CFIFO is triggered by an asserted SSS bit. The
SSS bit is asserted by writing 1 to the SSE bit. Writing to SSE while SSS is already asserted does not have
any effect on the state of the SSS bit, nor does it cause a trigger overrun event.

The CFIFO commands start to be transferred when the CFIFO becomes the highest priority CFIFO using
an available on-chip ADC or an external command buffer that is not full. When an asserted EOQ bit is
encountered, the eQADC clears the SSS bit. Setting the SSS bit is required for the eQADC to start the next
scan of the queue.

The pause bit has no effect in single-scan software trigger mode.

Single-Scan Edge Trigger

When SSS is asserted and an edge triggered mode is selected for a CFIFO, an appropriate edge on the
associated trigger signal causes the CFIFO to become triggered. For example, if rising-edge trigger mode
is selected, the CFIFO becomes triggered when a rising edge is sensed on the trigger signal. The CFIFO
commands start to be transferred when the CFIFO becomes the highest priority CFIFO using an available
on-chip ADC, or an external command buffer that is not full.

When an asserted EOQ bit is encountered, the eQADC clears SSS and stops command transfers from the
CFIFO. An asserted SSS bit and a subsequent edge trigger event are required to start the next scan for the
CFIFO. When an asserted pause bit is encountered, the eQADC stops command transfers from the CFIFO,
but SSS remains set. Another edge trigger event is required for command transfers to continue. A trigger
overrun happens when the CFIFO is in a TRIGGERED state and an edge trigger event is detected.

Single-Scan Level Trigger

When SSS is asserted and a level gated trigger mode is selected, the input level on the associated trigger
signal puts the CFIFO in a TRIGGERED state. When the CFIFO is set to high-level gated trigger mode,
a high level signal opens the gate, and a low level closes the gate. When the CFIFO is set to low-level gated
trigger mode, a low level signal opens the gate, and a high level closes the gate. If the corresponding level
is already present, setting the SSS bit triggers the CFIFO. The CFIFO commands start to be transferred
when the CFIFO becomes the highest priority CFIFO using an available on-chip ADC or an external
command buffer that is not full.

The eQADC clears the SSS bit and stops transferring commands from a triggered CFIFO when an asserted
EOQ bit is encountered or when CFIFO status changes from triggered due to the detection of a closed gate.
If a closed gate is detected while no command transfers are taking place and the CFIFO status is triggered,
the CFIFO status is immediately changed to IDLE, the SSS bit is negated, and the PF flag is asserted. If a
closed gate is detected during the serial transmission of a command to the external device, it has no affect
on the CFIFO status until the transmission completes. After the transmission is completed, the TC_CF
counter is updated, the SSS bit is negated, the PF flag is asserted, and the CFIFO status is changed to IDLE.

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 18-71

An asserted SSS bit and a level trigger are required to restart the CFIFO. Command transfers restart from
the point they have stopped.

If the gate closes and opens during the same serial transmission of a command to the external device, it
has no effect on the CFIFO status or on the PF flag, but the TORF flag asserts as shown in Figure 18-39.
Therefore, closing the gate for a period less than a serial transmission time interval does not guarantee that
the closure affects command transfers from a CFIFO.

The pause bit has no effect in single-scan level trigger mode.

18.4.3.4.3 Continuous-Scan Mode

In continuous-scan mode, multiple passes looping through a sequence of command messages in a
command queue are executed. When a CFIFO is programmed for a continuous-scan mode, the
EQADC_CFCRn[SSE] (see Section 18.3.2.6, “eQADC CFIFO Control Registers 0–5
(EQADC_CFCRn)”) does not have any effect.

Continuous-Scan Software Trigger

When a CFIFO is programmed to continuous-scan software trigger mode, the CFIFO is triggered
immediately. The CFIFO commands start to be transferred when the CFIFO becomes the highest priority
CFIFO using an available on-chip ADC or an external command buffer that is not full. When a CFIFO is
programmed to run in continuous-scan software trigger mode, the eQADC does not halt transfers from the
CFIFO until the CFIFO operation mode is modified to disabled or a higher priority CFIFO preempts it.
Although command transfers do not stop upon detection of an asserted EOQ bit, the EOQF is set and, if
enabled, an EOQ interrupt request is generated.

The pause bit has no effect in continuous-scan software trigger mode.

Continuous-Scan Level Trigger

When high or low level gated trigger mode is selected, the input level on the associated trigger signal
places the CFIFO in a TRIGGERED state. When high-level gated trigger is selected, a high-level signal
opens the gate, and a low level closes the gate. The CFIFO commands start to be transferred when the
CFIFO becomes the highest priority CFIFO using an available on-chip ADC or an external buffer that is
not full. Although command transfers do not stop upon detection of an asserted EOQ bit at the end of a
command transfer, the EOQF is asserted and, if enabled, an EOQ interrupt request is generated.

The eQADC stops transferring commands from a triggered CFIFO when CFIFO status changes from
triggered due to the detection of a closed gate. If a closed gate is detected while no command transfers are
taking place and the CFIFO status is TRIGGERED, the CFIFO status is immediately changed to waiting
for trigger and the PF flag is asserted. If a closed gate is detected during the serial transmission of a
command to the external device, it has no effect on the CFIFO status until the transmission completes.
After the transmission is completed, the TC_CF counter is updated, the PF flag is asserted, and the CFIFO
status is changed to waiting for trigger. Command transfers restart as the gate opens.

If the gate closes and opens during the same serial transmission of a command to the external device, it
has no affect on the CFIFO status or on the PF flag, but the TORF flag asserts as shown in Figure 18-39.

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

18-72 Freescale Semiconductor

Therefore, closing the gate for a period less than a serial transmission time interval does not guarantee that
command transfers from a CFIFO are closed.

The pause bit has no effect in continuous-scan level trigger mode.

18.4.3.4.4 CFIFO Scan Trigger Mode Start/Stop Summary

Table 18-41 summarizes the start and stop conditions of command transfers from CFIFOs for all of the
single-scan and continuous-scan trigger modes.

Table 18-41. CFIFO Scan Trigger Mode—Command Transfer Start/Stop Summary

Trigger Mode

Requires
Asserted SSS
to Recognize

Trigger
Events?

Command Transfer
Start/Restart Condition

Stop on
asserted

EOQ
bit1?

1 See Section 18.4.3.5.2, “Command Queue Completion Status,” for more information on EOQ.

Stop on
asserted

Pause
bit2?

2 See Section 18.4.3.5.3, “Pause Status,” for more information on pause.

Other Command Transfer Stop
Condition3 4

3 The eQADC always stops command transfers from a CFIFO when the CFIFO operation mode is disabled.
4 The eQADC always stops command transfers from a CFIFO when a higher priority CFIFO is triggered. See

Section 18.4.3.2, “CFIFO Prioritization and Command Transfer,” for information on CFIFO priority.

Single Scan
Software

Not Applicable Asserted SSS bit. Yes No None.

Single Scan
Edge

Yes A corresponding edge
occurs when the SSS bit
is asserted.

Yes Yes None.

Single Scan
Level

Yes Gate is opened when the
SSS bit is asserted.

Yes No The eQADC also stops transfers
from the CFIFO when CFIFO
status changes from triggered
due to the detection of a closed
gate.5

5 If a closed gate is detected while no command transfers are taking place, it has an immediate effect on the CFIFO
status. If a closed gate is detected during the serial transmission of a command to the external device, it has no effect
on the CFIFO status until the transmission completes.

Continuous
Scan Software

No CFIFO starts
automatically after being
configured into this mode.

No No None.

Continuous
Scan Edge

No A corresponding edge
occurs.

Yes Yes None.

Continuous
Scan Level

No Gate is opened. No No The eQADC also stops transfers
from the CFIFO when CFIFO
status changes from triggered
due to the detection of a closed
gate.5

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 18-73

18.4.3.5 CFIFO and Trigger Status

18.4.3.5.1 CFIFO Operation Status

Each CFIFO has its own CFIFO status field. CFIFO status (CFS) can be read from EQADC_CFSSR (see
Section 18.3.2.11, “eQADC CFIFO Status Register EQADC_CFSR.” Figure 18-38 and Table 18-42
indicate the CFIFO status switching condition. See Table 18-15 for the meaning of each CFIFO operation
status. The last CFIFO to transfer a command to an on-chip ADC can be read from the LCFTn (n=0,1)
fields (see Section 18.3.2.10, “eQADC CFIFO Status Snapshot Registers 0–2.” The last CFIFO to transfer
a command to a specific external command buffer can be identified by reading the
EQADC_CFSSRn[LCFTSSI] and EQADC_CFSSRn[ENI] fields (see Section 18.3.2.10, “eQADC
CFIFO Status Snapshot Registers 0–2.”

Figure 18-38. State Machine of CFIFO Status

Table 18-42. Command FIFO Status Switching Condition

No.
From Current
CFIFO Status

(CFS)

To New CFIFO
Status (CFS)

Status Switching Condition

1 IDLE
(00)

IDLE
(0b00)

 • CFIFO mode is programmed to disabled, OR
 • CFIFO mode is programmed to single-scan edge or level

trigger mode and SSS is negated.

2 WAITING FOR
TRIGGER

(0b10)

 • CFIFO mode is programmed to continuous-scan edge or
level trigger mode, OR

 • CFIFO mode is programmed to single-scan edge or level
trigger mode and SSS is asserted, OR

 • CFIFO mode is programmed to single-scan software trigger
mode.

3 TRIGGERED
(0b11)

 • CFIFO mode is programmed to continuous-scan software
trigger mode

8

6WAITING-
FOR

IDLE
1

2

4

95

7

3

TRIGGER
TRIGGERED

(CFS=0b00)

(CFS=0b10)
(CFS=0b11)

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

18-74 Freescale Semiconductor

4 WAITING FOR
TRIGGER

(10)

IDLE
(0b00)

 • CFIFO mode is modified to disabled mode.

5 WAITING FOR
TRIGGER

(0b10)

 • No trigger occurred.

6 TRIGGERED
(0b11)

 • Appropriate edge or level trigger occurred, OR
 • CFIFO mode is programmed to single-scan software trigger

mode and SSS bit is asserted.

7 TRIGGERED
(11)

IDLE
(0b00)

 • CFIFO in single-scan mode, eQADC detects the EOQ bit
asserted at end of command transfer, and CFIFO mode is
not modified to disabled, OR

 • CFIFO, in single-scan level trigger mode, and the gate
closes while no commands are being transferred from the
CFIFO, and CFIFO mode is not modified to disabled, OR

 • CFIFO, in single-scan level trigger mode, and eQADC
detects a closed gated at end of command transfer, and
CFIFO mode is not modified to disabled, OR

 • CFIFO mode is modified to disabled mode and CFIFO was
not transferring commands.

 • CFIFO mode is modified to disabled mode while CFIFO was
transferring commands, and CFIFO completes or aborts the
transfer.

8 WAITING FOR
TRIGGER

(0b10)

 • CFIFO in single or continuous-scan edge trigger mode,
eQADC detects the pause bit asserted at the end of
command transfer, the EOQ bit in the same command is
negated, and CFIFO mode is not modified to disabled, OR

 • CFIFO in continuous-scan edge trigger mode, eQADC
detects the EOQ bit asserted at the end of command
transfer, and CFIFO mode is not modified to disabled, OR

 • CFIFO, in continuous-scan level trigger mode, and the gate
closes while no commands are being transferred from the
CFIFO, and CFIFO mode is not modified to disabled, OR

 • CFIFO, in continuous-scan level trigger mode, and eQADC
detects a closed gated at end of command transfer, and
CFIFO mode is not modified to disabled.

9 TRIGGERED
(0b11)

 • No event to switch to IDLE or WAITING FOR TRIGGER
status has happened.

Table 18-42. Command FIFO Status Switching Condition (continued)

No.
From Current
CFIFO Status

(CFS)

To New CFIFO
Status (CFS)

Status Switching Condition

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 18-75

18.4.3.5.2 Command Queue Completion Status

The end of queue flag, EQADC_FISRn[EOQF] (see Section 18.3.2.8, “eQADC FIFO and Interrupt Status
Registers 0–5 (EQADC_FISRn)”) is asserted when the eQADC completes the transfer of a CFIFO entry
with an asserted EOQ bit. Software sets the EOQ bit in the last command message of a user-defined
command queue to indicate that this entry is the end of the queue. See Section 18.4.1.2, “Message Format
in eQADC,” for information on command message formats. The transfer of entries bound for the on-chip
ADCs is considered completed when they are stored in the appropriate command buffer. The transfer of
entries bound for the external device is considered completed when the serial transmission of the entry is
completed.

The command with a EOQ bit asserted is valid and is transferred. When EQADC_CFCRn[EOQIE] (see
Section 18.3.2.6, “eQADC CFIFO Control Registers 0–5 (EQADC_CFCRn)”) and
EQADC_FISRn[EOQF] are asserted, the eQADC generates an end of queue interrupt request.

In single-scan modes, command transfers from the corresponding CFIFO cease when the eQADC
completes the transfer of a entry with an asserted EOQ. Software involvement is required to rearm the
CFIFO so that it can detect new trigger events.

NOTE
An asserted EOQFn only implies that the eQADC has finished transferring
a command with an asserted EOQ bit from CFIFOn. It does not imply that
result data for the current command and for all previously transferred
commands has been returned to the appropriate RFIFO.

18.4.3.5.3 Pause Status

In edge trigger mode, when the eQADC completes the transfer of a CFIFO entry with an asserted pause
bit, the eQADC stops future command transfers from the CFIFO and sets EQADC_FISRn[PF]. The
eQADC ignores the pause bit in command messages in any software level trigger mode. The eQADC sets
the PF flag only in single or continuous-scan edge trigger mode when the pause bit set. When the PF flag
is set for a CFIFO in single-scan edge trigger mode, the EQADC_FISRn[SSS] bit is not cleared.

See the following sections for more information:

Section 18.3.2.8, “eQADC FIFO and Interrupt Status Registers 0–5 (EQADC_FISRn)”

Section 18.3.2.8, “eQADC FIFO and Interrupt Status Registers 0–5 (EQADC_FISRn)”

Section 18.4.1.2, “Message Format in eQADC,” for information on command message formats.

In level trigger mode, the PF flag designates that a CFIFOn is in the TRIGGERED status. The PFn bit is
set when a closed gate is detected, triggering the CFIFO status change. The pause flag interrupt routine
can be used to verify if a complete scan of the command queue was performed. If a closed gate is detected
while no command transfers are taking place, it has an immediate effect on the CFIFO status. If a closed
gate is detected during the serial transmission of a command to the external device, it has no effect on the
CFIFO status until the transmission completes.

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

18-76 Freescale Semiconductor

When EQADC_CFCR[PIE] and EQADC_FISRn[PF] are asserted, the eQADC generates a pause
interrupt request. See Section 18.3.2.6, “eQADC CFIFO Control Registers 0–5 (EQADC_CFCRn)” for
more information.

NOTE
In edge-trigger mode, an asserted PFn only implies that the eQADC finished
transferring a command with an asserted pause bit from CFIFOn. It does not
imply that result data for the current command and for all previously
transferred commands has been returned to the RFIFO.

NOTE
In software or level trigger mode, when the eQADC completes the transfer
of an entry from CFIFOn with an asserted pause bit, PFn is not set and the
command transfers continues without pausing.

18.4.3.5.4 Trigger Overrun Status

When a CFIFO is configured for edge or level trigger mode and is in a TRIGGERED state, an additional
trigger event for the same CFIFO causes a trigger overrun:

1. The trigger overrun bit for the CFIFO is set (EQADC_FISRn[TORFn] = 1)

2. The EQADC_CFCRn[TORIE] and EQADC_FISRn[TORF] assert

3. The eQADC generates a trigger overrun interrupt request.

See the following sections for more information:

Section 18.3.2.8, “eQADC FIFO and Interrupt Status Registers 0–5 (EQADC_FISRn)”

Section 18.3.2.6, “eQADC CFIFO Control Registers 0–5 (EQADC_CFCRn)”

For CFIFOs configured for level trigger mode, a trigger overrun event is detected only when the gate
closes and reopens during a single serial command transmission as shown in Figure 18-39.

Figure 18-39. Trigger Overrun on Level Trigger Mode CFIFOs

Command transmission
through eQADC SSI

CFIFO status

TORF

Command 1 Null message Command 2

Triggered WFT Triggered TriggeredWFT

Low active
Level trigger

If gate closes during a command transmission, it is only
recognized when the transmission ends.

1) CFIFO programmed to ‘continuous-scan low level gated external trigger mode’.
2) Command 2 has its ABORT_ST bit negated.

Assumptions:

3) There are no other CFIFOs using the serial interface.

WFT = Waiting for Trigger

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 18-77

NOTE
The trigger overrun flag is not set for CFIFOs configured for software
trigger mode.

18.4.3.5.5 Command Sequence Non-Coherency Detection

The eQADC provides a mechanism to indicate if a command sequence has been completely executed
without interruptions. A command sequence is defined as a group of consecutive commands bound for the
same ADC and it is expected to be executed without interruptions. A command sequence is coherent if its
commands are executed in order without interruptions. Because commands are stored in the ADC’s
command buffers before being executed in the eQADC, a command sequence is coherent if, while it is
transferring commands to an on-chip ADC command buffer, the buffer is only fed with commands from
that sequence without ever becoming empty.

A command sequence starts when:

• A CFIFO in TRIGGERED state transfers its first command to an on-chip ADC.

• The CFIFO is constantly transferring commands and the previous command sequence ended.

• The CFIFO resumes command transfers after being interrupted.

And a command sequence ended when:

• An asserted EOQ bit is detected on the last transferred command.

• CFIFO is in edge-trigger mode and asserted pause bit is detected on the last transferred command.

• The ADC to which the next command is sent is different from the ADC command last transferred.

Figure 18-40 shows examples of how the eQADC would detect command sequences when transferring
commands from a CFIFO. The smallest possible command sequence can have a single command as shown
in example 3 of Figure 18-40.

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

18-78 Freescale Semiconductor

Figure 18-40. Command Sequence Examples

The NCF flag is used to indicate command sequence non-coherency. When the NCFn flag is asserted, it
indicates that the command sequence being transferred through CFIFOn became non-coherent. The NCF
flag only becomes asserted for CFIFOs in a TRIGGERED state.

A command sequence is non-coherent when, after transferring the first command of a sequence from a
CFIFO to a buffer, it cannot successively send all the other commands of the sequence before any of the
following conditions are true:

• The CFIFO through which commands are being transferred is pre-empted by a higher priority
CFIFO which sends commands to the same ADC. The NCF flag becomes asserted immediately
after the first command transfer from the pre-empting CFIFO, that is the higher priority CFIFO, to
the ADC in use is completed. See Figure 18-42.

• The external command buffer in use becomes empty. (Only the fullness of external buffers is
monitored because the fill rate for internal ADC buffers is many times faster than the drain rate,

The eQADC checks for non-coherency of seven command
sequences, all containing a single command, but NCF is never set.

CFn_ADCa_CMDn – Command n in CFIFOn bound for ADCa
(ADC3 and ADC4 are external devices associated with external
command buffers 2 and 3).

Assuming that these commands are transferred by a CFIFO
configured for edge trigger mode and the command transfers are
never interrupted, the eQADC checks for non-coherency of two
command sequences: one formed by commands 0, 1, 2, 3, and the
other by commands 4, 5, 6.

Assuming that command transfers from the CFIFO are never
interrupted, the eQADC checks for non-coherency of three
command sequences. The first being formed by commands 0, 1, 2,
the second by commands 3, 4 and the third by commands 5, 6.
Even when the commands of this queue are transferred through a
CFIFO in continuous-scan mode, the first three commands and the
last two commands of this command queue still constitute two
distinct command sequences, although they are all bound for the
same ADC, because an asserted EOQ ends a command
sequence.

User Command Queue with
Two Command Sequences

CF5_ADC1_CM6(EOQ=1)7

CF5_ADC1_CM56

CF5_ADC1_CM45

CF5_ADC1_CM3(Pause=1)4

CF5_ADC1_CM23

CF5_ADC1_CM12

CF5_ADC1_CM01

Example 1

User Command Queue with
Three Command Sequences

CF5_ADC1_CM6(EOQ=1)7

CF5_ADC1_CM56

CF5_ADC0_CM45

CF5_ADC0_CM34

CF5_ADC1_CM23

CF5_ADC1_CM12

CF5_ADC1_CM01

Example 2

User Command Queue with a
Seven Command Sequence

CF5_ADC1_CM6(EOQ=1)7

CF5_ADC2_CM56

CF5_ADC0_CM45

CF5_ADC1_CM34

CF5_ADC3_CM23

CF5_ADC2_CM12

CF5_ADC1_CM01

Example 3

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 18-79

and each has a dedicated priority engine.) This case happens when different CFIFOs attempt to use
different external command buffers and the higher priority CFIFO bars the lower priority one from
sending new commands to its buffer—see Figure 18-43. An external command buffer is
considered empty when the corresponding BUSY field in the last result message received from
external device is encoded as “Send available commands - buffer is empty”. See Section , “Result
Message Format for External Device Operation.” The NCF flag becomes asserted immediately
after the eQADC detects that the external buffer in use becomes empty.

NOTE
After the transfer of a command sequence to an external command buffer
starts, the eQADC ignores, for non-coherency detection purposes, the
BUSY fields captured at the end of the first serial transmission. Thereafter,
all BUSY fields captured at the end of consecutive serial transmissions are
used to check the fullness of that external command buffer. This is done
because the eQADC only updates its external ADC command buffer status
record when it receives a serial message, resulting that the record kept by
the eQADC is always outdated by, at least, the length of one serial
transmission. This prevents a CFIFO from immediately becoming
non-coherent when it starts transferring commands to an empty external
command buffer. See Figure 18-41 for an example.

Figure 18-41. External Command Buffer Status Detection at Command Sequence Transfer Start

Table 18-43. External Buffer Status

Capture
Point at
eQADC

Buffer Status at
External Device

Buffer Status as
Captured by the

eQADC

Used for NCF
Detection on the

eQADC?

(a) EMPTY EMPTY No change

(b) 1 ENTRY EMPTY No

(c) 2 ENTRY 1 ENTRY Yes

SDS

Null MessageSerial Data
Transmitted

1) The CFIFO starts sending commands to an external command buffer when triggered.
2) Execution of a command on the external device takes longer than the time to

Assumptions:

complete two serial transmissions.

Command 3Command 2Command 1

(a) (b) (c)

Transfer of Command
Sequence Starts

External Buffer Status Starts
to be Monitored Here

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

18-80 Freescale Semiconductor

After the start of command sequence transfer, the eQADC checks for the command sequence coherency
until the command sequence ends or one of the following conditions are true:

• Command sequence is non-coherent.

• CFIFO status changes from the TRIGGERED state

• CFIFO underflow occurs

NOTE
The NCF flag is asserted if an external command buffer empty event is
detected at the same time the eQADC stops checking for the coherency of a
command sequence.

After command transfers restart or continue, the non-coherency hardware operate as if the command
sequence started from that point. Figure 18-44 depicts how the non-coherency hardware operates when a
non-coherency event is detected.

NOTE
If MODEn is changed to disabled while a CFIFO is transferring commands,
the NCF flag for that CFIFO is not asserted.

NOTE
When the eQADC enters debug or stop mode while a command sequence is
executing, the NCF asserts if an empty external command buffer is detected
after debug or stop mode exits.

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 18-81

Figure 18-42. Non-Coherency Event When Different CFIFOs Use the Same Buffer

CFIFO5

CF5_ADC1_CM33

CF5_ADC1_CM22

CF5_ADC1_CM11

CF5_ADC1_CM00 TNXTPTR*

ADC1**

Empty1

Empty0

CFIFO0 and CFIFO5 both have

** ADC command buffer can hold 2 entries.

CFIFO0

CF0_ADC1_CM33

CF0_ADC1_CM22

CF0_ADC1_CM11

CF0_ADC1_CM00 TNXTPTR*

commands to be sent to ADC1, and both
are not triggered.

(a)

CFIFO5

CF5_ADC1_CM33

CF5_ADC1_CM22

Sent1

Sent0

TNXTPTR*

ADC1

CF5_ADC1_CM11

CF5_ADC1_CM00

CFIFO5 becomes triggered and transfers

CFIFO0

CF0_ADC1_CM33

CF0_ADC1_CM22

CF0_ADC1_CM11

CF0_ADC1_CM00 TNXTPTR*

two commands to ADC1.
(b)

CFIFO5

CF5_ADC1_CM33

CF5_ADC1_CM22

Sent1

Sent0

TNXTPTR*

ADC1

CF0_ADC1_CM01

CF5_ADC1_CM10

CFIFO0 becomes triggered and transfers

CFIFO0

CF0_ADC1_CM33

CF0_ADC1_CM22

CF0_ADC1_CM11

Sent0

TNXTPTR*

a command to ADC1. The sequence sent
through CFIFO5 becomes non-coherent.

(c)

TNXTPTR – Transfer Next Data Pointer.
CFx_ADCa_CMn – Command n in CFIFOx bound for ADCa.

*

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

18-82 Freescale Semiconductor

Figure 18-43. Non-Coherency Event When Different CFIFOs Are Using Different External Command Buffers

eQADC SSI

CFIFO5

CF5_3_CM33

CF5_3_CM22

Sent1

Sent0

TNXTPTR*

Command Buffer 2

Empty1

Empty0

CFIFO0 and CFIFO5 both have commands

CFIFO0

CF0_2_CM33

CF0_2_CM22

CF0_2_CM11

CF0_2_CM00 TNXTPTR*

to be sent to external command buffers. CFIFO0
is not triggered. CFIFO5 is triggered and sends

(a)

TNXTPTR – Transfer Next Data Pointer.
CFx_ADCa_CMn – Command n in CFIFOx bound for external command buffer a.

*

Command Buffer 3

CF5_3_CM11

CF5_3_CM00 eQADC SSI

two commands to external command buffer 3.

CFIFO5

CF5_3_CM33

CF5_3_CM22

Sent1

Sent0

TNXTPTR*

Command Buffer 2

CF0_2_CM11

CF0_2_CM00

CFIFO0 is triggered and sent two commands to external

CFIFO0

CF0_2_CM33

CF0_2_CM22

Sent1

Sent0

TNXTPTR*

command buffer 2. CFIFO5 cannot send commands to
external command buffer 3 because the eQADC SSI is

(b)

Command Buffer 3

CF5_3_CM11

Empty0
eQADC SSI

busy transferring commands from CFIFO0. Execution of
first command of CFIFO5 is completed.

CFIFO5

CF5_3_CM33

CF5_3_CM22

Sent1

Sent0

TNXTPTR*

Command Buffer 2

CF0_2_CM21

CF0_2_CM10

Execution of first command of CFIFO0 is

CFIFO0

CF0_2_CM33

Sent2

Sent1

Sent0

TNXTPTR*

completed and CFIFO0 sends new command
to external command buffer 2.

(c)

Command Buffer 3

CF5_3_CM11

Empty0
eQADC SSI

CFIFO5

CF5_3_CM33

CF5_3_CM22

Sent1

Sent0

TNXTPTR*

Command Buffer 2

CF0_2_CM31

CF0_2_CM20

Second command in external command buffer 3

CFIFO0

Sent3

Sent2

Sent1

Sent0 TNXTPTR*

completes. Command buffer 3 became empty before
the complete command sequence in CFIFO5 is sent

(d)

Command Buffer 3

Empty1

Empty0

to it. NCF5 becomes asserted when the eQADC
receives an indication that command buffer 3 is empty,
by the BUSY fields in the returning serial message.

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 18-83

Figure 18-44. Non-coherency Detection When Transfers From a Command Sequence Are Interrupted

18.4.4 Result FIFOs

18.4.4.1 RFIFO Basic Functionality

There are six RFIFOs located in the eQADC. Each RFIFO is four entries deep, and each RFIFO entry is
16 bits long. Each RFIFO serves as a temporary storage location for the one of the result queues allocated
in system memory. All result data is saved in the RFIFOs before being moved into the system result
queues. When an RFIFO is not empty, the eQADC sets the corresponding EQADC_FISRn[RFDF] (see
Section 18.3.2.8, “eQADC FIFO and Interrupt Status Registers 0–5 (EQADC_FISRn)”). If
EQADC_IDCRn[RFDE] is asserted (see Section 18.3.2.7), the eQADC generates a request so that the
RFIFO entry is moved to a result queue. An interrupt request, served by the host CPU, is generated when
EQADC_IDCRn[RFDS] is negated, and an eDMA request, served by the eDMA, is generated when
RFDS is asserted. The host CPU or the eDMA responds to these requests by reading EQADC_RFPRn (see
Section 18.3.2.5, “eQADC Result FIFO Pop Registers 0–5 (EQADC_RFPRn)”) to retrieve data from the
RFIFO.

NOTE
Reading a word, halfword, or any bytes from EQADC_RFPRn pops an
entry from RFIFOn, and the RFCTRn field decrements by 1.

Configure the eDMA controller to read a single result (16-bit data) from the
RFIFO pop registers for every asserted eDMA request it acknowledges. See
Section 18.5.2, “eQADC to eDMA Controller Interface” for eDMA
controller configuration guidelines.

Figure 18-45 describes the important components in the RFIFO. Each RFIFO is implemented as a circular
set of registers to avoid the need to move all entries at each push/pop operation. The pop next data pointer
always points to the next RFIFO message to be retrieved from the RFIFO when reading eQADC_RFPR.
The receive next data pointer points to the next available RFIFO location for storing the next incoming

Command sequence became non-coherent before command 4
was transferred. After command transfers resume, eQADC checks
for coherency only after command 4.

CF5_CB1_CM67

CF5_CB1_CM56

CF5_CB1_CM45

CF5_CB1_CM34

CF5_CB1_CM23

CF5_CB1_CM12

CF5_CB1_CM01

CF5_CB1_CM1314

CF5_CB1_CM1213

CF5_CB1_CM1112

CF5_CB1_CM1011

CF5_CB1_CM910

CF5_CB1_CM89

CF5_CB1_CM78

Command sequence became non-coherent before command 11
was transferred. After command transfers resume, eQADC checks
for coherency only after command 11.

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

18-84 Freescale Semiconductor

message from the on-chip ADCs or from the external device. The RFIFO counter logic counts the number
of entries in RFIFO and generates interrupt or eDMA requests to drain the RFIFO.

EQADC_FISRn[POPNXTPTR] (see Section 18.3.2.8, “eQADC FIFO and Interrupt Status Registers 0–5
(EQADC_FISRn)”) indicates which entry is currently being addressed by the pop next data pointer, and
EQADC_FISRn[RFCTR] provides the number of entries stored in the RFIFO. Using POPNXTPTR and
RFCTR, the absolute addresses for pop next data pointer and receive next data pointer can be calculated
using the following formulas:

Pop Next Data Pointer Address= RFIFOn_BASE_ADDRESS + POPNXTPTRn x 4
Receive Next Data Pointer Address = RFIFOn_BASE_ADDRESS +
[(POPNXTPTRn + RFCTRn) mod RFIFO_DEPTH] x 4

where

• a mod b returns the remainder of the division of a by b.

• RFIFOn_BASE_ADDRESS is the smallest memory mapped address allocated to an RFIFOn
entry.

• RFIFO_DEPTH is the number of entries contained in a RFIFO - four in this implementation.

When a new message arrives and RFIFOn is not full, the eQADC copies its contents into the entry pointed
by receive next data pointer. The RFIFO counter EQADC_FISRn[RFCTRn] (see Section 18.3.2.8,
“eQADC FIFO and Interrupt Status Registers 0–5 (EQADC_FISRn)”) is incremented by 1, and the receive
next data pointer n is also incremented by 1 (or wrapped around) to point to the next empty entry in
RFIFOn. However, if the RFIFOn is full, the eQADC sets the EQADC_FISRn[RFOF] (see
Section 18.3.2.8, “eQADC FIFO and Interrupt Status Registers 0–5 (EQADC_FISRn)”). The RFIFOn
does not overwrite the older data in the RFIFO, the new data is ignored, and the receive next data pointer
n is not incremented or wrapped around. RFIFOn is full when the receive next data pointer n equals the
pop next data pointer n and RFCTRn is not 0. RFIFOn is empty when the receive next data pointer n equals
the pop next data pointer n and RFCTRn is 0.

When the eQADC RFIFO pop register n is read and the RFIFOn is not empty, the RFIFO counter RFCTRn
is decremented by 1, and the pop next data pointer is incremented by 1 (or wrapped around) to point to the
next RFIFO entry.

When the eQADC RFIFO pop register n is read and RFIFOn is empty, eQADC does not decrement the
counter value and the pop next data pointer n is not updated. The read value is undefined.

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 18-85

Figure 18-45. RFIFO Diagram

The detailed behavior of the pop next data pointer and receive next data pointer is described in the example
shown in Figure 18-46 where an RFIFO with 16 entries is shown for clarity of explanation, the actual
hardware implementation has only four entries. In this example, RFIFOn with 16 entries is shown in
sequence after popping or receiving entries.

Pop Next

Data Entry 1

Data Entry 2

Control Signals

RFIFO
Counter Control

Logic

Data Pointer *

Receive Next
Data Pointer *

Data from
External
Device or
from
On-Chip

Read
from Bus
Interface
by CPU
or DMA

DMA Done

Interrupt/DMA Request

All RFIFO entries are memory mapped and the entries addressed by these pointers
can have their absolute addresses calculated using POPNXTPTR and RFCTR.

*

RFIFO
Pop Register

ADCs

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

18-86 Freescale Semiconductor

Figure 18-46. RFIFO Entry Pointer Example

18.4.4.2 Distributing Result Data into RFIFOs

Data to be moved into the RFIFOs can come from three sources: from ADC0, from ADC1, or from the
external device. All result data comes with a MESSAGE_TAG field defining what to do with the received
data. The FIFO control unit decodes the MESSAGE_TAG field and:

• Stores the 16-bit data into the appropriate RFIFO if the MESSAGE_TAG indicates a valid RFIFO
number; or

• Ignores the data in case of a null or “reserved for customer use” MESSAGE_TAG

First In Pop
Next
Data
Pointer

Last In
Receive

Next
Data

Pointer

RFIFOn
Pop
Next
Data
Pointer

Receive
Next
Data

Pointer

RFIFOn

First In Pop
Next
Data
Pointer

Last In
Receive

Next
Data

Pointer

RFIFOn

After Reset or
Invalidation

Some Entries Received
but None Popped

No Entries Received
but Some Popped

First In Pop
Next
Data
Pointer

Receive
Next
Data

Pointer

RFIFOn

Pop
Next
Data
Pointer

Receive
Next
Data

Pointer

RFIFOn

First In Pop
Next
Data
Pointer

Last In
Receive

Next
Data

Pointer

RFIFOn

No Entries Received
but Some Popped

Some Entries Received
and Some Popped

Entries Received Until
Full and None Popped

First In
Last In Last In

Valid Entry
Empty Entry

NOTE:
n = 0, 1, 2, 3, 4, 5

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 18-87

In general, received data is moved into RFIFOs as the data becomes available, while an exception happens
when multiple results from different sources become available at the same time. In that case, result data
from ADC0 is processed first, result data from ADC1 is only processed after all ADC0 data is processed,
and result data from the external device is only processed after all data from ADC0/1 is processed.

When time-stamped results return from the on-chip ADCs, the conversion result and the time stamp are
always moved to the RFIFOs in consecutive clock cycles to guarantee they are always stored in
consecutive RFIFO entries.

18.4.5 On-Chip ADC Configuration and Control

18.4.5.1 Enabling and Disabling the on-chip ADCs

The on-chip ADCs have an enable bit (ADC0_CR[ADC0_EN] and ADC1_CR[ADC1_EN], see
Section 18.3.3.1, “ADCn Control Registers (ADC0_CR and ADC1_CR)”) which allows the enabling of
the ADCs only when necessary. When the enable bit for an ADC is negated, the clock input to that ADC
is stopped. The ADCs are disabled out of reset - ADC0/1_EN bits are negated - to allow for their safe
configuration. The ADC must only be configured when its enable bit is negated. After the enable bit of an
ADC is asserted, clock input is started, and the bias generator circuit is turned on. When the enable bits of
both ADCs are negated, the bias circuit generator is stopped.

NOTE
An 8ms wait time from VDDA power up to enabling an ADC is required to
pre-charge the external 100nf capacitor on REFBYPC. This time must be
guaranteed by the crystal startup time plus the reset duration, or the host
application. The ADC internal bias generator circuit starts up after 10υs
upon VRH/VRL power up to stabilize the required bias current to the
pre-charge circuit; the current to the other analog circuits are disabled until
the ADCs are enabled. As soon as the ADCs are enabled, the bias currents
to other analog circuits are ready.

NOTE
The eQADC is designed to wait 120 ADC clocks after an on-chip ADC
enables or the eQADC exits stop mode before the first conversion command
is issued. Two independent counters monitor the delay, one clocked by
ADC0_CLK and another by ADC1_CLK. Conversion commands can begin
executing when one of the counters reaches 120 ADC clocks. Conversion
commands sent to a disabled ADC are ignored by the ADC control
hardware.

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

18-88 Freescale Semiconductor

18.4.5.2 ADC Clock and Conversion Speed

The clock input to the ADCs is defined by setting the ADC0_CR[ADC0_CLK_PS] and
ADC1_CR[ADC1_CLK_PS] fields. See Section 18.3.3.1, “ADCn Control Registers (ADC0_CR and
ADC1_CR).” The ADC0/1_CLK_PS field selects the clock divide factor by which the system clock is
divided as showed in Table 18-25. The ADC clock frequency is calculated as below and it must not exceed
12 MHz.

Figure 18-47 depicts how the ADC clocks for ADC0 and ADC1 are generated.

Figure 18-47. ADC0 and ADC1 Clock Generation

The ADC conversion speed (in kilosamples per second – ksamp/s) is calculated by the following formula.
The number of sampling cycles is determined by the LST bits in the command message— see Section ,
“Conversion Command Message Format for On-Chip ADC Operation,” — and it can take one of the
following values: 2, 8, 64, or 128 ADC clock cycles. The number of AD conversion cycles is 13 for
differential conversions and 14 for single-ended conversions. The maximum conversion speed is achieved
when the ADC Clock frequency is set to its maximum (12 Mhz) and the number of sampling cycles set to
its minimum (2 cycles). The maximum conversion speed for differential and single-ended conversions are
800 k samples/sec and 750 k samples/sec, respectively.

Table 18-44 shows an example of how the ADC0/1_CLK_PS can be set when using a 72 MHz system
clock and the corresponding conversion speeds for all possible ADC clock frequencies. The table also
shows that according to the system clock frequency, certain clock divide factors are invalid (2, 4, 6, 8 clock
divide factors in the example) since their use would result in a ADC clock frequency higher than the
maximum one supported by the ADC. ADC clock frequency must not exceed 12 Mhz.

ADCClockFrequency SystemClockFrequency MHz()
SystemClockDivideFactor

-- ADCClockFrequency 12MHz≤();=

Divide by:
2, 4, 6, ..., 60, 62, 64

ADC0
control register

To ADC0

ADC0_CLK_PS

ADC0 clockSystem
clock

System clock divider

Divide by:
2, 4, 6, ..., 60, 62, 64

ADC1
control register

To ADC1

ADC1_CLK_PS

ADC1 ClockSystem
clock

System Clock Divider

ADCConversionSpeed ADCClockFrequency MHz()
NumberOfSamplingCycles NumberOfADConversionCycles+()

--=

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 18-89

Table 18-44. ADC Clock Configuration Example—System Clock Frequency = 72 MHz

ADC0 or ADC1
CLK_PS[0:4]

System Clock
Divide Factor

ADC Clock in MHz
System Clock = 72 MHz

Differential
Conversion Speed with
Default Sampling Time

(13 + 2 cycles) in ksamples/s

Single-Ended
Conversion Speed with
Default Sampling Time

(14 + 2 cycles) in ksamples/s

0b00000 2 — — —

0b00001 4 — — —

0b00010 6 12 800 750

0b00011 8 9 600 563

0b00100 10 7.2 480 450

0b00101 12 6 400 375

0b00110 14 5.14 343 321

0b00111 16 4.5 300 281

0b01000 18 4 267 250

0b01001 20 3.6 240 225

0b01010 22 3.27 218 204

0b01011 24 3 200 188

0b01100 26 2.77 185 173

0b01101 28 2.57 171 161

0b01110 30 2.4 160 150

0b01111 32 2.25 150 141

0b10000 34 2.12 141 133

0b10001 36 2 133 125

0b10010 38 1.89 126 118

0b10011 40 1.8 120 113

0b10100 42 1.71 114 107

0b10101 44 1.64 109 103

0b10110 46 1.57 105 98

0b10111 48 1.5 100 94

0b11000 50 1.44 96 90

0b11001 52 1.38 92 86

0b11010 54 1.33 89 83

0b11011 56 1.29 86 81

0b11100 58 1.24 83 78

0b11101 60 1.2 80 75

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

18-90 Freescale Semiconductor

18.4.5.3 Time Stamp Feature

The on-chip ADCs can provide a time stamp for the conversions they execute. A time stamp is the value
of the time base counter latched when the eQADC detects the end of the analog input voltage sampling. A
time stamp for a conversion command is requested by setting the TSR bit in the corresponding command.
When TSR is negated, that is a time stamp is not requested, the ADC returns a single result message
containing the conversion result. When TSR is asserted, that is a time stamp is requested, the ADC returns
two result messages; one containing the conversion result, and another containing the time stamp for that
conversion. The result messages are sent in this order to the RFIFOs and both messages are sent to the
same RFIFO as specified in the MESSAGE_TAG field of the executed conversion command.

The time base counter is a 16-bit up counter and wraps after reaching 0xFFFF. It is disabled after reset and
it is enabled according to the setting of ADC_TSCR[TBC_CLK_PS] field (see Section 18.3.3.2, “ADC
Time Stamp Control Register (ADC_TSCR)”). TBC_CLK_PS defines if the counter is enabled or
disabled, and, if enabled, at what frequency it is incremented. The time stamps are returned regardless of
whether the time base counter is enabled or disabled. The time base counter can be reset by writing 0x0000
to the ADC_TBCR (Section 18.3.3.3, “ADC Time Base Counter Registers (ADC_TBCR)”) with a write
configuration command.

18.4.5.4 ADC Calibration Feature

18.4.5.4.1 Calibration Overview

The eQADC provides a calibration scheme to remove the effects of gain and offset errors from the results
generated by the on-chip ADCs. Only results generated by the on-chip ADCs are calibrated. The results
generated by ADCs on the external device are directly sent to RFIFOs unchanged. The main component
of calibration hardware is a multiply-and-accumulate (MAC) unit, one per on-chip ADC, that is used to
calculate the following transfer function which relates a calibrated result to a raw, uncalibrated one.

CAL_RES = GCC x (RAW_RES + OCC + 2);

where:

• CAL_RES is the calibrated result corresponding the input voltage Vi.

• GCC is the gain calibration constant.

• RAW_RES is the raw, uncalibrated result corresponding to an specific input voltage Vi.

• OCC is the offset calibration constant.

• The addition of two reduces the maximum quantization error of the ADC. See Section 18.5.6.3,
“Quantization Error Reduction During Calibration.”

0b11110 62 1.16 77 73

0b11111 64 1.13 75 71

Table 18-44. ADC Clock Configuration Example—System Clock Frequency = 72 MHz (continued)

ADC0 or ADC1
CLK_PS[0:4]

System Clock
Divide Factor

ADC Clock in MHz
System Clock = 72 MHz

Differential
Conversion Speed with
Default Sampling Time

(13 + 2 cycles) in ksamples/s

Single-Ended
Conversion Speed with
Default Sampling Time

(14 + 2 cycles) in ksamples/s

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 18-91

Calibration constants GCC and OCC are determined by taking two samples of known reference voltages
and using these samples to calculate their values. For details and example about how to calculate the
calibration constants and use them in result calibration see Section 18.5.6, “ADC Result Calibration.”
After it is calculated, the GCC coefficients are stored in ADC0_GCCR and ADC1_GCCR (see
Section 18.3.3.4, “ADCn Gain Calibration Constant Registers (ADC0_GCCR and ADC1_GCCR)”) and
the OCC coefficients in ADC0_OCCR and ADC1_OCCR (see Section 18.3.3.5, “ADCn Offset
Calibration Constant Registers (ADC0_OCCR and ADC1_OCCR)”) from where their values are fed to
the MAC unit. Since the analog characteristics of each on-chip ADC differs, each ADC has an independent
pair of calibration constants.

A conversion result is calibrated according to the status of CAL bit in the command that initiated the
conversion. If the CAL bit is asserted, the eQADC automatically calculates the calibrated result before
sending the result to the appropriate RFIFO. If the CAL bit is negated, the result is not calibrated, it
bypasses the calibration hardware, and is directly sent to the appropriate RFIFO.

18.4.5.4.2 MAC Unit and Operand Data Format

The MAC unit diagram is shown in Figure 18-48. Each on-chip ADC has a separate MAC unit to calibrate
its conversion results.

Figure 18-48. MAC Unit Diagram

The OCCn operand is a 14-bit signed value and it is the upper 14 bits of the value stored in ADC0_OCCR
and ADC1_OCCR. The RAW_RES operand is the raw uncalibrated result, and it is a direct output from
the on-chip ADCs.

The GCCn operand is a 15-bit fixed point unsigned value, and it is the upper 15 bits of the value stored in
ADC0_GCCR and ADC1_GCCR. The GCC is expressed in the GCC_INT.GCC_FRAC binary format.
The integer part of the GCC (GCC_INT = GCC[1]) contains a single binary digit while its fractional part
(GCC_FRAC = GCC[2:15]) contains 14 bits. See Figure 18-49 for more information. The gain constant
equivalent decimal value ranges from 0 to 1.999938..., as shown in Table 18-46. Two is always added to
the MAC output: see Section 18.5.6.3, “Quantization Error Reduction During Calibration. CAL_RES
output is the calibrated result, and it is a 14-bit unsigned value. CAL_RES is truncated to 0x3FFF, in case
of a overflow, and to 0x0000, in case of an underflow.

MAC Unit

Offset Calibration Constant (OCCn)
(14-bit signed value from ADCn_OCCR)

Raw Uncalibrated Result (RAW_RES)
(12-bit unsigned value)

Gain Calibration Constant (GCCn)
(15-bit fixed point unsigned value

from ADCn_GCCR)

Calibrated Result (CAL_RES)
(14-bit unsigned value)

2

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

18-92 Freescale Semiconductor

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

GCC_INT GCC_FRAC

Figure 18-49. Gain Calibration Constant Format

Table 18-45. Gain Calibration Constant Format Field Descriptions

Field Description

0 Reserved

1
GCC_INT

Integer part of the gain calibration constant for ADCn. GCC_INT is the integer part of the gain calibration
constant (GCC) for ADC0/1.
0 = ADC0
1 = ADC1

2–15
GCC_FRAC

[1:14]

Fractional part of the gain calibration constant for ADCn. GCC_FRAC is the fractional part of the gain
calibration constant (GCC) for ADCn. GCC_FRAC can expresses decimal values ranging from 0 to
0.999938...

Table 18-46. Correspondence between Binary and Decimal Representations of the Gain Constant

Gain Constant
(GCC_INT.GCC_FRAC binary format)

Corresponding Decimal Value

0.0000_0000_0000_00 0

... ...

0.1000_0000_0000_00 0.5

... ...

0.1111_1111_1111_11 0.999938...

1.0000_0000_0000_00 1

... ...

1.1100_0000_0000_00 1.75

... ...

1.1111_1111_1111_11 1.999938...

Gain Calibration Constant (GCC)

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 18-93

18.4.5.5 ADC Control Logic Overview and Command Execution

Figure 18-50 shows the basic logic blocks involved in the ADC control and how they interact.
CFIFOs/RFIFOs interact with ADC command/result message return logic through the FIFO control unit.
The EB and BN bits in the command message uniquely identify the ADC to which the command is sent.
The FIFO control unit decodes these bits and sends the ADC command to the proper ADC. Other blocks
of logic are the result format and calibration submodule, the time stamp logic, and the MUX control logic.

The result format and calibration submodule formats the returning data into result messages and sends
them to the RFIFOs. The returning data can be data read from an ADC register, a conversion result, or a
time stamp. The formatting and calibration of conversion results also take place inside this submodule.

The time stamp logic latches the value of the time base counter when detecting the end of the analog input
voltage sampling, and sends it to the result format and calibration submodule as time stamp information.

The MUX control logic generates the proper MUX control signals and, when the ADC0/1_EMUX bits are
asserted, the MA signals based on the channel numbers extracted from the ADC Command.

ADC commands are stored in the ADC command buffers (2 entries) as they come in and they are executed
on a first-in-first-out basis. After the execution of a command in ENTRY1 finishes, all commands are
shifted one entry. After the shift, ENTRY0 is always empty and ready to receive a new command.
Execution of configuration commands only starts when they reach ENTRY1. Consecutive conversion
commands are pipelined, and their execution can start while in ENTRY0. This is explained below.

A/D conversion accuracy can be affected by the settling time of the input channel multiplexers. Some time
is required for the channel multiplexer’s internal capacitances to settle after the channel number is
changed. If the time prior to and during sampling is not long enough to permit this settling, then the voltage
on the sample capacitors do not accurately represent the voltage to be read. This is a problem in particular
when external muxes are used.

To maximize settling time, when a conversion command is in buffer ENTRY1 and another conversion
command is identified in ENTRY0, then the channel number of ENTRY0 is sent to the MUX control logic
half an ADC clock before the start of the sampling phase of the command in ENTRY0. This pipelining of
sample and settling phase is shown in Figure 18-51(b).

This provides more accurate sampling, which is specially important for applications that require high
conversion speeds, i.e., with the ADC running at maximum clock frequency and with the analog input
voltage sampling time set to a minimum (2 ADC clock cycles). In this case, the short sampling time can
prevent the multiplexers to completely settle. The second advantage of pipelining conversion commands
is to provide equal conversion intervals even though the sample time increases on second and subsequent
conversions. See Figure 18-51. This is important for any digital signal process application.

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

18-94 Freescale Semiconductor

Figure 18-50. On-Chip ADC Control Scheme

MUX
40:1

CFIFOn

ADC0

BIAS
GEN

MUX
40:1 ADC1

MUX
Control
Logic

(32-bits)

RFIFOn
(16-bits)

AN0-AN39

REFBYPC

MA0, MA1,

Configuration
Registers

EMUX0 EMUX1

Entry1
LST0

Entry0

ADC0 Buffer

Entry1
LST1

Entry0

ADC1 Buffer

Register Data 0/1

CHANNEL_NUMBER0

CHANNEL_NUMBER1

MESSAGE_TAG1; FMT1, CAL1
MESSAGE_TAG0;
FMT0, CAL0

Result Format
and

Calibration
Submodule

FIFO
Control

Unit

Result0

Result1

Time Stamp1

Time Stamp0

Time
Stamp
Logic

TBC_CLK_PS

TSR0

TSR1

ADC1_Result1

ADC0_Result0

ADDR or/and DATAADDR or/and DATA

MA2

Configuration Register Fields NOTE: n = 0, 1, 2, 3, 4, 5

REF
GEN

Pre
Charge

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 18-95

Figure 18-51. Overlapping Consecutive Conversion Commands

18.4.6 Internal and External Multiplexing

18.4.6.1 Channel Assignment

The internal analog multiplexers select one of the 40 analog input pins for conversion, based on the
CHANNEL_NUMBER field of a Command Message. The analog input pin channel number assignments
and the pin definitions vary depending on how the ADC0/1_EMUX are configured. Only one ADC can
drive the external mux address pins: therefore ADC0_EMUX and ADC1_EMUX must not be asserted at
the same time.

During differential conversions the analog multiplexer passes differential signals to both the positive and
negative terminals of the ADC. The differential conversions can only be initiated on four channels: DAN0,
DAN1, DAN2, and DAN3. See Table 18-48 and Figure 18-49 for the channel numbers used to select
differential conversions.

MUX Settle Time
and Sampling

AD Conversion

Minimum time necessary to perform a single
conversion after channel number is changed

MUX Settle Time
and Sampling

AD Conversion

Channel # Change
and Sample Start

Channel # Change
& Sample Start

(a) Command Execution Sequence for Two Non-Overlapped Commands

Conversion starts immediately after
channel # change. ADC sample time
must compensate for MUX internal
capacitance settling and for the sampling
on the sampling capacitor. If sample time
is not long enough then conversion

MUX Settle Time
& Sampling

AD Conversion

Sampling AD Conversion
Channel # Change
and Sample Start

Channel #

(b) Command Execution Sequence for Two Overlapped Commands

MUX
Settle Time

Change
Sample
Start

Channel # changes before sampling starts leading to
more time for MUX internal capacitance to settle.

results have reduced accuracy

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

18-96 Freescale Semiconductor

Table 18-48 shows the channel number assignments for the non-multiplexed mode. The 40 single-ended
channels and 4 differential pairs are shared between the two ADCs.

Table 18-49 shows the channel number assignments for multiplexed mode. The ADC with the
ADCn_EMUX bit asserted can access at most 33 single-ended and 32 externally multiplexed channels.
See Section 18.4.6.2, “External Multiplexing,” for a detailed explanation about how external multiplexing
can be achieved.

Table 18-47. ADCn_EMUX Bits Combinations

ADC0_EMUX ADC1_EMUX
Set CHANNEL_NUMBER

ADC0 ADC1

0 0 No external mux No external mux

0 1 ADC1 uses the external mux ADC1 uses the external mux

1 0 ADC0 uses the external mux ADC0 uses the external mux

1 1 Reserved. Do not use.

Table 18-48. Non-multiplexed Channel Assignments 1

1 The two on-chip ADCs can access the same analog input pins but simultaneous conversions are not allowed. Also, when
one ADC is performing a differential conversion on a pair of pins, the other ADC must not access either of these two pins
as single-ended channels.

Input Pins
Channel Number in

CHANNEL_NUMBER Field

Analog
Pin Name

Other
Functions

Conversion Type Binary Decimal

AN[0]–AN[39] Single-ended 0000_0000–0010_0111 0–39

VRH Single-ended 0010_1000 40

VRL Single-ended 0010_1001 41

(VRH - VRL) ÷ 2
see footnote2

2 This equation only applies before calibration. After calibration, the 50% reference point returns approximately 20mV lower
than the expected 50% of the difference between the High Reference Voltage (VRH) and the Low Reference Voltage (VRL).
For calibration of the ADC, only use the 25% and 75% points as described in Section 18.5.6.1, “MAC Configuration
Procedure”

Single-ended 0010_1010 42

75% x (VRH - VRL) Single-ended 0010_1011 43

25% x (VRH - VRL) Single-ended 0010_1100 44

Reserved 0010_1101–0101_1111 45–95

DAN0+ and DAN0-
DAN1+ and DAN1-
DAN2+ and DAN2-
DAN3+ and DAN3-

Differential
Differential
Differential
Differential

0110_0000
0110_0001
0110_0010
0110_0011

96
97
98
99

Reserved 0110_0100–1111_1111 100–255

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 18-97

18.4.6.2 External Multiplexing

The eQADC can use from one to four external multiplexers to expand the number of analog signals that
can be converted. Using this configuration, up to 25 additional channels can be created.

• The first external multiplexer requires one common analog pin and three address pins, so although
eight additional ADC channels are created, four existing channels are lost, so there is a net addition
of four channels.

• For subsequent external multiplexers, only one additional internal channel is lost so there is a net
addition of seven channels.

The externally multiplexed channels are automatically selected by the CHANNEL_NUMBER field of a
command message, in the same way done with internally multiplexed channels. The software selects the
external multiplexed mode by setting the ADC0/1_EMUX bit in either ADC0_CR or ADC1_CR
depending on which ADC performs the conversion. Figure 18-49 shows the channel number assignments
for the multiplexed mode. Only one ADC can have its ADC0/1_EMUX bit asserted at a time.

Table 18-49. Multiplexed Channel Assignments1

1 The two on-chip ADCs can access the same analog input pins but simultaneous conversions are not allowed. Also, when
one ADC is performing a differential conversion on a pair of pins, the other ADC must not access either of these two pins
as single-ended channels.

Input Pins
Channel Number in

CHANNEL_NUMBER Field

Analog
Pin Name

Other Functions Conversion Type Binary Decimal

AN[0]–AN[7] Single-ended 0000_0000–0000_0111 0–7

Used for digital address lines of the external mux 0000_1000–0000_1011 8–11

AN[12]–AN[39] Single-ended 0000_1100–0010_0111 12–39

VRH Single-ended 0010_1000 40

VRL Single-ended 0010_1001 41

(VRH – VRL) ÷ 2 Single-ended 0010_1010 42

75% x (VRH – VRL) Single-ended 0010_1011 43

25% x (VRH – VRL) Single-ended 0010_1100 44

Reserved 0010_1101–0011_1111 45–63

ANW
ANX
ANY
ANZ

—
—
—
—

Single-ended
Single-ended
Single-ended
Single-ended

0100_0xxx
0100_1xxx
0101_0xxx
0101_1xxx

64–71
72–79
80–87
88–95

DAN0+ and DAN0-
DAN1+ and DAN1-
DAN2+ and DAN2-
DAN3+ and DAN3-

Differential
Differential
Differential
Differential

0110_0000
0110_0001
0110_0010
0110_0011

96
97
98
99

Reserved 0011_0100–1111_1111 100–255

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

18-98 Freescale Semiconductor

Figure 18-52 shows the maximum configuration of four external multiplexer chips connected to the
eQADC. The external multiplexer chip selects one of eight analog inputs and connects it to a single analog
output, which is fed to a specific input of the eQADC. The eQADC provides three multiplexed address
signals, MA[0], MA[1], and MA[2], to select one of eight inputs. These three multiplexed address signals
are connected to all four external multiplexer chips. The analog output of the four multiplex chips are each
connected to four separate eQADC inputs, ANW, ANX, ANY, and ANZ. The MA pins correspond to the
three least significant bits of the channel number that selects ANW, ANX, ANY, and ANZ with MA[0]
being the most significant bit. See Table 18-50.

When the external multiplexed mode is selected for either ADC, the eQADC automatically creates the MA
output signals from CHANNEL_NUMBER field of a command message. The eQADC also converts the
proper input channel (ANW, ANX, ANY, and ANZ) by interpreting the CHANNEL_NUMBER field. As
a result, up to 32 externally multiplexed channels appear to the conversion queues as directly connected
signals.

Table 18-50. Encoding of MA Pins1

1 0 means pin is driven LOW and 1 that pin is driven HIGH.

Channel Number selecting ANW, ANX, ANY, ANZ
(decimal)

MA0 MA1 MA2

ANW ANX ANY ANZ

64 72 80 88 0 0 0

65 73 81 89 0 0 1

66 74 82 90 0 1 0

67 75 83 91 0 1 1

68 76 84 92 1 0 0

69 77 85 93 1 0 1

70 78 86 94 1 1 0

71 79 87 95 1 1 1

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 18-99

Figure 18-52. Example of External Multiplexing

18.4.7 eQADC eDMA or Interrupt Request

Table 18-51 lists methods to generate interrupt requests in the eQADC queuing control and triggering
control. The eDMA/interrupt request select bits and the eDMA/interrupt enable bits are described in
Section 18.3.2.7, “eQADC Interrupt and eDMA Control Registers 0–5 (EQADC_IDCRn),” and the
interrupt flag bits are described in Section 18.3.2.8, “eQADC FIFO and Interrupt Status Registers 0–5
(EQADC_FISRn).” Table 18-53 depicts all interrupts and eDMA requests generated by the eQADC.

AN71
AN70
AN69
AN68
AN67
AN66
AN65
AN64

MUX
40:1 ADC0

MUX
40:1 ADC1

MUX
Control
Logic

MUX

ANW

ANX

ANY

ANZ

Channel
Number

MA2

MA1

MA0

eQADC

4
40

36

AN79
AN78
AN77
AN76
AN75
AN74
AN73
AN72

MUX

AN87
AN86
AN85
AN84
AN83
AN82
AN81
AN80

MUX

AN95
AN94
AN93
AN92
AN91
AN90
AN89
AN88

MUX

AN16–AN39

AN0–AN7

AN12

0 or 1

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

18-100 Freescale Semiconductor

Table 18-52 describes a list of methods to generate eDMA requests by the eQADC.

Table 18-51. eQADC FIFO Interrupt Summary1

1 For details see Section 18.3.2.8, “eQADC FIFO and Interrupt Status Registers 0–5 (EQADC_FISRn),” and
Section 18.3.2.7, “eQADC Interrupt and eDMA Control Registers 0–5 (EQADC_IDCRn).”

Interrupt Condition Clearing Mechanism

Non Coherency Interrupt NCIEn = 1
NCFn = 1

Clear NCFn bit by writing a 1 to the bit.

Trigger Overrun Interrupt 2 TORIEn = 1
TORFn =1

Clear TORFn bit by writing a 1 to the bit.

Pause Interrupt PIEn = 1
PFn =1

Clear PFn bit by writing a 1 to the bit.

End of Queue Interrupt EOQIEn = 1
EOQFn = 1

Clear EOQFn bit by writing a 1 to the bit.

Command FIFO Underflow Interrupt 2 CFUIEn = 1
CFUFn = 1

Clear CFUFn bit by writing a 1 to the bit.

Command FIFO Fill Interrupt CFFEn = 1
CFFSn = 0
CFFFn = 1

Clear CFFFn bit by writing a 1 to the bit.

Result FIFO Overflow Interrupt 2

2 Apart from generating an independent interrupt request for when a RFIFO overflow interrupt, a CFIFO underflow
interrupt, and a CFIFO trigger overrun interrupt occurs, the eQADC also provides a combined interrupt request at
which these requests from ALL CFIFOs are ORed. See Figure 18-53 for details.

RFOIEn = 1
RFOFn = 1

Clear RFOFn bit by writing a 1 to the bit.

Result FIFO Drain Interrupt RFDEn = 1
RFDSn = 0
RFDFn = 1

Clear RFDFn bit by writing a 1 to the bit.

Table 18-52. eQADC FIFO eDMA Summary1

1 For details see Section 18.3.2.8, “eQADC FIFO and Interrupt Status Registers 0–5 (EQADC_FISRn),” and
Section 18.3.2.7, “eQADC Interrupt and eDMA Control Registers 0–5 (EQADC_IDCRn).”

eDMA Request Condition Clearing Mechanism

Result FIFO Drain
eDMA Request

RFDEn = 1
RFDSn = 1
RFDFn = 1

The eQADC automatically clears the RFDFn when RFIFOn becomes
empty. Writing 1 to the RFDFn bit is not allowed while RDFS = 1.

Command FIFO Fill
eDMA Request

CFFEn = 1
CFFSn = 1
CFFFn = 1

The eQADC automatically clears the CFFFn when CFIFOn becomes
full. Writing 1 to the CFFFn bit is not allowed while CFDS = 1.

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 18-101

Figure 18-53. eQADC eDMA and Interrupt Requests

RFDEn
RFDFn
RFDSn

RFIFO Drain Interrupt Request

CFFEn
CFFFn
CFFSn

CFIFO Fill DMA Request

RFDEn
RFDFn
RFDSn

RFIFO Drain DMA Request
DMA

Request Generation
Logic

CFFEn
CFFFn
CFFSn

CFIFO Fill Interrupt Request

NCIEn
NCFn

Non-Coherency Interrupt Request

PIEn
PFn

Pause Interrupt Request

EOQIEn
EOQFn

End of Queue Interrupt Request

TORIEn
TORFn

Trigger Overrun Interrupt Request

CFUIEn
CFUFn

CFIFO Underflow Interrupt Request

RFOIEn
RFOFn

RFIFO Overflow Interrupt Request

DMA
Request Generation

Logic

Combined Interrupt Request

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

18-102 Freescale Semiconductor

18.4.8 eQADC Synchronous Serial Interface (SSI) Submodule

Figure 18-54. eQADC Synchronous Serial Interface Block Diagram

The eQADC SSI protocol allows for a full duplex, synchronous, serial communication between the
eQADC and a single external device. Figure 18-54 shows the different components inside the eQADC SSI.
The eQADC SSI submodule on the eQADC is always configured as a master. The eQADC SSI has four
associated port pins:

• Free running clock (FCK)

• Serial data select (SDS)

• Serial data in (SDI)

• Serial data out (SDO)

The FCK clock signal times the shifting and sampling of the two serial data signals and it is free running
between transmissions, allowing it to be used as the clock for the external device. The SDS signal is
asserted to indicate the start of a transmission, and negated to indicate the end or the abort of a
transmission. SDI is the master serial data input and SDO the master serial data output.

The eQADC SSI submodule is enabled by setting the EQADC_MCR[ESSIE] (see Section 18.3.2.1,
“eQADC Module Configuration Register (EQADC_MCR)”). When enabled, the eQADC SSI can be
optionally capable of starting serial transmissions. When serial transmissions are disabled (ESSIE set to
0b10), no data is transmitted to the external device but FCK is free-running. This operation mode permits
the control of the timing of the first serial transmission, and can be used to avoid the transmission of data
to an unstable external device, for example, a device that is not fully reset. This mode of operation is
specially important for the reset procedure of an external device that uses the FCK as its main clock.

The main elements of the eQADC SSI are the shift registers. The 26-bit transmit shift register in the master
and 26-bit receive shift register in the slave are linked by the SDO pin. In a similar way, the 26-bit transmit
shift register in the slave and 26-bit receive shift register in the master are linked by the SDI pin. See

Transmit Shift Register

System
Clock

eQADC SSI Control Logic

Receive Shift Register

Pad
Interface

Master
Out

Slave
In

SDO

SDS

FCK

SDI

CFIFO data

Control

RFIFO Data

Baud Clock Generator

Divide by:
2, 3, 4, ..., 15, 16, 17

FCK Clock

eQADC SSI Control Register

BR MDT

External Bus Interface

eQADC
FIFO

Control
Unit

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 18-103

<f-helvetica>Figure 18-55.. When a data transmission operation is performed, data in the transmit
registers is serially shifted twenty-six bit positions into the receive registers by the FCK clock from the
master; data is exchanged between the master and the slave. Data in the master transmit shift register in
the beginning of a transmission operation becomes the output data for the slave, and data in the master
receive shift register after a transmission operation is the input data from the slave.

Figure 18-55. Full Duplex Pin Connection

18.4.8.1 eQADC SSI Data Transmission Protocol

Figure 18-56 shows the timing of an eQADC SSI transmission operation. The main characteristics of this
protocol are the following:

• FCK is free running, it does not stop between data transmissions. FCK is driven low:

— When the serial interface is disabled

— In stop/debug mode

— Immediately after reset

• Frame size is fixed to 26 bits.

• Msb bit is always transmitted first.

• Master drives data on the positive edge of FCK and latches incoming data on the next positive edge
of FCK.

• Slave drives data on the positive edge of FCK and latches incoming data on the negative edge of
FCK.

Master initiates a data transmission by driving SDS low, and its msb bit on SDO on the positive edge of
FCK. After an asserted SDS is detected, the slave shifts its data out, one bit at a time, on every FCK
positive edge. Both the master and the slave drive new data on the serial lines on every FCK positive edge.
This process continues until all the initial 26-bits in the master shift register are moved into the slave shift
register. tDT is the delay between two consecutive serial transmissions, time during which SDS is negated.
When ready to start of the next transmission, the slave must drive the msb bit of the message on every
positive edge of FCK regardless of the state of the SDS signal. On the next positive edge, the second bit
of the message is conditionally driven according to if an asserted SDS was detected by the slave on the
preceding FCK negative edge. This is an important requisite since the SDS and the FCK are not

Transmit shift register

Receive shift register

Data registers

Receive shift register

Transmit shift register

CFIFOs and RFIFOs

SDI

SDO

FCK

SDS
Baud rate
generator Master Slave

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

18-104 Freescale Semiconductor

synchronous. The SDS signal is not generated by FCK, rather both are generated by the system clock, so
that it is not guaranteed that FCK edges precede SDS edges. While SDS is negated, the slave continuously
drives its msb bit on every positive edge of FCK until it detects an asserted SDS on the immediately next
FCK negative edge. See Figure 18-57 for three cases that show how the slave operates when SDS is
asserted.

NOTE
On the master, the FCK is not used as a clock. Although, the eQADC SSI
behavior is described in terms of the FCK positive and negative edges, all
eQADC SSI related signals (SDI, SDS, SDO, and FCK) are synchronized
by the system clock on the master side. There are no restrictions regarding
the use of the FCK as a clock on the slave device.

18.4.8.1.1 Abort Feature

The master indicates it is ending the current transfer by negating SDS before the whole data frame has
being shifted out, that is the 26th bit of data being transferred has not being shifted out. The eQADC
ignores the incompletely received message. The eQADC re-sends the aborted message whenever the
corresponding CFIFO becomes again the highest priority CFIFO with commands bound for an external
command buffer that is not full. See Section 18.4.3.2, “CFIFO Prioritization and Command Transfer,” for
more information on aborts and CFIFO priority.

18.4.8.2 Baud Clock Generation

As shown in Figure 18-54, the baud clock generator divides the system clock to produce the baud clock.
The EQADC_SSICR[BR] field (see Section 18.3.2.12, “eQADC SSI Control Register EQADC_SSICR”)
selects the system clock divide factor as in Table 18-18. 1

1. Maximum FCK frequency is highly dependable on track delays, master pad delays, and slave pad delays.

BaudClockFrequency SystemClockFrequency MHz()
SystemClockDivideFactor

--=

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 18-105

Figure 18-56. Synchronous Serial Interface Protocol Timing

NOTE:
tMDT = Minimum tDT is programmable and defined in
Section 18.3.2.12, ‘eQADC SSI Control Register (EQADC_SSICR).’

FCK

SDS

Master Sample
Input

SDO 1

End
Transmission

tDT

Slave Sample
Input

2 3 ... 23 24 25 26 1 2 3 ... 23 24 25

msb msb

26

1 2 3 ... 23 24 25 26 1 2 3 ... 23 24 25

msb msb

261

msb

Begin
Transmission

End
Transmission

Begin
Transmission

SDI

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

18-106 Freescale Semiconductor

Figure 18-57. Slave Driving the msb and Consecutive Bits in a Data Transmission

FCK

SDS

Slave Sample
Input

tDT

Master’s SDI 2625 1 2 3 ...

End
Transmission

Begin
Transmission

SDS is asserted after positive edge of FCK.
Slave drives second bit due to detection of an

asserted SDS on the negative edge of FCK.

1)

FCK

SDS

Slave Sample
Input

tDT

Master’s SDI 2625 1 2 3 ...

End
Transmission

Begin
Transmission

SDS is asserted before positive edge of FCK.
Slave drives second bit due to detection of an

asserted SDS on the negative edge of FCK.

2)

FCK

SDS

Slave Sample
Input

tDT

Master’s SDI 2625 1 2 3 ...

End
Transmission

Begin
Transmission

Slave drives msb bit again due to

detection of a negated SDS on the

3)
1

negative edge of FCK.

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 18-107

18.4.9 Analog Submodule

18.4.9.1 Reference Bypass

The reference bypass capacitor (REFBYPC) signal requires a 100 nF capacitor connected to VRL to filter
noise on the internal reference used by the ADC.

Figure 18-58. Reference Bypass Circuit

18.4.9.2 Analog-to-Digital Converter (ADC)

18.4.9.2.1 ADC Architecture

Figure 18-59. RSD ADC Block Diagram

The redundant signed digit (RSD) cyclic ADC consists of two main portions, the analog RSD stage, and
the digital control and calculation module, as shown in Figure 18-59. To begin an analog-to-digital
conversion, a differential input is passed into the analog RSD stage. The signal is passed through the RSD
stage, and then from the RSD stage output, back to its input to be passed again. To complete a 12-bit
conversion, the signal must pass through the RSD stage 12 times. Each time an input signal is read into the
RSD stage, a digital sample is taken by the digital control/calculation module. The digital
control/calculation module uses this sample to tell the analog module how to condition the signal. The
digital module also saves each successive sample and adds them according to the RSD algorithm at the
end of the entire conversion cycle.

VRL REFBYPC

100nF

RSD
Single-Stage

Pipeline

Sample

Digital Control
and

Calculation

Pipeline control

OutputClock

Differential
Input

12

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

18-108 Freescale Semiconductor

18.4.9.2.2 RSD Overview

Figure 18-60. RSD Stage Block Diagram

On each pass through the RSD stage, the input signal are multiplied by exactly two, and summed with
either –vref, 0, or vref, depending on the logic control. The logic control determines –vref, 0, or vref,
depending on the two comparator inputs. As the logic control sets the summing operation, it also sends a
digital value to the RSD adder. Each time an analog signal passes through the RSD single-stage, a digital
value is collected by the RSD adder. At the end of an entire AD conversion cycle, the RSD adder uses these
collected values to calculate the 12-bit digital output.

Figure 18-61 shows the transfer function for the RSD stage. Note how the digital value (AB) is dependent
on the two comparator inputs.

Figure 18-61. RSD Stage Transfer Function

In each pass through the RSD stage, the remainder is sent back as the new input, and the digital signals, a
and b, are stored. For the 12-bit ADC, the input signal is sampled during the input phase, and after each of
the 12 passes through the RSD stage. Thus, 13 total a and b values are collected. Upon collecting all these

+

–Vrefl

Logic
Control

+

–Vrefh Digital
Signal RSD

Adder

–vref,0,vref

Sumx2
Residue VoltageInput Voltage

vref

vref

–vref

–vref VL VH

Input Voltage

Residue Voltage

Vres=2Vin+vref Vres=2Vin Vres=2Vin–vref

a=0, b=0 a=1, b=0a=0, b=1

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 18-109

values, they are added according to the RSD algorithm to create the 12-bit digital representation of the
original analog input.

18.4.9.2.3 RSD Adder

The array, s1 to s12, are the digital output of the RSD ADC with s1 being the MSB (most significant bit)
and s12 being the LSB (least significant bit).

Figure 18-62. RSD Adder

18.5 Initialization and Application Information

18.5.1 Multiple Queues Control Setup Example

This section provides an example of how to configure multiple user command queues. Table 18-53
describes how each queue can be used for a different application. Also documented in this section are
general guidelines on how to initialize the on-chip ADCs and the external device, and how to configure
the command queues and the eQADC.

Table 18-53. Example Applications of Each Command Queue

Command
Queue Number

Queue Type Running Speed
Number of Contiguous

Conversions
 Example

0 Very fast burst time-based
queue

Every 2 μs for 200 μs;
pause for 300 μs and
then repeat

2 Injector current profiling

1 Fast hardware-triggered
queue

Every 900 μs 3 Current sensing of PWM
controlled actuators

2 Fast repetitive time-based
queue

Every 2 ms 8 Throttle position

3 Software-triggered queue Every 3.9 ms 3 Command triggered by
software strategy

4 Repetitive angle-based
queue

Every 625 μs 7 Airflow read every 30
degrees at 8000 RPM

5 Slow repetitive time-based
queue

Every 100 ms 10 Temperature sensors

b1

a13
Carry

b12
b11

a3
a2

a12

b2
• • •
• • •• • •

• • •b10
a11

s1

+

s2• • •• • •s10s11s12

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

18-110 Freescale Semiconductor

18.5.1.1 Initialization of On-Chip ADCs and an External Device

The following steps provide an example of configuring the eQADC to initialize the on-chip ADCs and the
external device. In this example, commands are sent through CFIFO0.

1. Load all required configuration commands in the RAM in such way that they form a queue; this
data structure is referred to below as Queue0. Figure 18-63 shows an example of a command queue
able to configure the on-chip ADCs and external device at the same time.

2. Configure Section 18.3.2.2, “eQADC Null Message Send Format Register (EQADC_NMSFR).”

3. Configure Section 18.3.2.12, “eQADC SSI Control Register EQADC_SSICR,” to communicate
with the external device.

4. Enable the eQADC SSI by programming the ESSIE field the Section 18.3.2.1, “eQADC Module
Configuration Register (EQADC_MCR).”

a) Write 0b10 to ESSIE field to enable the eQADC SSI. FCK is free running but serial
transmissions are not started.

b) Wait until the external device becomes stable after reset.

c) Write 0b11 to ESSIE field to enable the eQADC SSI to start serial transmissions.

5. Configure the eDMA to transfer data from Queue0 to CFIFO0 in the eQADC.

6. Configure Section 18.3.2.7, “eQADC Interrupt and eDMA Control Registers 0–5
(EQADC_IDCRn).”

a) Set CFFS0 to configure the eQADC to generate an eDMA request to load commands from
Queue0 to the CFIFO0.

b) Set CFFE0 to enable the eQADC to generate an eDMA request to transfer commands from
Queue0 to CFIFO0; Command transfers from the RAM to the CFIFO0 starts immediately.

c) Set EOQIE0 to enable the eQADC to generate an interrupt after transferring all of the
commands of Queue0 through CFIFO0.

7. Configure Section 18.3.2.6, “eQADC CFIFO Control Registers 0–5 (EQADC_CFCRn).”

a) Write 0b0001 to the MODE0 field in eQADC_CFCR0 to program CFIFO0 for software
single-scan mode.

b) Write 1 to SSE0 to assert SSS0 and trigger CFIFO0.

8. Because CFIFO0 is in single-scan software mode and it is also the highest priority CFIFO, the
eQADC starts to transfer configuration commands to the on-chip ADCs and to the external device.

9. When all of the configuration commands are transferred, EQADC_FISRn[CF0] is set. See
Section 18.3.2.8, “eQADC FIFO and Interrupt Status Registers 0–5 (EQADC_FISRn).” The
eQADC generates an end of queue interrupt. The initialization procedure is complete.

Figure 18-63. Example of a Command Queue Configuring the On-Chip ADCs/External Device

Configuration Command to ADC0—Ex: Write ADC0_CR

Command Queue in

0x0

0x1

0x2

0x3

System Memory

Configuration Command to ADC2—Ex: Write to external device configuration register

Configuration Command to ADC0—Ex: Write ADC_TSCR

Configuration Command to ADC1—Ex: Write ADC1_CR
Command
Address

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 18-111

18.5.1.2 Configuring eQADC for Applications

This section provides an example based on the applications in Table 18-53. The example describes how to
configure multiple command queues to be used for those applications and provides a step-by-step
procedure to configure the eQADC and the associated command queue structures. In the example, the
“Fast hardware-triggered command queue,” described on the second row of Table 18-53, transfer its
commands to ADC1; the conversion commands are executed by ADC1. The generated results are returned
to RFIFO3 before being transferred to the result queues in the RAM by the eDMA.

NOTE
There is no fixed relationship between CFIFOs and RFIFOs with the same
number. The results of commands being transferred through CFIFO1 can be
returned to any RFIFO, regardless of its number. The destination of a result
is determined by the MESSAGE_TAG field of the command that requested
the result. See Section 18.4.1.2, “Message Format in eQADC,” for details.

Step One: Set up the command queues and result queues.

1. Load the RAM with configuration and conversion commands. Table 18-54 is an example of how
to set commands for command queue 1.

a) Each trigger event causes four commands to be executed. When the eQADC detects the pause
bit asserted, it waits for another trigger to restart transferring commands from the CFIFO.

b) At the end of the command queue, the “EOQ” bit is asserted as shown in Table 18-54.

c) Results are returned to RFIFO3 as specified in the MESSAGE_TAG field of commands.

2. Reserve memory space for storing results.

Table 18-54. Example of Command Queue Commands 1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

E
O

Q

PA
U

S
E

R
E

S
E

R
V

E
D

A
B

O
R

T
_S

T

E
B

 (
0b

1)

B
N

C
A

L

MESSAGE_
TAG

ADC COMMAND

CMD1 0 0 0 0 0 1 0 0b0011 Conversion command

CMD2 0 0 0 0 0 1 0 0b0011 Conversion command

CMD3 0 0 0 0 0 1 0 0b0011 Conversion command

CMD4 0 1 0 0 0 1 0 0b0011 2 Configure peripheral device for next conversion sequence

CMD5 0 0 0 0 0 1 0 0b0011 Conversion command

CMD6 0 0 0 0 0 1 0 0b0011 Conversion command

CMD7 0 0 0 0 0 1 0 0b0011 Conversion command

CMD8 0 1 0 0 0 1 0 0b00112 Configure peripheral device for next conversion sequence

etc............

CFIFO header ADC command

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

18-112 Freescale Semiconductor

Step Two: Configure the eDMA to handle data transfers between the command/result queues in RAM and
the CFIFOs/RFIFOs in the eQADC.

1. For transferring, set the source address of the eDMA TCDn to point to the start address of
command queue 1. Set the destination address of the eDMA to point to EQADC_CFPR1. See
Section 18.3.2.4, “eQADC CFIFO Push Registers 0–5 (EQADC_CFPRn).”

2. For receiving, set the source address of the eDMA TCDn to point to EQADC_RFPR3. See
Section 18.3.2.5, “eQADC Result FIFO Pop Registers 0–5 (EQADC_RFPRn).” Set the destination
address of the eDMA to point to the starting address of result queue 1.

Step Three: Configure the eQADC control registers.

1. Configure Section 18.3.2.7, “eQADC Interrupt and eDMA Control Registers 0–5
(EQADC_IDCRn).”

a) Set EOQIE1 to enable the End of Queue Interrupt request.

b) Set CFFS1 and RFDS3 to configure the eQADC to generate eDMA requests to push commands
into CFIFO1 and to pop result data from RFIF03.

c) Set CFINV1 to invalidate the contents of CFIFO1.

d) Set RFDE3 and CFFE1 to enable the eQADC to generate eDMA requests. Command transfers
from the RAM to the CFIFO1 starts immediately.

e) Set RFOIE3 to indicate if RFIFO3 overflows.

f) Set CFUIE1 to indicate if CFIFO1 underflows.

2. Configure MODE1 to continuous-scan rising edge external trigger mode in Section 18.3.2.6,
“eQADC CFIFO Control Registers 0–5 (EQADC_CFCRn).”

Step Four: Command transfer to ADCs and result data reception.

When an external rising edge event occurs for CFIFO1, the eQADC automatically begins
transferring commands from CFIFO1 when it becomes the highest priority CFIFO trying to send
commands to ADC1. The received results are placed in RFIFO3 and then moved to result queue 1
by the eDMA.

CMDEOQ 1 0 0 0 0 1 0 0b0011 EOQ message

1 Fields LST, TSR, FMT, and CHANNEL_NUMBER are not shown for clarity. See Section , “Conversion Command Message
Format for On-Chip ADC Operation,” for details.

2 MESSAGE_TAG field is only defined for read configuration commands.

Table 18-54. Example of Command Queue Commands 1 (continued)

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

E
O

Q

PA
U

S
E

R
E

S
E

R
V

E
D

A
B

O
R

T
_S

T

E
B

 (
0b

1)

B
N

C
A

L

MESSAGE_
TAG

ADC COMMAND

CFIFO header ADC command

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 18-113

18.5.2 eQADC to eDMA Controller Interface

This section provides an overview of the eQADC/eDMA interface and general guidelines about how to
configure the eDMA to correctly transfer data between the queues in system memory and the eQADC
FIFOs.

18.5.2.1 Command Queue and CFIFO Transfers

In transfers involving command queues and CFIFOs, the eDMA moves data from a queued source to a
single destination as shown in Figure 18-64.

Figure 18-64. Command Queue/CFIFO Interface

The location of the data to be moved is indicated by the source address, and the final destination for that
data, by the destination address. The eDMA has transfer control descriptors (TCDs) containing these
addresses and other parameters used in the control of data transfers.

See Section 9.2.2.17, “Transfer Control Descriptor (TCD)” for more information.

For every eDMA request issued by the eQADC, the eDMA must be configured to transfer a single
command (32-bit data) from the command queue, pointed to by the source address, to the CFIFO push
register, pointed to by the destination address. After the service of an eDMA request is completed, the
source address has to be updated to point to the next valid command. The destination address remains
unchanged. When the last command of a queue is transferred, do one of the following:

• Disable the eDMA channel. This might be desirable for CFIFOs in single scan mode.

• Update the source address to point to a valid command for the first command in the queue was
transferred (cyclic queue), or the first command of any other command queue. This is desirable for
CFIFOs in continuous scan mode, or in some cases, for CFIFOs in single-scan mode.

See Chapter 9, “Enhanced Direct Memory Access (eDMA)” for details about how this functionality is
supported.

18.5.2.2 Receive Queue/RFIFO Transfers

In transfers involving receive queues and RFIFOs, the eDMA controller moves data from a single source
to a queue destination as shown in Figure 18-65. The location of the data to be moved is indicated by the
source address, and the final destination for that data, by the destination address. For every eDMA request
issued by the EQADC, the eDMA controller has to be configured to transfer a single result (16-bit data),

Command 1

Command 2

Command 3
•

Command n-1

Command n

One command transfer
per DMA request

CFPRx

Source Address

Destination Address

CFIFO Push Register

•
•

•••
eDMA_TCDn

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

18-114 Freescale Semiconductor

pointed to by the source address, from the RFIFO pop register to the receive queue, pointed to by the
destination address. After the service of an eDMA request is completed, the destination address has to be
updated to point to the location where the next 16-bit result are stored. The source address remains
unchanged. When the last expected result is written to the receive queue, do one of the following:

• Disable the eDMA channel.

• Update the destination address to point to the next location where in-coming results are stored: the
first entry of the current receive queue (cyclic queue); or the beginning of a new receive queue.

See Chapter 19, “Deserial Serial Peripheral Interface (DSPI)” for details about how this functionality is
supported.

Figure 18-65. Receive Queue/RFIFO Interface

18.5.3 Sending Immediate Command Setup Example

In the eQADC, there is no immediate command register for sending a command immediately after writing
to that register. However, a CFIFO can be configured to perform the same function as an immediate
command register. The following steps illustrate how to configure CFIFO5 as an immediate command
CFIFO. This eliminates the use of the eDMA. The results are returned to RFIFO5.

1. Configure the Section 18.3.2.7, “eQADC Interrupt and eDMA Control Registers 0–5
(EQADC_IDCRn).”

a) Clear CFIFO fill enable5 (CFFE5 = 0) in EQADC_IDCR5.

b) Clear CFIFO underflow interrupt enable5 (CFUIE5 = 0) in EQADC_IDCR2.

c) Clear RFDS5 to configure the eQADC to generate interrupt requests to pop result data from
RFIF05.

d) Set RFIFO drain enable5 (RFDE5 = 1) in EQADC_IDCR5.

2. Configure the Section 18.3.2.6, “eQADC CFIFO Control Registers 0–5 (EQADC_CFCRn).”

a) Write 1 to CFINV5 in EQADC_CFCR5. This invalidates the contents of CFIFO5.

a) Set MODE5 to continuous-scan software trigger mode in EQADC_CFCR5.

3. To transfer a command, write it to the eQADC CFIFO push register 5 (EQADC_CFPR5) with
message tag = 0b0101. See Section 18.3.2.4, “eQADC CFIFO Push Registers 0–5
(EQADC_CFPRn).”

Result 1

Result 2

Result 3
•

Result n-1

Result n

One result transfer
per DMA request

RFPRx

Source Address

Destination Address

RFIFO Pop Register

•
•

•••

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 18-115

4. Up to 4 commands can be queued in CFIFO5. Check the CFCTR5 status in EQADC_FISR5 before
pushing another command to avoid overflowing the CFIFO. See Section 18.3.2.8, “eQADC FIFO
and Interrupt Status Registers 0–5 (EQADC_FISRn).”

5. When the eQADC receives a conversion result for RFIFO5, it generates an interrupt request.
RFIFO pop register 5 (EQADC_RFPR5) can be popped to read the result. See Section 18.3.2.5,
“eQADC Result FIFO Pop Registers 0–5 (EQADC_RFPRn).”

18.5.4 Modifying Queues

Some applications require more command queues than the six supported by the eQADC. These additional
command queues can be supported by interrupting command transfers from a configured CFIFO, even if
it is triggered and transferring, modifying the corresponding command queue in the RAM or associating
another command queue to it, and restarting the CFIFO. More details on disabling a CFIFO are described
in Section 18.4.3.4.1, “Disabled Mode.”

1. Determine the resumption conditions when later resuming the scan of the command queue at the
point before it was modified.

a) Change EQADC_CFCRn[MODEn] (see Section 18.3.2.6, “eQADC CFIFO Control Registers
0–5 (EQADC_CFCRn)”) to disabled. See Section 18.4.3.4.1, “Disabled Mode,” for a
description of what happens when MODEn is changed to disabled.

b) Poll EQADC_CFSR[CFSn] until it becomes IDLE (see Section 18.3.2.11, “eQADC CFIFO
Status Register EQADC_CFSR”).

c) Read and save EQADC_CFTCRn[TC_CFn] (see Section 18.3.2.9, “eQADC CFIFO Transfer
Counter Registers 0–5 (EQADC_CFTCRn)”) for later resuming the scan of the queue. The
TC_CFn provides the point of resumption.

d) Because all the result data may not have been stored in the RFIFO at the time MODEn is
changed to disable, wait for all expected results to be stored in the RFIFO/result queue before
reconfiguring the eDMA to work with the modified result queue. The number of results that
must return can be estimated from the TC_CFn value obtained above.

2. Disable the eDMA from responding to the eDMA request generated by EQADC_FISRn[CFFFn]
and EQADC_FISRn[RFDFn] (see Section 18.3.2.8, “eQADC FIFO and Interrupt Status Registers
0–5 (EQADC_FISRn)”).

3. Write “0x0000” to the TC_CFn field.

4. Load the new configuration and conversion commands into RAM. Configure the eDMA to support
the new command/result queue, but do not configure it yet to respond to eDMA requests from
CFIFOn/RFIFOn.

5. If necessary, modify the EQADC_IDCRn registers (see Section 18.3.2.7, “eQADC Interrupt and
eDMA Control Registers 0–5 (EQADC_IDCRn)”) to suit the modified command queue.

6. Write 1 to EQADC_CFCRn[CFINVn] (see Section 18.3.2.6, “eQADC CFIFO Control Registers
0–5 (EQADC_CFCRn)”) to invalidate the entries of CFIFOn.

7. Configure the eDMA to respond to eDMA requests generated by CFFFn and RFDFn.

8. Change MODEn to the modified CFIFO operation mode. Write 1 to SSEn to trigger CFIFOn if
MODEn is software trigger.

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

18-116 Freescale Semiconductor

18.5.5 Command Queue and Result Queue Usage

Figure 18-66 is an example of command queue and result queue usage. It shows the command queue 0
commands requesting results that are stored in result queue 0 and result queue 1, and command queue 1
commands requesting results that are stored only in result queue 1. Some command messages request data
to be returned from the on-chip ADC/external device, but some only configure them and do not request
returning data. When a command queue contains both write and read commands like command queue 0,
the command queue and result queue entries are not aligned, in Figure 18-66, the result for the second
command of command queue 0 is the first entry of result queue 0. The figure also shows that command
queue and result queue entries can also become unaligned even if all commands in a command queue
request data as command queue 1. Command queue 1 entries became unaligned to result queue 1 entries
because a result requested by the forth command queue 0 command was sent to result queue 1. This
happens because the system can be configured so that several command queues can have results sent to a
single result queue.

Figure 18-66. eQADC Command and Result Queues

CQueue0 Write Command 0
No Results

0x0000

CQueue0 Read Command 1
Results to RQueue0

0x0004

CQueue0 Conversion Command 2
Results to RQueue0

0x0008

CQueue0 Conversion Command 3
Results to RQueue1

0x000C

CQueue0 Conversion Command n
Results to RQueue0

0x001C

Command Queue 1 (CQueue1)

CQueue1 Read Command 0
Results to RQueue1

0x0000

CQueue1 Read Command 1
Results to RQueue1

0x0004

CQueue1 Conversion Command 2
Results to RQueue1

0x0008

CQueue1 Conversion Command m
Results to RQueue1

0x001C

•
•
•

Command Queue 0 (CQueue0)

•
•
•

CQueue0 Read Command 1
Result

0x0000

CQueue0 Conversion Command 2
Result

0x0002

Result Queue 0 (RQueue0)

Result Queue 1 (RQueue1)

CQueue1 Read Command 0
Result

0x0000

CQueue1 Read Command 1
Result

0x0002

CQueue0 Conversion Command 3
Result

0x0004

CQueue1 Read Command 2
Result0x0016

•
•
•

RQueue0 is not aligned with CQueue0
because the first command of
CQueue0 does not request results.

•
•
•

RQueue1 is not aligned with CQueue1
because it contains results for
CQueue0 and CQueue1 commands.
The timing at which the CQueue0
command result is stored in RQueue1
depends on the relative speed at
which commands from both CQueues
are executed. This is influenced by
factors like resource sharing, ADC
clock frequency, sampling time, and
triggering time.

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 18-117

18.5.6 ADC Result Calibration

The ADC result calibration process consists of two steps: determining the gain and offset calibration
constants, and calibrating the raw results generated by the on-chip ADCs by solving the following equation
discussed in Section 18.4.5.4.1, “Calibration Overview.”

CAL_RES = GCC x RAW_RES + OCC + 2; Eqn. 18-1

The calibration constants GCC and OCC can be calculated from Equation 18-1 provided that two pairs of
expected (CAL_RES) and measured (RAW_RES) result values are available for two different input
voltages. Most likely calibration points to be used are 25% VREF

1 and 75% VREF since they are far apart
but not too close to the end points of the full input voltage range. This allows for calculations of more
representative calibration constants. The eQADC provides these voltages via channel numbers 43 and 44.
The raw, uncalibrated results for these input voltages are obtained by converting these channels with
conversion commands that have the CAL bit negated.

The transfer equations for when sampling these reference voltages are:

CAL_RES75%VREF = GCC x RAW_RES75%VREF + OCC + 2; Eqn. 18-2

CAL_RES25%VREF = GCC x RAW_RES25%VREF + OCC + 2; Eqn. 18-3

Thus;

GCC = (CAL_RES75%VREF - CAL_RES25%VREF) / (RAW_RES75%VREF - RAW_RES25%VREF); Eqn. 18-4

OCC = CAL_RES75%VREF - GCC x RAW_RES75%VREF – 2; Eqn. 18-5

or

OCC = CAL_RES25%VREF - GCC x RAW_RES25%VREF – 2; Eqn. 18-6

After being calculated, the GCC and OCC values must be written to ADC0_GCCR and ADC1_GCCR
registers (see Section 18.3.3.4, “ADCn Gain Calibration Constant Registers (ADC0_GCCR and
ADC1_GCCR)”) and the ADC0_OCCR and ADC1_OCCR registers (see Section 18.3.3.5, “ADCn Offset
Calibration Constant Registers (ADC0_OCCR and ADC1_OCCR)”) using write configuration
commands.

The eQADC automatically calibrates the results, according to Equation 18-1, of every conversion
command that has its CAL bit asserted using the GCC and OCC values stored in the ADC calibration
registers.

For more information on calibrating the eQADC, see applications note AN2989 ‘Design, Accuracy, and
Calibration of Analog to Digital Converters on the MPC5500 Family’ available from www.freescale.com.

1. VREF = VRH - VRL

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

18-118 Freescale Semiconductor

18.5.6.1 MAC Configuration Procedure

The following steps illustrate how to configure the calibration hardware, that is, determining the values of
the gain and offset calibration constants, and the writing these constants to the calibration registers. This
procedure must be performed for both ADC0 and ADC1.

1. Convert channel 44 with a command that has its CAL bit negated and obtain the raw, uncalibrated
result for 25% VREF (RAW_RES25%VREF).

2. Convert channel 43 with a command that has its CAL bit negated and obtain the raw, uncalibrated
result for 75% VREF (RAW_RES75%VREF).

3. Because the expected values for the conversion of these voltages are known (CAL_RES25%VREF
and CAL_RES75%VREF), GCC and OCC values can be calculated from Equation 18-4 and
Equation 18-5 using these values, and the results determined in steps 1 and 2.

4. Reformat GCC and OCC to the proper data formats as specified in Section 18.4.5.4.2, “MAC Unit
and Operand Data Format.” GCC is an unsigned 15-bit fixed point value and OCC is a signed
14-bit value.

5. Write the GCC value to ADCn gain calibration registers (see Section Section 18.3.3.4, “ADCn
Gain Calibration Constant Registers (ADC0_GCCR and ADC1_GCCR)”) and the OCC value to
ADCn offset calibration constant registers (see Section Section 18.3.3.5, “ADCn Offset
Calibration Constant Registers (ADC0_OCCR and ADC1_OCCR)”) using write configuration
commands.

18.5.6.2 Example Calculation of Calibration Constants

The raw results obtained when sampling reference voltages 25% VREF and 75% VREF were, respectively,
3798 and 11592. The results obtained from the conversion of these reference voltages are, respectively,
4096 and 12288. Therefore, using Equation 18-4 and Equation 18-5, the gain and offset calibration
constants are:

GCC=(12288-4096)÷(11592-3798) = 1.05106492-> 1.051025391 = 0x4344
OCC=12288-1.05106492*11592 -2 = 102.06-> 102 = 0x0066

Table 18-55 shows, for this particular case, examples of how the result values change according to GCC
and OCC when result calibration is executed (CAL=1) and when it is not (CAL=0).

1. This calculation is rounded down due to binary approximation.

Table 18-55. Calibration Example

Input Voltage
Raw result (CAL=0) Calibrated result (CAL=1)

Hexadecimal Decimal Hexadecimal Decimal

25% VREF 0x0ED6 3798 0x1000 4095.794

75% VREF 0x2D48 11592 0x3000 12287.486

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 18-119

18.5.6.3 Quantization Error Reduction During Calibration

Figure 18-67 shows how the ADC transfer curve changes due to the addition of two to the MAC output
during the calibration. See MAC output equation in Section 18.4.5.4, “ADC Calibration Feature.” The
maximum absolute quantization error is reduced by half leading to an increase in accuracy.

Figure 18-67. Quantization Error Reduction During Calibration

18.5.7 eQADC versus QADC

This section describes how the eQADC upgrades the QADC functionality. The section also provides a
comparison between the eQADC and QADC in terms of their functionality. You must be familiar with
QADC terminology to fully comprehend the following sections.

Figure 18-68 is an overview of a QADC.

4

Ideal Transfer Curve

0

Shifted Transfer Curve

ADC Transfer Curve

Input Voltage
(12-bit A/D Resolution)

Digital Value
(14-bit Result)

1/2
lsb

lsb

0

–4

Error for Shifted Transfer Curve

Input Voltage
(12-bit A/D Resolution)

Quantization Error

1/2
lsb lsb

Error for ADC Transfer Curve

2

–2

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

18-120 Freescale Semiconductor

Figure 18-68. QADC Overview

Figure 18-69 is an overview of the eQADC system.

Figure 18-69. eQADC System Overview

The eQADC system consists of four parts: queues in system memory, the eQADC, on-chip ADCs, and an
external device. As compared with the QADC, the eQADC system requires two pieces of extra hardware.

1. An eDMA or an MCU is required to move data between the eQADC’s FIFOs and queues in the
system memory.

2. A serial interface [eQADC synchronous serial interface (SSI)] is implemented to transmit and
receive data between the eQADC and the external device.

Digital control
logic for analog

device

Command queuesExternal
triggers

Trigger &
queue control

logic
Result queues

Analog-to-digital converter

Interrupt request

External
triggers

Serial
connection

System bus
DMA/ Interrupt
requests

Trigger and
FIFO control

logic

Analog-to-digital converters (2x)

Command queues Result queuesDMAC/CPU

eQADC SSI

CFIFOs RFIFOs

Analog-to-digital converter

eQADC

External Device

Hardware in eQADC that
was not present in QADC

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 18-121

Because there are only FIFOs inside the eQADC, much of the terminology or use of the register names,
register contents, and signals of the eQADC involve FIFO instead of queue. These register names, register
contents, and signals are functionally equivalent to the queue counterparts in the QADC. Table 18-56 lists
how the eQADC register, register contents, and signals are related to QADC.

.

The eQADC and QADC also have similar procedures for the configuration or execution of applications.
Table 18-57 shows the steps required for the QADC versus the steps required for the eQADC system.

Table 18-56. Terminology Comparison between QADC and eQADC

QADC Terminology eQADC Terminology Function

CCW Command Message In the QADC, the hardware only executes conversion command words.
In the eQADC, not all commands are conversion commands; some are
configuration commands.

Queue Trigger CFIFO Trigger In the QADC, a trigger event is required to start the execution of a queue.
In the eQADC, a trigger event is required to start command transfers from a
CFIFO. When a CFIFO is triggered and transferring, commands are
continuously moved from command queues to CFIFOs. Thus, the trigger
event initiates the “execution of a queue” indirectly.

Command Word Pointer
Queue n (CWPQn)

Counter Value of
Commands Transferred
from Command FIFOn
(TC_CFn)

In the QADC, CWPQn allows the last executed command on queue n to be
determined.
In the eQADC, the TC_CFn value allows the last transferred command on
command queue n to be determined.

Queue Pause Bit (P) CFIFO Pause Bit In the QADC, detecting a pause bit in the CCW pauses the queue execution.
In the eQADC, detecting a pause bit in the command pauses command
transfers from a CFIFO.

Queue Operation Mode
(MQn)

CFIFO Operation Mode
(MODEn)

The eQADC supports all queue operation modes in the QADC except
operation modes related to a periodic timer.

Queue Status (QS) CFIFO Status (CFSn) In the QADC, the queue status is read to check whether a queue is idle,
active, paused, suspended, or trigger pending.
In the eQADC, the CFIFO status is read to check whether a queue is IDLE,
WAITING FOR TRIGGER (idle or paused in QADC), or triggered
(suspended or trigger pending in QADC).

Table 18-57. Usage Comparison between QADC and eQADC System

Procedure QADC eQADC System

Analog Control Configuration Configure analog device by writing to the
QADCs.

Program configuration commands into command
queues.

Prepare Scan Sequence Program scan commands into command
queues.

Program scan commands into command queues.

Queue Control Configuration Write to the QADC control registers. Write to the eQADC control registers.

Data Transferred between
Queues and Buffers

Not Required. Program the eDMA or the CPU to handle the data
transfer.

Serial Interface Configuration Not Required. Write to the eQADC SSI registers.

Queue Execution Require software or external trigger
events to start queue execution.

Require software or external trigger events to
start command transfers from a CFIFO.

Enhanced Queued Analog-to-Digital Converter (eQADC)

MPC5534 Microcontroller Reference Manual, Rev. 2

18-122 Freescale Semiconductor

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 19-1

Chapter 19
Deserial Serial Peripheral Interface (DSPI)

19.1 Introduction
This chapter describes the deserial serial peripheral interface (DSPI), which provides a synchronous serial
bus for communication between the MCU and an external peripheral device.

Microcontroller chips in the MPC55xx family implement several DSPI module configurations. Most
devices implement DSPI B, C, and D; several devices implement B and C; and some devices implement
A, B, C, and D. The “x” appended to signal names signifies the DSPI module to which the signal applies.
Thus PCSx[0] specifies that the PCS signal applies to module A, B, and so on.

This device implements DSPI B, C, and D only.

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

19-2 Freescale Semiconductor

19.1.1 Block Diagram

A block diagram of the DSPI is shown in Figure 19-1.

Figure 19-1. DSPI Block Diagram

19.1.2 Overview

The deserial serial interface (DSPI) in this device supports pin count reduction through serialization and
deserialization of eTPU channels, two SPI channels, and memory-mapped registers, as well as transfer
control capabilities. Incoming serial data triggers an external interrupt request to the DSPI deserialized
output connections configured in the SIU. The channels and register content are transmitted using an SPI
protocol. There are three identical DSPI modules (DSPI B, DSPI C, and DSPI D).

CMD

DMA and interrupt control

TX FIFO RX FIFO

TX data RX data

16

16

Shift register SOUTx

SPI

SPI and DSI baud rate,
delay and transfer

control

CSI
priority
logic

TXSS
DSI

DSPI BIU

16 From eTPU
and eMIOS
output channels

16 To eTPU or
eMIOS
input channels
SIU_DISR

SINx
SCKx
PCSx[0]_SSx
PCSx[1:4]

PCSx[5]_PCSSx

INTCeDMA Slave interface

4

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 19-3

The DSPI has the following configurations:

• Serial peripheral interface (SPI) configuration where the DSPI operates as a SPI with support for
queues.

• Deserial serial interface (DSI) configuration where the DSPI serializes eTPU and eMIOS output
channels and deserializes the received data by placing the data on the eTPU and eMIOS input
channels and as inputs to the external interrupt request submodule of the SIU.

• Combined serial interface (CSI) configuration where the DSPI operates in both SPI and DSI
configurations interleaving DSI frames with SPI frames, giving priority to SPI frames.

For queued operations, the SPI queues reside in internal SRAM, which is external to the DSPI. Data
transfers between the queues and the DSPI FIFOs are done using the eDMA controller or host software.
Figure 19-2 shows a SPI port servicing external queues in internal SRAM.

Figure 19-2. DSPI with Queues and eDMA

19.1.3 Features

The DSPI supports these SPI features:

• Full-duplex, three-wire synchronous transfers

• Master and slave mode

• Buffered transmit and receive operation using the TX and RX FIFOs, with depths of four entries

• Visibility of TX and RX FIFOs to simplify debugging

• FIFO bypass mode for low-latency updates to SPI queues

• Programmable transfer attributes on a per-frame basis

— Eight clock and transfer attribute registers

— Serial clock with programmable polarity and phase

— Programmable delays

– PCS to SCK delay

– SCK to PCS delay

– Delay between frames

Internal SRAM

TX queue

RX queue

Address/control

TX FIFO

SPI

RX FIFO

RX data

TX data

TX data RX data

Shift register

eDMA controller
Address/control

or host CPU

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

19-4 Freescale Semiconductor

— Programmable serial frame size of 4 to 16 bits, expandable with software control

— Continuously held chip select capability

• Six peripheral chip selects, expandable to 64 with external demultiplexer

• Deglitching support for up to 32 peripheral chip selects with external demultiplexer

• Two DMA conditions for SPI queues residing in RAM or flash

— TX FIFO is not full (TFFF)

— RX FIFO is not empty (RFDF)

• Six interrupt conditions:

— End of queue reached (EOQF)

— TX FIFO is not full (TFFF)

— Transfer of current frame complete (TCF)

— RX FIFO is not empty (RFDF)

— FIFO overrun

– Attempt to transmit an empty TX FIFO

– Serial frame was received while RX FIFO is full (RFOF)

— FIFO under flow

– Use for a slave device only running in SPI mode. Request to the slave for a data transfer
when the TX FIFO is empty (TFUF)

• Modified SPI transfer formats for communication with slower peripheral devices

• Supports all functional modes from QSPI subblock of QSMCM (MPC500 family)

• Continuous serial communications clock (SCK)

When configured for DSI or CSI operation, the DSPI supports pin reduction through serialization and
deserialization.

• Serialized data sources

— eTPUA, and eMIOS output channels

— Memory-mapped register in the DSPI

• Deserialized data destinations

— eTPUA and eMIOS input channels

— SIU external interrupt request inputs

— Memory-mapped register in the DSPI

• Transfer initiation conditions

– Continuous

– Edge-sensitive hardware trigger

– Change in data

• Support for parallel and serial chaining of DSPI modules

• Pin serialization/deserialization with interleaved SPI frames for control and diagnostics

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 19-5

19.1.4 Modes of Operation

The DSPI has four modes of operation. These modes can be divided into two categories: module-specific
modes such as master, slave and module disable modes; and a second category that is an MCU-specific
mode: debug mode.

The module-specific modes are entered by host software writing to a register. The MCU-specific mode is
controlled by signals external to the DSPI. The MCU-specific mode is a mode that the entire device can
enter, in parallel to the DSPI running in one of its module-specific modes.

19.1.4.1 Master Mode

Master mode allows the DSPI to initiate and control serial communication. In this mode the SCK, PCSn
and SOUT signals are controlled by the DSPI and configured as outputs.

For more information, see Section 19.4.1.1, “Master Mode.”

19.1.4.2 Slave Mode

Slave mode allows the DSPI to communicate with SPI / DSI bus masters. In this mode, the DSPI responds
to externally controlled serial transfers. The DSPI cannot initiate serial transfers in slave mode. In slave
mode, the SCK signal and the PCSx[0]_SS signal are configured as inputs and provided by a bus master.
PCSx[0]_SS must be configured as input and pulled high. If the internal pullup used, the bits in the
SIU_PCR for that input must be set (SIU_PCR [WPE = 1], [WPS = 1]).

For more information, see Section 19.4.1.2, “Slave Mode.”

19.1.4.3 Module Disable Mode

The module disable mode is used for MCU power management. The clock to the non-memory mapped
logic in the DSPI is stopped while in module disable mode. The DSPI enters the module disable mode
when the MDIS bit in DSPIx_MCR is set.

For more information, see Section 19.4.1.3, “Module Disable Mode.”

19.1.4.4 Debug Mode

Debug mode is used for system development and debugging. If the device enters debug mode while the
FRZ bit in the DSPIx_MCR is set, the DSPI halts operation on the next frame boundary. If the device enters
debug mode while the FRZ bit is cleared, the DSPI behavior is unaffected and remains dictated by the
module-specific mode and configuration of the DSPI.

For more information, see Section 19.4.1.4, “Debug Mode.”

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

19-6 Freescale Semiconductor

19.2 External Signal Description

19.2.1 Signal Overview

Table 19-1 lists DSPI signals used to communicate with an external device.

19.2.2 Signal Descriptions

19.2.2.1 Peripheral Chip Select / Slave Select
PCSx[0]_SS

In master mode, the PCSx[0] signal is a peripheral chip select output that determines the slave device for
the current transmission.

In slave mode, the SS signal is a slave select input signal that allows a SPI master to select the DSPI as the
target for transmission. PCSx[0]_SS must be configured as input and pulled high. If the internal pullup is
used then the bits in the SIU_PCR must be set (SIU_PCR [WPE = 1], [WPS = 1]).

Set the input buffer enable (IBE) and the output buffer enable (OBE) bits to 1 in the SIU_PCR for all DSPI
chip select PCSx[0] or slave select SS function is configured for that pin. When the pin is used for DSPI
master mode as a chip select output, set the OBE bit. When the pin is used in DSPI slave mode as a slave
select input, set the IBE bit to 1.

See Section 6.4.1.12, “Pad Configuration Registers (SIU_PCR),” for more information.

19.2.2.2 Peripheral Chip Selects 1–3
PCSx[1:3]

PCSx[1:3] are peripheral chip select output signals in master mode. In slave mode, only the GPIO signal
is available.

Table 19-1. Signal Properties

Name I/O Type
Function

Master Mode Slave Mode

PCSx[0]_SS Output / input Peripheral chip select 0 Slave select

PCSx[1:3] Output Peripheral chip select 1–3 Unused 1

1 The SIU allows you to select alternate or GPIO signals on these pins for the device.

PCSx[4]_MTRIG Output Peripheral chip select 4 Unused 1_Master trigger 2

2 MTRIG is an internal master trigger for a slave device.

PCSx[5]_PCSS Output Peripheral chip select 5 /
Peripheral chip select strobe

Unused 1

SINx Input Serial data in Serial data in

SOUTx Output Serial data out Serial data out

SCKx Output / input Serial clock (output) Serial clock (input)

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 19-7

19.2.2.3 Peripheral Chip Select 4 / Master Trigger
PCSx[4]_MTRIG

PCSx[4] is a peripheral chip select output signal in master mode.In slave mode, it is an internal master
output trigger that identifies a change to the serialize data has occurred. If the multiple transfer operation
(MTO) is disabled in slave mode, only the GPIO signal is available.

19.2.2.4 Peripheral Chip Select 5 / Peripheral Chip Select Strobe
PCSx[5]_PCSS

PCSx[5] is a peripheral chip select output signal. When the DSPI is in master mode and the PCSSE bit in
the DSPIx_MCR is cleared to 0, the PCSx[5] signal determines the slave device that receives the transfer.

PCSS is a strobe signal used by external logic for deglitching the PCS signals. When the DSPI is in master
mode and the PCSSE bit in the DSPIx_MCR is set to 1, the PCSS signal indicates the timing used to
decode PCSx[0:4] signals, which prevents glitches from occurring.

PCSx[5]_PCSS is not used in slave mode.

19.2.2.5 Serial Input (SINx)

SINx is a serial data input signal.

19.2.2.6 Serial Output (SOUTx)

SOUTx is a serial data output signal.

19.2.2.7 Serial Clock (SCKx)

SCKx is a serial communication clock signal. In master mode, the DSPI generates the SCK. In slave mode,
SCKx is an input from an external bus master.

19.2.2.8 Internal Hardware Trigger

The hardware trigger (HT) is an input signal used with Multiple Transfer Operations in DSI Configuration.

In slave mode, the DSPI generates a trigger pulse on the MTRIG pin when a rising- or falling-edge is
detected on the HT.

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

19-8 Freescale Semiconductor

19.3 Memory Map and Register Definition

19.3.1 Memory Map

Table 19-2 shows the DSPI memory map.

Table 19-2. DSPI Detailed Memory Map

Address Register Name Register Description Bits

Base:
0xFFF9_4000 (DSPI B)
0xFFF9_8000 (DSPI C)
0xFFF9_C000 (DSPI D)

DSPIx_MCR DSPI module configuration register 32

Base + 0x0004 1 — Reserved —

Base + 0x0008 DSPIx_TCR DSPI transfer count register 32

Base + 0x000C DSPIx_CTAR0 DSPI clock and transfer attributes register 0 32

Base + 0x0010 DSPIx_CTAR1 DSPI clock and transfer attributes register 1 32

Base + 0x0014 DSPIx_CTAR2 DSPI clock and transfer attributes register 2 32

Base + 0x0018 DSPIx_CTAR3 DSPI clock and transfer attributes register 3 32

Base + 0x001C DSPIx_CTAR4 DSPI clock and transfer attributes register 4 32

Base + 0x0020 DSPIx_CTAR5 DSPI clock and transfer attributes register 5 32

Base + 0x0024 DSPIx_CTAR6 DSPI clock and transfer attributes register 6 32

Base + 0x0028 DSPIx_CTAR7 DSPI clock and transfer attributes register 7 32

Base + 0x002C DSPIx_SR DSPI status register 32

Base + 0x0030 DSPIx_RSER DSPI DMA/interrupt request select and enable register 32

Base + 0x0034 DSPIx_PUSHR DSPI push TX FIFO register 32

Base + 0x0038 DSPIx_POPR DSPI pop RX FIFO register 32

Base + 0x003C DSPIx_TXFR0 DSPI transmit FIFO register 0 32

Base + 0x0040 DSPIx_TXFR1 DSPI transmit FIFO register 1 32

Base + 0x0044 DSPIx_TXFR2 DSPI transmit FIFO register 2 32

Base + 0x0048 DSPIx_TXFR3 DSPI transmit FIFO register 3 32

Base + 0x004C–0x0078 1 — Reserved —

Base + 0x007C DSPIx_RXFR0 DSPI receive FIFO register 0 32

Base + 0x0080 DSPIx_RXFR1 DSPI receive FIFO register 1 32

Base + 0x0084 DSPIx_RXFR2 DSPI receive FIFO register 2 32

Base + 0x0088 DSPIx_RXFR3 DSPI receive FIFO register 3 32

Base + 0x008C–0x00B8 1 — Reserved —

Base + 0x00BC DSPIx_DSICR DSPI DSI configuration register 32

Base + 0x00C0 DSPIx_SDR DSPI DSI serialization data register 32

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 19-9

19.3.2 Register Descriptions

19.3.2.1 DSPI Module Configuration Register (DSPIx_MCR)

The DSPIx_MCR contains bits that configure and control the DSPI operation. You can changes the values
of the HALT and MDIS bits during runtime, but the effect begins on the next frame boundary. The HALT
and MDIS bits in the DSPIx_MCR are the only bit values software can change while the DSPI is running.

The following table describes the fields in the DSPI module configuration register:

Base + 0x00C4 DSPIx_ASDR DSPI DSI alternate serialization data register 32

Base + 0x00C8 DSPIx_COMPR DSPI DSI transmit comparison register 32

Base + 0x00CC DSPIx_DDR DSPI DSI deserialization data register 32

1 Do not read or write to ‘Reserved’ memory. Writing to ‘Reserved’ memory can cause unpredictable operations.

Address: Base + 0x0000 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MSTR

CONT_
SCKE

DCONF FRZ MTFE
PCS
SE

RO
OE

0 0
PCS
IS5

PCS
IS4

PCS
IS3

PCS
IS2

PCS
IS1

PCS
IS0W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
0

MDIS
DIS_
TXF

DIS_
RXF

CLR_
TXF

CLR_
RXF SMPL_PT

0 0 0 0 0 0 0
HALT

W w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Figure 19-3. DSPI Module Configuration Register (DSPIx_MCR)

Table 19-3. DSPIx_MCR Field Descriptions

Field Description

0
MSTR

Master or slave mode select. Configures the DSPI for master mode or slave mode.
0 DSPI is in slave mode
1 DSPI is in master mode

1
CONT_SCKE

Continuous SCK enable. Enables the serial communication clock (SCK) to run continuously.
See Section 19.4.8, “Continuous Serial Communications Clock,” for details.
0 Continuous SCK disabled
1 Continuous SCK enabled

Table 19-2. DSPI Detailed Memory Map (continued)

Address Register Name Register Description Bits

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

19-10 Freescale Semiconductor

2–3
DCONF

[0:1]

DSPI configuration. Configures operating mode of the DSPI. The following table lists the DCONF values for
the various configurations.

4
FRZ

Freeze. Allows the DSPI to stop transfers on the next frame boundary when the device enters debug mode.

0 Do not halt serial transfers
1 Halt serial transfers

5
MTFE

Modified timing format enable. Provides a modified transfer format.
See Section 19.4.7.4, “Modified Transfer Format Enabled (MTFE = 1) with Classic SPI Transfer Format Set
(CPHA = 1) for SPI and DSI.”

0 Modified SPI transfer format disabled
1 Modified SPI transfer format enabled

6
PCSSE

Peripheral chip select strobe enable. Enables the PCSx[5]_PCSS to operate as a PCS strobe output signal.
See Section 19.4.6.5, “Peripheral Chip Select Strobe Enable (PCSS).”
0 PCSx[5]_PCSS is used as the peripheral chip select 5 signal
1 PCSx[5] _PCSS is used as an active-low PCS strobe signal

7
ROOE

Receive FIFO overflow overwrite enable. Enables an RX FIFO overflow condition to ignore the incoming
serial data or to overwrite existing data. If the RX FIFO is full and new data is received, the data from the
transfer that generated the overflow is ignored or put in the shift register.

If the ROOE bit is set, the incoming data is put in the shift register. If the ROOE bit is cleared, the incoming
data is ignored. See Section 19.4.9.6, “Receive FIFO Overflow Interrupt Request (RFOF).”
0 Incoming data is ignored
1 Incoming data is put in the shift register

8–9 Reserved, but implemented. These bits are writable, but have no effect.

10–15
PCSISn

Peripheral chip select inactive state. Determines the inactive state of the PCSx[n] signal.
You must configure PCSx[0]_SS as inactive high for slave mode operation.
0 The inactive state of PCSx[n] is low
1 The inactive state of PCSx[n] is high

16 Reserved

17
MDIS

Module disable. Allows the clock to stop to non-memory mapped logic in the DSPI, effectively putting the
DSPI in a software controlled power-saving state. The reset value of the MDIS bit is parameterized, with a
default reset value of 0. See Section 19.4.10, “Power Saving Features.”
0 Enable DSPI clocks
1 Allow external logic to disable DSPI clocks

Table 19-3. DSPIx_MCR Field Descriptions (continued)

Field Description

DCONF Configuration Description

00 SPI Serial peripheral interface

01 DSI Deserial interface

10 CSI Combination Deserial and Serial

11 Invalid value Not available

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 19-11

18
DIS_TXF

Disable transmit FIFO. Enables and disables the TX FIFO. When the TX FIFO is disabled, the transmit part
of the DSPI operates as a simplified double-buffered SPI. See Section 19.4.3.3, “FIFO Disable Operation for
details.”
0 TX FIFO is enabled
1 TX FIFO is disabled

19
DIS_RXF

Disable receive FIFO. Enables and disables the RX FIFO. When the RX FIFO is disabled, the receive part of
the DSPI operates as a simplified double-buffered SPI. See Section 19.4.3.3, “FIFO Disable Operation for
details.”
0 RX FIFO is enabled
1 RX FIFO is disabled

20
CLR_TXF

Clear TX FIFO. Flushes the TX FIFO. Write a 1 to the CLR_TXF bit to clear the TX FIFO counter. The
CLR_TXF bit is always read as zero.
0 Do not clear the TX FIFO counter
1 Clear the TX FIFO counter

21
CLR_RXF

Clear RX FIFO. Flushes the RX FIFO. Write a 1 to the CLR_RXF bit to clear the RX counter. The CLR_RXF
bit is always read as zero.
0 Do not clear the RX FIFO counter
1 Clear the RX FIFO counter

22–23
SMPL_PT

[0:1]

Sample point. Allows the host software to select when the DSPI master samples SIN in modified transfer
format. Figure 19-34 shows where the master can sample the SIN pin. The following table lists the delayed
sample points.

24–30 Reserved

31
HALT

Halt. Allows software to start and stop DSPI transfers on the next boundary.
See Section 19.4.2, “Start and Stop of DSPI Transfers,” for details on the operation of this bit.

0 Start transfers
1 Stop transfers

Table 19-3. DSPIx_MCR Field Descriptions (continued)

Field Description

SMPL_PT
Number of system clock cycles between

odd-numbered edge of SCK[x] and sampling of SIN[x].

00 0

01 1

10 2

11 Invalid value

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

19-12 Freescale Semiconductor

19.3.2.2 DSPI Transfer Count Register (DSPIx_TCR)

The DSPIx_TCR contains a counter that indicates the number of SPI transfers made. The transfer counter
is intended to assist in queue management. You must not write to the DSPIx_TCR while the DSPI is
running.

The following table describes the field in the DSPI transfer count register:

19.3.2.3 DSPI Clock and Transfer Attributes Registers 0–7 (DSPIx_CTARn)

The DSPI modules each contain eight clock and transfer attribute registers (DSPIx_CTARn) which are
used to define different transfer attribute configurations. Each DSPIx_CTAR controls:

• Frame size

• Baud rate and transfer delay values

• Clock phase

• Clock polarity

• MSB or LSB first

DSPIx_CTARs support compatibility with the QSPI module in the MPC5xx family of MCUs. See
Section 19.5.4, “MPC5xx QSPI Compatibility with the DSPI,” for a discussion on DSPI and QSPI
compatibility. At the initiation of an SPI or DSI transfer, control logic selects the DSPIx_CTAR that
contains the transfer attributes. Do not write to the DSPIx_CTARs while the DSPI is running.

Address: Base + 0x0008 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
SPI_TCNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 19-4. DSPI Transfer Count Register (DSPIx_TCR)

Table 19-4. DSPIx_TCR Field Descriptions

Field Description

0–15
SPI_TCNT

[0:15]

SPI transfer counter. Counts the number of SPI transfers the DSPI makes. The SPI_TCNT field increments every
time the last bit of an SPI frame is transmitted. A value written to SPI_TCNT presets the counter to that value.
SPI_TCNT is reset to zero at the beginning of the frame when the CTCNT field is set in the executing SPI
command. The transfer counter ‘wraps around,’ incrementing the counter past 65535 resets the counter to zero.

16–31 Reserved

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 19-13

In master mode, the DSPIx_CTARn registers define combinations of transfer attributes such as frame size,
clock phase and polarity, data bit ordering, baud rate, and various delays. In slave mode, a subset of the bit
fields in the DSPIx_CTAR0 and DSPIx_CTAR1 registers are used to set the slave transfer attributes. See
the individual bit descriptions for details.

When the DSPI is configured as a SPI master, the CTAS field in the command portion of the TX FIFO
entry identifies the DSPIx_CTAR registers that are used on a per-frame basis. When the DSPI is
configured as a SPI bus slave, the DSPIx_CTAR0 register is used.

When the DSPI is configured as a DSI master, the DSICTAS field in the DSPI DSI configuration register
(DSPIx_DSICR) selects which of the DSPIx_CTAR register is used. See Section 19.3.2.10, “DSPI DSI
Configuration Register (DSPIx_DSICR).” When the DSPI is configured as a DSI bus slave, the
DSPIx_CTAR1 register is used.

In CSI configuration, the transfer attributes are selected based on whether the current frame is SPI data or
DSI data. SPI transfers in CSI configuration follow the protocol described for SPI configuration, and DSI
transfers in CSI configuration follow the protocol described for DSI configuration. CSI configuration is
only valid in conjunction with master mode. See Section 19.4.5, “Combined Serial Interface (CSI)
Configuration” for more details.

.

Address:
Base + 0x000C (DSPIx_CTAR0)
Base + 0x0010 (DSPIx_CTAR1)
Base + 0x0014 (DSPIx_CTAR2)
Base + 0x0018 (DSPIx_CTAR3)
Base + 0x001C (DSPIx_CTAR4)
Base + 0x0020 (DSPIx_CTAR5)
Base + 0x0024 (DSPIx_CTAR6)
Base + 0x0028 (DSPIx_CTAR7)

Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
DBR FMSZ CPOL CPHA

LSB
FE

PCSSCK PASC PDT PBR
W

Reset 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CSSCK ASC DT BR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 19-5. DSPI Clock and Transfer Attributes Registers 0–7 (DSPIx_CTARn)

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

19-14 Freescale Semiconductor

The following table describes the fields in the DSPI clock and transfer attributes register:

Table 19-5. DSPIx_CTARn Field Description

Field Description

0
DBR

Double baud rate. The DBR bit doubles the effective baud rate of the serial communications clock (SCK). This field
is only used in master mode. It effectively halves the baud rate division ratio supporting faster frequencies and odd
division ratios for the serial communications clock (SCK). When the DBR bit is set, the duty cycle of the serial
communications clock (SCK) depends on the value in the baud rate prescaler and the clock phase bit as listed in the
following table. See the BR field and Section 19.4.6.1, “Baud Rate Generator” for details on how to compute the baud
rate. If the overall baud rate is divided by two or three system clocks, do not enable continuous SCK or the modified
timing format.
0 Baud rate is computed normally with a 50/50 duty cycle
1 Baud rate is doubled with the duty cycle depending on the baud rate prescaler

1–4
FMSZ
[0:3]

FMSZ. Selects the number of bits transferred per frame. The FMSZ field is used in master mode and slave mode.
The following table lists the frame sizes.

DBR CPHA PBR SCK Duty Cycle

0 any any 50/50

1 0 00 50/50

1 0 01 33/66

1 0 10 40/60

1 0 11 43/57

1 1 00 50/50

1 1 01 66/33

1 1 10 60/40

1 1 11 57/43

FMSZ Frame Size FMSZ Frame Size

0000 Invalid value 1000 9

0001 Invalid value 1001 10

0010 Invalid value 1010 11

0011 4 1011 12

0100 5 1100 13

0101 6 1101 14

0110 7 1110 15

0111 8 1111 16

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 19-15

5
CPOL

Clock polarity. Selects the inactive state of the serial communications clock (SCKx). This bit is used in both master
and slave mode. For successful communication between serial devices, the devices must have identical clock
polarities. When the continuous selection format is selected (CONT = 1 or DCONT = 1), switching between clock
polarities without stopping the DSPI can cause errors in the transfer due to the peripheral device interpreting the
switch of clock polarity as a valid clock edge. For more information on continuous selection format, see
Section 19.4.7.5, “Continuous Selection Format.”
0 The inactive state value of SCKx is low
1 The inactive state value of SCKx is high

6
CPHA

Clock phase. Selects which edge of SCKx causes data to change and which edge causes data to be captured. This
bit is used in both master and slave mode. For successful communication between serial devices, the devices must
have identical clock phase settings.
0 Data is captured on the leading edge of SCKx and changed on the following edge
1 Data is changed on the leading edge of SCKx and captured on the following edge

7
LSBFE

LSB first enable. Selects if the LSB or MSB of the frame is transferred first. This bit is only used in master mode.
0 Data is transferred MSB first
1 Data is transferred LSB first

8–9
PCSSCK

[0:1]

PCSx to SCKx delay prescaler. Selects the prescaler value for the delay between assertion of PCSx and the first
edge of the SCKx. Use in master mode only. The following table lists the prescaler values. The description for bitfield
CSSCK in Table 19-5 details how to compute the PCS to SCK delay.

10–11
PASC
[0:1]

After SCKx delay prescaler. Selects the prescaler value for the delay between the last edge of SCKx and the negation
of PCSx. Use in master mode only. The following table lists the prescaler values. The description for bitfield ASC in
Table 19-5 details how to compute the after SCKx delay.

Table 19-5. DSPIx_CTARn Field Description (continued)

Field Description

PCSSCK
Value

PCSx to SCKx Delay
Prescaler Value

00 1

01 3

10 5

11 7

PASC
Value

After SCKx Delay
Prescaler Value

00 1

01 3

10 5

11 7

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

19-16 Freescale Semiconductor

12–13
PDT
[0:1]

Delay after transfer prescaler. The PDT field selects the prescaler value for the delay between the negation of the
PCSx signal at the end of a frame and the assertion of PCSx at the beginning of the next frame. The PDT field is
only used in master mode. The following table lists the prescaler values. The description for bitfield DT in Table 19-5
details how to compute the delay after transfer.

14–15
PBR
[0:1]

Baud rate prescaler. Selects the prescaler value for the baud rate. Use in master mode only. The baud rate is the
frequency of the serial communications clock (SCKx). The system clock is divided by the prescaler value before the
baud rate selection takes place. The baud rate prescaler values are listed in the following table. The description for
PBR in Section 19.4.6.1, “Baud Rate Generator” details how to compute the baud rate.

Table 19-5. DSPIx_CTARn Field Description (continued)

Field Description

PDT
Value

Delay after Transfer
Prescaler Value

00 1

01 3

10 5

11 7

PBR
Value

Baud Rate
Prescaler Value

00 2

01 3

10 5

11 7

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 19-17

16–19
CSSCK

[0:3]

PCSx to SCKx delay scaler. Selects the scaler value for the PCSx to SCKx delay. Use in master mode only. The
PCSx to SCKx delay is the delay between the assertion of PCSx and the first edge of the SCKx. The following table
lists the scaler values.

The PCSx to SCKx delay is a multiple of the system clock period. It is computed using the following equation:

Note: See Section 19.4.6.2, “PCS to SCK Delay (tCSC),” for more details.

20-23
ASC
[0:3]

After SCKx delay scaler. Selects the scaler value for the After SCKx delay. Use in master mode only. The after SCKx
delay is the delay between the last edge of SCKx and the negation of PCSx. The following table lists the scaler
values.

The after SCKx delay is a multiple of the system clock period, and it is computed using the following equation:

Note: See Section 19.4.6.3, “After SCK Delay (tASC),” for more details.

Table 19-5. DSPIx_CTARn Field Description (continued)

Field Description

CSSCK
Value

PCS to SCK Delay
Scaler Value

CSSCK
Value

PCS to SCK Delay
Scaler Value

0000 2 1000 512

0001 4 1001 1024

0010 8 1010 2048

0011 16 1011 4096

0100 32 1100 8192

0101 64 1101 16384

0110 128 1110 32768

0111 256 1111 65536

tCSC
1

fSYS
----------- PCSSCK prescaler value CSSCK scaler value××=

ASC
Value

After SCK Delay
Scaler Value

ASC
Value

After SCK Delay
Scaler Value

0000 2 1000 512

0001 4 1001 1024

0010 8 1010 2048

0011 16 1011 4096

0100 32 1100 8192

0101 64 1101 16384

0110 128 1110 32768

0111 256 1111 65536

tASC
1

fSYS
----------- PASC Prescaler value ASC Scaler value××=

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

19-18 Freescale Semiconductor

24–27
DT

[0:3]

Delay after transfer scaler. The DT field selects the delay after transfer scaler. Use in master mode only. The delay
after transfer is the time between the negation of the PCSx signal at the end of a frame and the assertion of PCSx
at the beginning of the next frame. The following table lists the scaler values.

The delay after transfer is a multiple of the system clock period. It is computed using the following equation:

Note: See Section 19.4.6.4, “Delay after Transfer (tDT),” for more details

Table 19-5. DSPIx_CTARn Field Description (continued)

Field Description

DT Value
Delay after Transfer

Scaler Value
DT Value

Delay after
Transfer Scaler

Value

0000 2 1000 512

0001 4 1001 1024

0010 8 1010 2048

0011 16 1011 4096

0100 32 1100 8192

0101 64 1101 16384

0110 128 1110 32768

0111 256 1111 65536

tDT
1

fSYS
----------- PDT Prescaler value DT Scaler value××=

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 19-19

19.3.2.4 DSPI Status Register (DSPIx_SR)

The DSPIx_SR contains status and flag bits. The bits are set by the hardware and reflect the status of the
DSPI and indicate the occurrence of events that can generate interrupt or DMA requests. Software can
clear flag bits in the DSPIx_SR by writing a 1 to clear it (w1c). Writing a 0 to a flag bit has no effect.

28–31
BR

[0:3]

Baud rate scaler. Selects the scaler value for the baud rate. Use in master mode only. The pre-scaled system clock
is divided by the baud rate scaler to generate the frequency of the SCK. The following table lists the baud rate scaler
values.

The baud rate is computed using the following equation:

Note: See Section 19.4.6.1, “Baud Rate Generator,” for more details.

Address: Base + 0x002C Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R TCF TXRXS 0 EOQF TFUF 0 TFFF 0 0 0 0 0 RFOF 0 RFDF 0

W w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R TXCTR TXNXTPTR RXCTR POPNXTPTR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 19-6. DSPI Status Register (DSPIx_SR)

Table 19-5. DSPIx_CTARn Field Description (continued)

Field Description

BR Value
Baud Rate

Scaler Value
BR Value

Baud Rate
Scaler Value

0000 2 1000 256

0001 4 1001 512

0010 6 1010 1024

0011 8 1011 2048

0100 16 1100 4096

0101 32 1101 8192

0110 64 1110 16384

0111 128 1111 32768

SCK baud rate
fSYS

PBRPrescalerValue
-- 1 DBR+

BRScalerValue
--×=

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

19-20 Freescale Semiconductor

The following table describes the fields in the DSPI status register:

Table 19-6. DSPIx_SR Field Descriptions

Field Description

0
TCF

Transfer complete flag. Indicates that all bits in a frame have been shifted out. The TCF bit is set after the
last incoming databit is sampled, but before the tASC delay starts. See Section 19.4.7.1, “Classic SPI
Transfer Format (CPHA = 0)” and Section 19.4.7.2, “Classic SPI Transfer Format (CPHA = 1) for details. The
TCF bit is cleared by writing 1 to it.
0 Transfer not complete
1 Transfer complete

1
TXRXS

TX and RX status. Reflects the status of the DSPI. See Section 19.4.2, “Start and Stop of DSPI Transfers”
for information on what clears and sets this bit.
0 TX and RX operations are disabled (DSPI is in STOPPED state)
1 TX and RX operations are enabled (DSPI is in RUNNING state)

2 Reserved

3
EOQF

End of queue flag. Indicates that transmission in progress is the last entry in a queue. The EOQF bit is set
when the TX FIFO entry has the EOQ bit set in the command halfword and after the last incoming databit
is sampled, but before the tASC delay starts. See Section 19.4.7.1, “Classic SPI Transfer Format (CPHA =
0)” and Section 19.4.7.2, “Classic SPI Transfer Format (CPHA = 1)” for details.

The EOQF bit is cleared by writing 1 to it. When the EOQF bit is set, the TXRXS bit is automatically cleared.
0 EOQ is not set in the executing command
1 EOQ bit is set in the executing SPI command
Note: EOQF does not function in slave mode.

4
TFUF

Transmit FIFO underflow flag. Indicates that an underflow condition in the TX FIFO has occurred. The
transmit underflow condition is detected only for DSPI modules operating in slave mode and SPI
configuration. The TFUF bit is set when the TX FIFO of a DSPI operating in SPI slave mode is empty, and
a transfer is initiated by an external SPI master. The TFUF bit is cleared by writing 1 to it.
0 TX FIFO underflow has not occurred
1 TX FIFO underflow has occurred

5 Reserved

6
TFFF

Transmit FIFO fill flag. Indicates that the TX FIFO can be filled. Provides a method for the DSPI to request
more entries to be added to the TX FIFO. The TFFF bit is set while the TX FIFO is not full. The TFFF bit can
be cleared by writing 1 to it, or an by acknowledgement from the eDMA controller when the TX FIFO is full.
0 TX FIFO is full
1 TX FIFO is not full

7–11 Reserved

12
RFOF

Receive FIFO overflow flag. Indicates that an overflow condition in the RX FIFO has occurred. The bit is set
when the RX FIFO and shift register are full and a transfer is initiated. The bit is cleared by writing 1 to it.
0 RX FIFO overflow has not occurred
1 RX FIFO overflow has occurred

13 Reserved

14
RFDF

Receive FIFO drain flag. Indicates that the RX FIFO can be drained. Provides a method for the DSPI to
request that entries be removed from the RX FIFO. The bit is set while the RX FIFO is not empty. The RFDF
bit can be cleared by writing 1 to it, or by acknowledgement from the eDMA controller when the RX FIFO is
empty.
0 RX FIFO is empty
1 RX FIFO is not empty
Note: In the interrupt service routine, RFDF must be cleared only after the DSPIx_POPR register is read.

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 19-21

19.3.2.5 DSPI DMA and Interrupt Request Select and Enable Register
(DSPIx_RSER)

The DSPIx_RSER serves two purposes: enables flag bits in the DSPIx_SR to generate DMA requests or
interrupt requests, and selects the type of request to generate. See the bit descriptions for the type of
requests that are supported. Do not write to the DSPIx_RSER while the DSPI is running. See section LINK
for more information on the global Interrupt Vectors (table) and DMA channel assignments (list).

15 Reserved

16–19
TXCTR

[0:3]

TX FIFO counter. Indicates the number of valid entries in the TX FIFO. The TXCTR increments every time
the DSPI _PUSHR is written. The TXCTR is decremented every time an SPI command is executed and the
SPI data is transferred to the shift register.

20–23
TXNXTPTR

[0:3]

Transmit next pointer. Indicates which TX FIFO entry is transmitted during the next transfer. The TXNXTPTR
field is updated every time SPI data is transferred from the TX FIFO to the shift register. See
Section 19.4.3.4, “Using the TX FIFO Buffering Mechanism” for more details.

24–27
RXCTR

[0:3]

RX FIFO counter. Indicates the number of entries in the RX FIFO. The RXCTR is decremented every time
the DSPI _POPR is read. The RXCTR increments after the last incoming databit is sampled, but before the
tASC delay starts. See Section 19.4.7.1, “Classic SPI Transfer Format (CPHA = 0)” and Section 19.4.7.2,
“Classic SPI Transfer Format (CPHA = 1)” for details.

28–31
POPNXTPTR

[0:3]

Pop next pointer. Contains a pointer to the RX FIFO entry that is returned when the DSPIx_POPR is read.
The POPNXTPTR is updated when the DSPIx_POPR is read. See Section 19.4.3.5, “Using the RX FIFO
Buffering Mechanism” for more details.

Address: Base + 0x0030 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R TCF_
RE

0 0 EOQF
_RE

TFUF_
RE

0 TFFF_
RE

TFFF_
DIRS

0 0 0 0 RFOF
_RE

0 RFDF
_RE

RFDF_
DIRSW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 19-7. DSPI DMA / Interrupt Request Select and Enable Register (DSPIx_RSER)

Table 19-6. DSPIx_SR Field Descriptions (continued)

Field Description

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

19-22 Freescale Semiconductor

The following table describes the fields in the DSPI DMA / interrupt request and enable register:

Table 19-7. DSPIx_RSER Field Descriptions

Field Description

0
TCF_RE

Transmission complete request enable. Enables TCF flag in the DSPIx_SR to generate an interrupt request.
0 TCF interrupt requests are disabled
1 TCF interrupt requests are enabled

1–2 Reserved

3
EOQF_RE

DSPI finished request enable. Enables the EOQF flag in the DSPIx_SR to generate an interrupt request.
0 EOQF interrupt requests are disabled
1 EOQF interrupt requests are enabled

4
TFUF_RE

Transmit FIFO underflow request enable. The TFUF_RE bit enables the TFUF flag in the DSPIx_SR to
generate an interrupt request.
0 TFUF interrupt requests are disabled
1 TFUF interrupt requests are enabled

5 Reserved

6
TFFF_RE

Transmit FIFO fill request enable. Enables the TFFF flag in the DSPIx_SR to generate a request. The
TFFF_DIRS bit selects between generating an interrupt request or a DMA requests.
0 TFFF interrupt requests or DMA requests are disabled
1 TFFF interrupt requests or DMA requests are enabled

7
TFFF_DIRS

Transmit FIFO fill DMA or interrupt request select. Selects between generating a DMA request or an interrupt
request. When the TFFF flag bit in the DSPIx_SR is set, and the TFFF_RE bit in the DSPIx_RSER is set,
this bit selects between generating an interrupt request or a DMA request.

0 Interrupt request is selected
1 DMA request is selected

8–11 Reserved

12
RFOF_RE

Receive FIFO overflow request enable. Enables the RFOF flag in the DSPIx_SR to generate an interrupt
requests.

0 RFOF interrupt requests are disabled
1 RFOF interrupt requests are enabled

13 Reserved

14
RFDF_RE

Receive FIFO drain request enable. Enables the RFDF flag in the DSPIx_SR to generate a request. The
RFDF_DIRS bit selects between generating an interrupt request or a DMA request.
0 RFDF interrupt requests or DMA requests are disabled
1 RFDF interrupt requests or DMA requests are enabled

15
RFDF_DIRS

Receive FIFO drain DMA or interrupt request select. Selects between generating a DMA request or an
interrupt request. When the RFDF flag bit in the DSPIx_SR is set, and the RFDF_RE bit in the DSPIx_RSER
is set, the RFDF_DIRS bit selects between generating an interrupt request or a DMA request.
0 Interrupt request is selected
1 DMA request is selected

16–31 Reserved

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 19-23

19.3.2.6 DSPI PUSH TX FIFO Register (DSPIx_PUSHR)

The DSPIx_PUSHR provides a means to write to the TX FIFO. Data written to this register is transferred
to the TX FIFO. See Section 19.4.3.4, “Using the TX FIFO Buffering Mechanism,” for more information.
Write accesses of 8- or 16-bits to the DSPIx_PUSHR transfers 32 bits to the TX FIFO.

NOTE
TXDATA is used in master and slave modes.

Address: Base + 0x0034 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
CONT CTAS EOQ

CT
CNT

0 0
0 0 PCS5 PCS4 PCS3 PCS2 PCS1 PCS0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
TXDATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 19-8. DSPI PUSH TX FIFO Register (DSPIx_PUSHR)

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

19-24 Freescale Semiconductor

The following table describes the fields in the DSPI push transmit FIFO register:

Table 19-8. DSPIx_PUSHR Field Descriptions

Field Description

0
CONT

Continuous peripheral chip select enable. Selects a continuous selection format. The bit is used in SPI master mode.
The bit enables the selected PCS signals to remain asserted between transfers. See Section 19.4.7.5, “Continuous
Selection Format,” for more information.
0 Return peripheral chip select signals to their inactive state between transfers
1 Keep peripheral chip select signals asserted between transfers

1–3
CTAS
[0:2]

Clock and transfer attributes select. Selects which of the DSPIx_CTARs is used to set the transfer attributes for the
SPI frame. In SPI slave mode, DSPIx_CTAR0 is used. The following table shows how the CTAS values map to the
DSPIx_CTARs. There are eight DSPIx_CTARs in the device DSPI implementation.
Note: Use in SPI master mode only.

4
EOQ

End of queue. Provides a means for host software to signal to the DSPI that the current SPI transfer is the last in a
queue. At the end of the transfer the EOQF bit in the DSPIx_SR is set.
Note: Use in SPI master mode only.
0 The SPI data is not the last data to transfer
1 The SPI data is the last data to transfer

5
CTCNT

Clear SPI_TCNT. Provides a means for host software to clear the SPI transfer counter. The CTCNT bit clears the
SPI_TCNT field in the DSPIx_TCR. The SPI_TCNT field is cleared before transmission of the current SPI frame
begins.
Note: Use in SPI master mode only.
0 Do not clear SPI_TCNT field in the DSPIx_TCR
1 Clear SPI_TCNT field in the DSPIx_TCR

6–7 Reserved

8–9 Reserved, but implemented. These bits are writable, but have no effect.

10–15
PCSx

Peripheral chip select x. Selects which PCSx signals are asserted for the transfer.
Note: Use in SPI master mode only.

0 Negate the PCSx signal
1 Assert the PCSx signal

16–31
TXDATA

[0:15]

Transmit data. Holds SPI data for transfer according to the associated SPI command.
Note: Use TXDATA in master and slave modes.

CTAS
Use Clock and Transfer

Attributes from

000 DSPIx_CTAR0

001 DSPIx_CTAR1

010 DSPIx_CTAR2

011 DSPIx_CTAR3

100 DSPIx_CTAR4

101 DSPIx_CTAR5

110 DSPIx_CTAR6

111 DSPIx_CTAR7

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 19-25

19.3.2.7 DSPI POP RX FIFO Register (DSPIx_POPR)

The DSPIx_POPR allows you to read the RX FIFO. See Section 19.4.3.5, “Using the RX FIFO Buffering
Mechanism” for a description of the RX FIFO operations. Eight-bit or 16-bit read accesses to the
DSPIx_POPR fetches the RX FIFO data, and updates the counter and pointer.

NOTE
Reading the DSPIx_POPR field fetches the data from the current RX FIFO
entry. Once the data is read, the read data pointer moves to the next RX
FIFO entry, which prevents access to the data in the current entry. Therefore,
do not read DSPIx_POPR unless you need the data. For compatibility,
configure the TLB (MMU table) entry for DSPIx_POPR as guarded.

The following table describes the fields in the DSPI pop receive FIFO register:

Address: Base + 0x0038 Access: R/O

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R RXDATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 19-9. DSPI POP RX FIFO Register (DSPIx_POPR)

Table 19-9. DSPIx_POPR Field Descriptions

Field Description

0–15 Reserved, must be cleared.

16–31
RXDATA

[0:15]

Received data. The RXDATA field contains the SPI data from the RX FIFO entry pointed to by the pop next data
pointer (POPNXTPTR).

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

19-26 Freescale Semiconductor

19.3.2.8 DSPI Transmit FIFO Registers 0–3 (DSPIx_TXFRn)

The DSPIx_TXFRn registers provide visibility into the TX FIFO for debugging purposes. Each register is
an entry in the TX FIFO. The registers are read-only and cannot be modified. Reading the DSPIx_TXFRn
registers does not alter the state of the TX FIFO. The MCU uses four registers to implement the TX FIFO,
that is DSPIx_TXFR0–DSPIx_TXFR3 are used.

The following table describes the fields in the DSPI transmit FIFO register:

Address:
Base + 0x003C (DSPIx_TXFR0)
Base + 0x0040 (DSPIx_TXFR1)
Base + 0x0044 (DSPIx_TXFR2)
Base + 0x0048 (DSPIx_TXFR3)

Access: R/O

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R TXCMD

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R TXDATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 19-10. DSPI Transmit FIFO Register 0–3 (DSPIx_TXFRn)

Table 19-10. DSPIx_TXFRn Field Descriptions

Field Description

0–15
TXCMD
[0:15]

Transmit command. Contains the command that sets the transfer attributes for the SPI data. See Section 19.3.2.6,
“DSPI PUSH TX FIFO Register (DSPIx_PUSHR),” for details on the command field.

16–31
TXDATA

[0:15]

Transmit data. Contains the SPI data to be shifted out.

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 19-27

19.3.2.9 DSPI Receive FIFO Registers 0–3 (DSPIx_RXFRn)

The DSPIx_RXFRn registers provide visibility into the RX FIFO for debugging purposes. Each register is
an entry in the RX FIFO. The DSPIx_RXFR registers are read-only. Reading the DSPIx_RXFRn registers
does not alter the state of the RX FIFO. The device uses four registers to implement the RX FIFO, that is
DSPIx_RXFR0–DSPIx_RXFR3 are used.

The following table describes the field in the DSPI receive FIFO register:

Address:
Base + 0x007C (DSPIx_RXFR0)
Base + 0x0080 (DSPIx_RXFR1)
Base + 0x0084 (DSPIx_RXFR2)
Base + 0x0088 (DSPIx_RXFR3)

Access: R/O

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R RXDATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 19-11. DSPI Receive FIFO Registers 0–3 (DSPIx_RXFRn)

Table 19-11. DSPIx_RXFRn Field Description

Field Description

0–15 Reserved, must be cleared.

16–31
RXDATA

[15:0]

Receive data. Contains the received SPI data.

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

19-28 Freescale Semiconductor

19.3.2.10 DSPI DSI Configuration Register (DSPIx_DSICR)

The DSPIx_DSICR selects attributes for DSI and CSI configurations. Do not write to the DSPIx_DSICR
while the DSPI is running.

The following table describes the fields in the DSPI deserial serial interface configuration register:

Address: Base + 0x00BC Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MTOE

0
MTOCNT

0 0 0 0
TXSS TPOL TRRE CID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R DCO
NT

DSICTAS
0 0 0 0

0 0
DPCS

5
DPCS

4
DPCS

3
DPCS

2
DPCS

1
DPCS

0W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 19-12. DSPI DSI Configuration Register (DSPIx_DSICR)

Table 19-12. DSPIx_DSICR Field Descriptions

Field Description

0
MTOE

Multiple transfer operation enable. Enables multiple DSPIs connected in a parallel or serial configuration.
See Section 19.4.4.7, “Multiple Transfer Operation (MTO),” for more information.
0 Multiple transfer operation disabled
1 Multiple transfer operation enabled

1 Reserved

2–7
MTOCNT

[0:5]

Multiple transfer operation count. Selects number of bits to be shifted out during a transfer in multiple transfer
operation. The field sets the number of SCK cycles that the bus master needs to generate to complete the
transfer. The number of SCK cycles used are one more than the value in the MTOCNT field. The number of SCK
cycles defined by MTOCNT must be equal to or greater than the frame size.

8–11 Reserved

12
TXSS

Transmit data source select. Selects the source of data to be serialized. The source can be data from host
software written to the DSPI DSI alternate serialization data register (DSPIx_ASDR), or parallel output pin states
latched into the DSPI DSI serialization data register (DSPIx_SDR).
0 Source of serialized data is the DSPIx_SDR
1 Source of serialized data is the DSPIx_ASDR

13
TPOL

Trigger polarity. Selects the active edge of the internal hardware trigger input signal (ht). The bit selects which
edge initiates a transfer in the DSI configuration. See Section 19.4.4.5, “DSI Transfer Initiation Control,” for more
information.
0 Falling-edge initiates a transfer
1 Rising-edge initiates a transfer

14
TRRE

Trigger reception enable. Enables the DSPI to initiate a transfer when an external trigger signal is received. The
bit is only valid in DSI configuration. See Section 19.4.4.5, “DSI Transfer Initiation Control,” for more information.
0 Trigger signal reception disabled
1 Trigger signal reception enabled

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 19-29

15
CID

Change in data transfer enable. Enables a change in serialization data to initiate a transfer. The bit is used in
master mode in DSI and CSI configurations to control when to initiate transfers. When the CID bit is set,
serialization is initiated when the current DSI data differs from the previous DSI data shifted out. The
DSPIx_COMPR is compared with the DSPIx_SDR or DSPIx_ASDR to detect a change in data. See
Section 19.4.4.5, “DSI Transfer Initiation Control,” for more information.
0 Change in data transfer operation disabled
1 Change in data transfer operation enabled

16
DCONT

DSI continuous peripheral chip select enable. Enables the PCSx signals to remain asserted between transfers.
The DCONT bit only affects the PCS signals in DSI master mode. See Section 19.4.7.5, “Continuous Selection
Format,” for details.
0 Return peripheral chip select signals to their inactive state after transfer is complete
1 Keep peripheral chip select signals asserted after transfer is complete

17–19
DSICTAS

[0:2]

DSI clock and transfer attributes select. The DSICTAS field selects which of the DSPIx_CTARs is used to
provide transfer attributes in DSI configuration. The DSICTAS field is used in DSI master mode. In DSI slave
mode, the DSPIx_CTAR1 is always selected. The following table lists the DSICTAS to DSPIx_CTARs mapping.

20–23 Reserved

24–25 Reserved, but implemented. These bits are writable, but have no effect.

26–31
DPCSx

DSI peripheral chip select n. The DPCS bits select which of the PCSx signals to assert during a DSI transfer.
The DPCS bits assert and negate the PCSx signals in DSI master mode only.
0 Negate PCSx
1 Assert PCSx

Table 19-12. DSPIx_DSICR Field Descriptions (continued)

Field Description

DSICTAS
DSI Clock and Transfer Attributes

Controlled by

000 DSPIx_CTAR0

001 DSPIx_CTAR1

010 DSPIx_CTAR2

011 DSPIx_CTAR3

100 DSPIx_CTAR4

101 DSPIx_CTAR5

110 DSPIx_CTAR6

111 DSPIx_CTAR7

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

19-30 Freescale Semiconductor

19.3.2.11 DSPI DSI Serialization Data Register (DSPIx_SDR)

The DSPIx_SDR contains the signal states of the parallel input signals from the eTPU or the eMIOS. The
pin states of the parallel input signals are latched into the DSPIx_SDR on the rising edge of every system
clock. The DSPIx_SDR is read-only. When the TXSS bit in the DSPIx_DSICR is negated, the data in the
DSPIx_SDR is the source of the serialized data.

The following table describes the field in the DSPI deserial serial interface serialization data register:

Address: Base + 0x00C0 Access: R/O

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R SER_DATA [15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 19-13. DSPI DSI Serialization Data Register (DSPIx_SDR)

Table 19-13. DSPIx_SDR Field Description

Bits Description

0–15 Reserved

16–31
SER_DATA

[15:0]

Serialized data. The SER_DATA field contains the signal states of the parallel input signals.
SER_DATA [15:0] maps to DSPI serialization inputs IN[15:0]. See Section 19.4.4.6, “DSPI
Connections to eTPUA, eMIOS and SIU.”

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 19-31

19.3.2.12 DSPI DSI Alternate Serialization Data Register (DSPIx_ASDR)

The DSPIx_ASDR allows the host software to write data to be serialized. When the TXSS bit in the
DSPIx_DSICR is set, the data in the DSPIx_ASDR is the source of the serialized data. Writes to the
DSPIx_ASDR take effect on the next frame boundary.

The following table describes the field in the DSPI deserial serial interface alternate serialization data
register:

Address: Base + 0x00C4 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
ASER_DATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 19-14. DSPI DSI Alternate Serialization Data Register (DSPIx_ASDR)

Table 19-14. DSPIx_ASDR Field Description

Field Description

0–15 Reserved

16–31
ASER_DATA

[0:15]

Alternate serialized data. The ASER_DATA field holds the alternate data to be serialized.

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

19-32 Freescale Semiconductor

19.3.2.13 DSPI DSI Transmit Comparison Register (DSPIx_COMPR)

The DSPIx_COMPR holds a copy of the last transmitted DSI data. The DSPIx_COMPR is read-only. DSI
data is transferred to this register as it is loaded into the transmit shift register.

The following table describes the field in the DSPI deserial serial interface transmit comparison register:

Address: Base + 0x00C8 Access: R/O

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R COMP_DATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 19-15. DSPI DSI Transmit Comparison Register (DSPIx_COMPR)

Table 19-15. DSPIx_COMPR Field Description

Field Description

0–15 Reserved

16–31
COMP_DATA

[0:15]

Compare data. The COMP_DATA field holds the last serialized DSI data.

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 19-33

19.3.2.14 DSPI DSI Deserialization Data Register (DSPIx_DDR)

The DSPIx_DDR holds the signal states for the parallel output signals. The DSPIx_DDR is read-only and
it is memory mapped so that host software can read the incoming DSI frames.

The following table describes the field in the DSPI deserialization data register:

19.4 Functional Description
The DSPI supports full-duplex, synchronous serial communications between the MCU and peripheral
devices. The DSPI can also be used to reduce the number of pins required for I/O by serializing and
deserializing up to 16 parallel input/output signals from the eTPU and eMIOS. All communications use a
protocol very similar to SPI.

You can configure the DSPI to a serial peripheral interface (SPI) in which the DSPI operates as a basic SPI
or a queued SPI.

The DSPI has three configurations:

• Serial peripheral interface (SPI) configuration in which the DSPI operates as a basic SPI or a
queued SPI.

• Deserial serial interface (DSI) configuration where the DSPI serializes eTPU and eMIOS output
channels and deserializes the received data by placing it on the eTPU and eMIOS input channels
and as inputs to the External Interrupt Request subblock of the SIU.

• Combined serial interface (CSI) configuration where the DSPI operates in both SPI and DSI
configurations interleaving DSI frames with SPI frames, giving priority to SPI frames.

Address: Base + 0x00CC Access: R/O

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R DESER_DATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 19-16. DSPI Deserialization Data Register (DSPIx_DDR)

Table 19-16. DSPIx_DDR Field Description

Field Description

0–15 Reserved

16–31
DESER_DATA

Deserialized data. Holds deserialized data which is presented as signal states to the parallel output signals.

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

19-34 Freescale Semiconductor

The DCONF field in the DSPIx_MCR register determines the DSPI configuration. See Table 19-3 for the
DSPI configuration values.

The DSPIx_CTAR0–DSPIx_CTAR7 registers hold clock and transfer attributes.The manner in which a
CTAR is selected depends on the DSPI configuration (SPI, DSI, or CSI). The SPI configuration can select
which CTAR to use on a frame-by-frame basis by setting the CTAS field in the DSPIx_PUSHR.The DSI
configuration statically selects which CTAR to use. In CSI configuration, priority logic determines if SPI
data or DSI data is transferred. The type of data transferred (whether DSI or SPI) dictates which CTAR the
CSI configuration uses. See Section 19.3.2.3, “DSPI Clock and Transfer Attributes Registers 0–7
(DSPIx_CTARn),” for information on DSPIx_CTAR fields.

The 16-bit shift register in the master and the 16-bit shift register in the slave are linked by the SOUTx and
SINx signals to form a distributed 32-bit register. When a data transfer operation is performed, data is
serially shifted a pre-determined number of bit positions. Because the registers are linked, data is
exchanged between the master and the slave; the data that was in the master’s shift register is now in the
shift register of the slave, and vice versa. At the end of a transfer, the TCF bit in the DSPIx_SR is set to
indicate a completed transfer. Figure 19-17 illustrates how master and slave data is exchanged.

Figure 19-17. SPI and DSI Serial Protocol Overview

The DSPI has six peripheral chip select (PCSx) signals that are used to communicate with slave devices.

Transfer protocols and timing properties are shared by the three DSPI configurations; these properties are
described independently of the configuration in Section 19.4.7, “Transfer Formats.” The transfer rate and
delay settings are described in section Section 19.4.6, “DSPI Baud Rate and Clock Delay Generation.”

See Section 19.4.10, “Power Saving Features” for information on the power-saving features of the DSPI.

19.4.1 Modes of Operation

The DSPI modules have four available distinct modes:

• Master mode

• Slave mode

• Module disable mode

• Debug mode

Master, slave, and module disable modes are module-specific modes while debug mode is a
device-specific mode.

DSPI Master

Shift register

Baud rate generator

DSPI Slave

Shift register

SOUTxSINx
SOUTx SINx

SCKx SCKx

PCSx SS

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 19-35

The module-specific modes are determined by bits in the DSPIx_MCR. Debug mode is a mode that the
entire device can enter in parallel with the DSPI being configured in one of its module-specific modes.

19.4.1.1 Master Mode

Master mode allows the DSPI to initiate and control communications. The DSPI operates as bus master
when the MSTR bit in the DSPIx_MCR is set. The serial communications clock (SCK) is controlled by
the master DSPI. All three DSPI configurations are valid in master mode.

In SPI configuration, master mode transfer attributes are controlled by the SPI command in the current TX
FIFO entry. The CTAS field in the SPI command selects which of the eight DSPIx_CTARs are used to set
the transfer attributes. Transfer attribute control is on a frame-by-frame basis.

See Section 19.4.3, “Serial Peripheral Interface (SPI) Configuration” for more details.

In DSI configuration, master mode transfer attributes are controlled by the DSPIx_DSCIR. A detailed
description of the DSPIx_DSCIR is located in Section 19.3.2.10, “DSPI DSI Configuration Register
(DSPIx_DSICR).” The DSISCTAS field in the DSPIx_DSICR selects which of the DSPIx_CTARs are
used to set the transfer attributes. Transfer attributes are set up during initialization and must not be
changed between frames.

See Section 19.4.4, “Deserial Serial Interface (DSI) Configuration,” for more details.

The CSI configuration is only available in master mode. In CSI configuration, the DSI data is transferred
using DSI configuration transfer attributes and SPI data is transferred using the SPI configuration transfer
attributes. For the bus slave to distinguish between DSI and SPI frames, the transfer attributes for the two
types of frames must utilize different peripheral chip select signals.

See Section 19.4.5, “Combined Serial Interface (CSI) Configuration,” for details.

19.4.1.2 Slave Mode

In slave mode the DSPI responds to transfers initiated by an SPI master. The DSPI operates as bus slave
when the MSTR bit in the DSPIx_MCR is cleared to zero. The DSPI slave is selected by a bus master when
the slave’s SS signal asserts. In slave mode, the SCK is provided by the bus master. All transfer attributes
are controlled by the bus master, except the clock polarity, clock phase and the number of bits to transfer
which must be configured in the DSPI slave to communicate correctly.

The SPI and DSI configurations are valid in slave mode. CSI configuration is not available in slave mode.
In SPI slave mode, the slave transfer attributes are set in the DSPIx_CTAR0. In DSI slave mode the slave
transfer attributes are set in the DSPIx_CTAR1. In slave mode, for both SPI and DSI configurations, data
is transferred MSB first. The LSBFE field of the related CTAR is not used.

19.4.1.3 Module Disable Mode

The module disable mode is used for MCU power management. The clock to the non-memory mapped
logic in the DSPI is stopped while in module disable mode. The DSPI enters the module disable mode
when the MDIS bit in DSPIx_MCR is set.

See Section 19.4.10, “Power Saving Features,” for more details on the module disable mode.

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

19-36 Freescale Semiconductor

19.4.1.4 Debug Mode

The debug mode is used for system development and debugging. If the MCU enters debug mode while the
FRZ bit in the DSPIx_MCR is set, the DSPI stops all serial transfers and enters a stopped state. If the MCU
enters debug mode while the FRZ bit is cleared, the DSPI is unaffected and remains in the module-specific
mode and configuration of the DSPI. The DSPI enters debug mode when a debug request is asserted by an
external controller.

See Figure 19-18 for a state diagram.

19.4.2 Start and Stop of DSPI Transfers

The DSPI has two operating states: STOPPED and RUNNING. The states are independent of DSPI
configuration. The default state of the DSPI is STOPPED. In the STOPPED state no serial transfers are
initiated in master mode and no transfers are responded to in slave mode. The STOPPED state is also a
safe state for writing the various configuration registers of the DSPI without causing undetermined results.
The TXRXS bit in the DSPIx_SR is cleared in this state. In the RUNNING state, serial transfers take place.
The TXRXS bit in the DSPIx_SR is set in the RUNNING state.

Figure 19-18 shows a state diagram of the start and stop mechanism.

Figure 19-18. DSPI Start and Stop State Diagram

The transitions are described in Table 19-17.

Table 19-17. State Transitions for Start and Stop of DSPI Transfers

Transition # Current State Next State Description

0 RESET STOPPED Generic power-on-reset transition

1 STOPPED RUNNING The DSPI starts (transitions from STOPPED to RUNNING) when all
of the following conditions are true:
 • EOQF bit is clear
 • Debug mode is deselected or the FRZ bit is clear
 • HALT bit is clear

2 RUNNING STOPPED The DSPI stops (transitions from RUNNING to STOPPED) after the
current frame for any one of the following conditions:
 • EOQF bit is set
 • Debug mode is selected and the FRZ bit is set
 • HALT bit is set

RUNNING
TXRXS = 1

STOPPED
TXRXS = 0

RESET

Power-on-Reset 0

1

2

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 19-37

State transitions from RUNNING to STOPPED occur on the next frame boundary if a transfer is in
progress, or on the next system clock cycle if no transfers are in progress.

19.4.3 Serial Peripheral Interface (SPI) Configuration

The SPI configuration transfers data serially using a shift register and a selection of programmable transfer
attributes. The DSPI is in SPI configuration when the DCONF field in the DSPIx_MCR is 0b00. The SPI
frames can be from 4 to 16 bits long. The data to be transmitted can come from queues stored in RAM
external to the DSPI. Host software or an eDMA controller can transfer the SPI data from the queues to a
first-in first-out (FIFO) buffer. The received data is stored in entries in the receive FIFO (RX FIFO) buffer.
Host software or an eDMA controller transfers the received data from the RX FIFO to memory external
to the DSPI.

The FIFO buffer operations are described in Section 19.4.3.4, “Using the TX FIFO Buffering
Mechanism,” and Section 19.4.3.5, “Using the RX FIFO Buffering Mechanism.”

The interrupt and DMA request conditions are described in Section 19.4.9, “Interrupts and DMA
Requests.”

The SPI configuration supports two module-specific modes; master mode and slave mode. The FIFO
operations are similar for the master mode and slave mode. The main difference is that in master mode the
DSPI initiates and controls the transfer according to the fields in the SPI command field of the TX FIFO
entry. In slave mode the DSPI only responds to transfers initiated by a bus master external to the DSPI and
the SPI command field of the TX FIFO entry is not used.

19.4.3.1 SPI Master Mode

In SPI master mode the DSPI initiates the serial transfers by controlling the serial communications clock
(SCKx) and the peripheral chip select (PCSx) signals. The SPI command field in the executing TX FIFO
entry determines which CTARs are used to set the transfer attributes and which PCSx signal to assert. The
command field also contains various bits that help with queue management and transfer protocol. The data
field in the executing TX FIFO entry is loaded into the shift register and shifted out on the serial out
(SOUTx) pin. In SPI master mode, each SPI frame that is transmitted has a command that controls the
transfer on a frame-by-frame basis.

See Section 19.3.2.6, “DSPI PUSH TX FIFO Register (DSPIx_PUSHR),” for details on the SPI command
fields.

19.4.3.2 SPI Slave Mode

In SPI slave mode the DSPI responds to transfers initiated by an SPI bus master. The DSPI does not initiate
transfers. Certain transfer attributes such as clock polarity, clock phase and frame size must be set for
successful communication with an SPI master. The SPI slave mode transfer attributes are set in the
DSPIx_CTAR0.

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

19-38 Freescale Semiconductor

19.4.3.3 FIFO Disable Operation

The FIFO disable mechanisms allow SPI transfers without using the TX FIFO or RX FIFO. The DSPI
operates as a double-buffered simplified SPI when the FIFOs are disabled. The TX and RX FIFOs are
disabled separately.

• Disable the TX FIFO by writing a 1 to the DIS_TXF bit in the DSPIx_MCR.

• Disable the RX FIFO is disabled by writing a 1 to the DIS_RXF bit in the DSPIx_MCR.

The FIFO disable mechanisms are transparent to the host software; transmit data and commands are
written to the DSPIx_PUSHR and received data is read from the DSPIx_POPR.

• When the TX FIFO is disabled, the TFFF, TFUF, and TXCTR fields in DSPIx_SR use one-entry
FIFO. The contents of the DSPIx_TXFRs and TXNXTPTR are undefined.

• When the RX FIFO is disabled, the RFDF, RFOF, and RXCTR fields in the DSPIx_SR behave as
if there is a one-entry FIFO but the contents of the DSPIx_RXFRs and POPNXTPTR are
undefined.

Disable the TX and RX FIFOs only if required by the application's operating mode. You must disable a
FIFO before it is accessed. Failure to disable a FIFO prior to the first FIFO access can result in invalid
results and is not supported.

19.4.3.4 Using the TX FIFO Buffering Mechanism

The TX FIFO functions as a buffer of SPI data and SPI commands for transmission. The TX FIFO holds
four entries, each consisting of a command field and a data field. SPI commands and data are added to the
TX FIFO by writing to the DSPI push TX FIFO register (DSPIx_PUSHR). For more information on
DSPIx_PUSHR. TX FIFO entries can only be removed from the TX FIFO by being shifted out or by
flushing the TX FIFO.

See Section 19.3.2.6, “DSPI PUSH TX FIFO Register (DSPIx_PUSHR).”

The TX FIFO counter field (TXCTR) in the DSPI status register (DSPIx_SR) indicates the number of valid
entries in the TX FIFO. The TXCTR is updated every time the DSPI _PUSHR is written or SPI data is
transferred into the shift register from the TX FIFO.

See Section 19.3.2.4, “DSPI Status Register (DSPIx_SR)” for more information on DSPIx_SR.

The TXNXTPTR field indicates which TX FIFO entry is transmitted during the next transfer. The
TXNXTPTR contains the positive offset from DSPIx_TXFR0 in number of 32-bit registers. For example,
TXNXTPTR equal to two means that the DSPIx_TXFR2 contains the SPI data and command for the next
transfer. The TXNXTPTR field increments every time SPI data is transferred from the TX FIFO to the shift
register.

19.4.3.4.1 Filling the TX FIFO

Host software or the eDMA controller can add (push) entries to the TX FIFO by writing to the
DSPIx_PUSHR. When the TX FIFO is not full, the TX FIFO fill flag (TFFF) in the DSPIx_SR is set. The
TFFF bit is cleared when the TX FIFO is full and the eDMA controller indicates that a write to
DSPIx_PUSHR is complete or alternatively by host software writing a 1 to the TFFF in the DSPIx_SR.
The TFFF can generate a DMA request or an interrupt request.

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 19-39

See Section 19.4.9.2, “Transmit FIFO Fill Interrupt or DMA Request (TFFF),” for details.

The DSPI ignores attempts to push data to a full TX FIFO; that is, the state of the TX FIFO is unchanged.
No error condition is indicated.

19.4.3.4.2 Draining the TX FIFO

The TX FIFO entries are removed (drained) by shifting SPI data out through the shift register. Entries are
transferred from the TX FIFO to the shift register and shifted out as long as there are valid entries in the
TX FIFO. Every time an entry is transferred from the TX FIFO to the shift register, the TX FIFO counter
is decremented by one. At the end of a transfer, the TCF bit in the DSPIx_SR is set to indicate the
completion of a transfer. The TX FIFO is flushed by writing a 1 to the CLR_TXF bit in DSPIx_MCR.

If an external SPI bus master initiates a transfer with a DSPI slave while the slave’s DSPI TX FIFO is
empty, the transmit FIFO underflow flag (TFUF) in the slave’s DSPIx_SR is set.

See Section 19.4.9.4, “Transmit FIFO Underflow Interrupt Request (TFUF),”for details.

19.4.3.5 Using the RX FIFO Buffering Mechanism

The RX FIFO functions as a buffer for data received on the SIN pin. The RX FIFO holds four received
SPI data frames. SPI data is added to the RX FIFO at the completion of a transfer when the received data
in the shift register is transferred into the RX FIFO. SPI data is captured from the RX FIFO by reading the
DSPIx_POPR register. RX FIFO entries are removed from the RX FIFO by reading the DSPIx_POPR or
by flushing the RX FIFO.

See Section 19.3.2.7, “DSPI POP RX FIFO Register (DSPIx_POPR)” for more information on the
DSPIx_POPR.

The RX FIFO counter field (RXCTR) in the DSPI status register (DSPIx_SR) indicates the number of
valid entries in the RX FIFO. The RXCTR is updated every time the DSPI _POPR is read or SPI data is
copied from the shift register to the RX FIFO.

The POPNXTPTR field in the DSPIx_SR points to the RX FIFO entry that is returned when the
DSPIx_POPR is read. The POPNXTPTR contains the positive, 32-bit word offset from DSPIx_RXFR0.
For example, a POPNXTPTR equal to two means that the DSPIx_RXFR2 contains the received SPI data
that is returned when DSPIx_POPR is read. The POPNXTPTR field increments every time the
DSPIx_POPR is read, and starts over again every four frames.

19.4.3.5.1 Filling the RX FIFO

The RX FIFO is filled with the received SPI data from the shift register. While the RX FIFO is not full,
SPI frames from the shift register are transferred to the RX FIFO. Every time an SPI frame is transferred
to the RX FIFO the RX FIFO counter increments by one.

If the RX FIFO and shift register are full and a transfer is initiated, the RFOF bit in the DSPIx_SR is set
indicating an overflow condition. Depending on the state of the ROOE bit in the DSPIx_MCR, the data
from the transfer that generated the overflow is ignored or put in the shift register. If the ROOE bit is set,
the incoming data is put in the shift register. If the ROOE bit is cleared, the incoming data is ignored.

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

19-40 Freescale Semiconductor

19.4.3.5.2 Draining the RX FIFO

Host software or the eDMA can remove (pop) entries from the RX FIFO by reading the DSPIx_POPR. A
read of the DSPIx_POPR decrements the RX FIFO counter by one. Attempts to pop data from an empty
RX FIFO are ignored, the RX FIFO counter remains unchanged. The data returned from reading an empty
RX FIFO is undetermined.

See Section 19.3.2.7, “DSPI POP RX FIFO Register (DSPIx_POPR)” for more information on
DSPIx_POPR.

When the RX FIFO is not empty, the RX FIFO drain flag (RFDF) in the DSPIx_SR is set. The RFDF bit
is cleared when the RX_FIFO is empty and the eDMA controller indicates that a read from DSPIx_POPR
is complete; alternatively the RFDF bit can be cleared by the host writing a 1 to it.

19.4.4 Deserial Serial Interface (DSI) Configuration

The DSI configuration supports pin count reduction by serializing parallel input signals or register bits and
shifting them out in an SPI-like protocol. The received serial frames are converted to a parallel form
(deserialized) and placed on the parallel output signals or in a register. The various features of the DSI
configuration are set in the DSPIx_DSICR. For more information on the DSPIx_DSICR. The DSPI is in
DSI configuration when the DCONF field in the DSPIx_MCR is 0b01.

See Section 19.4.7, “Transfer Formats” for a description of the timing and transfer protocol and
Section 19.3.2.10, “DSPI DSI Configuration Register (DSPIx_DSICR).”

The DSI frames can be from 4 to 16 bits long. With multiple transfer operation (MTO), the DSPI supports
serial chaining of DSPI modules within the MCU to create DSI frames consisting of concatenated bits
from multiple DSPIs. The DSPI also supports parallel chaining allowing several DSPIs and off-chip SPI
devices to share the same serial communications clock (SCK) and peripheral chip select (PCS) signals.

See Section 19.4.4.7, “Multiple Transfer Operation (MTO),” for details on serial and parallel chaining
support.

19.4.4.1 DSI Master Mode

In DSI master mode the DSPI initiates and controls the DSI transfers. The DSI master has four different
conditions that can initiate a transfer:

• Continuous

• Change in data

• Trigger signal

• Trigger signal combined with a change in data

The four transfer initiation conditions are described in Section 19.4.4.5, “DSI Transfer Initiation Control.”
Transfer attributes are set during initialization. The DSICTAS field in the DSPIx_DSICR determines
which of the DSPIx_CTARs controls the transfer attributes.

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 19-41

19.4.4.2 DSI Slave Mode

In DSI slave mode the DSPI responds to transfers initiated by an SPI or DSI bus master. In this mode the
DSPI does not initiate DSI transfers. Certain transfer attributes such as clock polarity and phase must be
set for successful communication with a DSI master. The DSI slave mode transfer attributes are set in the
DSPIx_CTAR1.

If the CID bit in the DSPIx_DSICR is set and the data in the DSPIx_COMPR differs from the selected
source of the serialized data, the slave DSPI asserts the MTRIG signal. If the slave’s internal hardware
trigger signal is asserted and the TRRE is set, the slave DSPI asserts MTRIG. These features are included
to support chaining of several DSPI. Details about the MTRIG signal are found in Section 19.4.4.7,
“Multiple Transfer Operation (MTO).”

19.4.4.3 DSI Serialization

In the DSI configuration, 4 to 16 bits can be serialized using two different sources. The TXSS bit in the
DSPIx_DSICR selects between the DSPIx_SDR and DSPIx_ASDR as the source of serialized data. See
Section 19.3.2.11, “DSPI DSI Serialization Data Register (DSPIx_SDR),” and Section 19.3.2.12, “DSPI
DSI Alternate Serialization Data Register (DSPIx_ASDR),” for more details. The DSPIx_SDR holds the
latest parallel input signal values which is sampled at every rising edge of the system clock. The
DSPIx_ASDR is written by host software and used as an alternate source of serialized data.

A copy of the last DSI frame shifted out of the shift register is stored in the DSPIx_COMPR. This register
provides added visibility for debugging and it serves as a reference for transfer initiation control.
Section 19.3.2.13, “DSPI DSI Transmit Comparison Register (DSPIx_COMPR),” contains details on the
DSPIx_COMPR.

Figure 19-19 shows the DSI serialization logic.

Figure 19-19. DSI Serialization Diagram

1

0

DSPI alternate
serialization data register

SOUTx
Parallel

DSI configuration
register

DSI transmit
comparison register

Clock
logic

0 1 • • • • • 15

Shift registerDSI serialization
data register

Control
logic

SCKx

inputs

PCSx
ht

16

16

16

16
TXSS

Slave bus interface

16

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

19-42 Freescale Semiconductor

19.4.4.4 DSI Deserialization

When all bits in a DSI frame have been shifted in, the frame is copied to the DSPIx_DDR. This register
presents the deserialized data as parallel output signal values. The DSPIx_DDR is memory mapped to
allow host software to read the deserialized data directly. Figure 19-20 shows the DSI deserialization logic.
for more information on the DSPIx_DDR.

See Section 19.3.2.14, “DSPI DSI Deserialization Data Register (DSPIx_DDR).”

Figure 19-20. DSI Deserialization Diagram

19.4.4.5 DSI Transfer Initiation Control

Data transfers for a master DSPI in DSI configuration are initiated by a condition. When chaining DSPIs,
the master and all slaves must be configured for the transfer initiation. The transfer initiation conditions
are selected by the TRRE and CID bits in the DSPIx_DSICR.

Table 19-18 lists the four transfer initiation conditions.

19.4.4.5.1 Continuous Control

For continuous control, the initiation of a transfer is based on the baud rate at which data is transferred
between the DSPI and the external device. The baud rate is set in the DSPIx_CTAR selected by the
DSICTAS field in the DSPIx_DSICR. A new DSI frame shifts out when the previous transfer cycle has
completed and the delay after transfer (tDT) has elapsed.

Table 19-18. DSI Data Transfer Initiation Control

DSPIx_DSICR Bits
Type of Transfer Initiation Control

TRRE CID

0 0 Continuous

0 1 Change in data

1 0 Triggered

1 1 Triggered or change in data

SIN

Control
logic

0 1 • • • • • 15

Shift register

16

Slave bus interface

ParallelDSI deserialization
data register outputs

16

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 19-43

19.4.4.5.2 Change In Data Control

For change in data control, a transfer is initiated when the data to be serialized has changed since the
transfer of the last DSI frame. A copy of the previously transferred DSI data is stored in the
DSPIx_COMPR. When the data in the DSPIx_SDR or the DSPIx_ASDR is different from the data in the
DSPIx_COMPR, a new DSI frame is transmitted. The TXSS bit in the DSPIx_DSICR selects which
register the DSPIx_COMPR is compared to. The MTRIG output signal is asserted every time a change in
data is detected.

19.4.4.5.3 Triggered Control

For triggered control, initiation of a transfer is controlled by the internal hardware trigger signal (ht). The
TPOL bit in the DSPIx_DSICR selects the active edge of ht. For ht to have any affect, the TRRE bit in the
DSPIx_DSICR must be set.

19.4.4.5.4 Triggered or Change In Data Control

For triggered or change in data control, initiation of a transfer is controlled by the ht signal or by the
detection of a change in data to be serialized.

19.4.4.6 DSPI Connections to eTPUA, eMIOS and SIU

The three DSPI blocks connect to the input and output channels of the eTPUs and the eMIOS. The MCU
connects to the eTPUA, eMIOS, and SIU. Some of the DSPI outputs connect to the external interrupt input
multiplexing subblock in the SIU. See Section 6.5.3, “External Interrupt” for details on how the DSPI
deserialized outputs can be used to trigger external interrupt requests and Section 17.4.1, “Output and
Input Channel Signals” for a discussion on eTPU connections.

19.4.4.6.1 DSPI B Connectivity

The DSPI B connects to the eMIOS, eTPUA, and SIU as shown in Figure 19-21.

Figure 19-21. eMIOS and DSPI B Connectivity

DSPI B

IN 0
IN 1

OUT 0

eMIOS

CH 11
CH 10

CH 13
CH 12

IN 14
IN 15

•
•

IN 2

IN 13

•
•

OUT 15

•
•

•
•

not connected

not connected

not connected

not connected

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

19-44 Freescale Semiconductor

19.4.4.6.2 DSPI B Connectivity

Figure 19-22. eMIOS, eTPUA and DSPI B Connectivity

Table 19-19. eMIOS and DSPI B Connectivity

Connected to:
DSPI B
IN[n]

DSPI B
OUT[n]

Connected to:

eMIOS output channel 11 0 0 Not connected

eMIOS output channel 10 1 1 Not connected

Not connected 2 2 Not connected

Not connected 3 3 Not connected

Not connected 4 4 Not connected

Not connected 5 5 Not connected

Not connected 6 6 Not connected

Not connected 7 7 Not connected

Not connected 8 8 Not connected

Not connected 9 9 Not connected

Not connected 10 10 Not connected

Not connected 11 11 Not connected

Not connected 12 12 Not connected

Not connected 13 13 Not connected

eMIOS output channel 13 14 14 Not connected

eMIOS output channel 12 15 15 Not connected

DSPI B

IN 0
IN 1

OUT 0

eMIOS

CH 11
CH 10
CH 13
CH 12

eMIOS

CH 13OUT 14
OUT 15

eTPUA

CH 21

CH 16

•
•

CH 29

CH 24

•
•

IN 14
IN 15

•
•

•
•

IN 2

IN 7

IN 8

IN 13

•
•

•
•

OUT 15

•
•

SIU and IMUX

IN1 IRQ[0]

IN1 IRQ[15]

•
•

•
•

OUT 8

OUT 13

•
•

eTPUA

CH 29

CH 24

•
•

•
•

CH 12

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 19-45

19.4.4.6.3 DSPI C Connectivity

The DSPI C is not connected, as shown in Figure 19-23.

Figure 19-23. DSPI C Connectivity

Table 19-20. eMIOS, eTPUA, and DSPI B Connectivity

Connected to:
DSPI B
IN[n]

DSPI B
OUT[n]

Connected to:

eMIOS output channel 11 0 0 Input 1 on IMUX for external IRQ[0]

eMIOS output channel 10 1 1 Input 1 on IMUX for external IRQ[1]

eTPUA output channel 21 2 2 Input 1 on IMUX for external IRQ[2]

eTPUA output channel 20 3 3 Input 1 on IMUX for external IRQ[3]

eTPUA output channel 19 4 4 Input 1 on IMUX for external IRQ[4]

eTPUA output channel 18 5 5 Input 1 on IMUX for external IRQ[5]

eTPUA output channel 17 6 6 Input 1 on IMUX for external IRQ[6]

eTPUA output channel 16 7 7 Input 1 on IMUX for external IRQ[7]

eTPUA output channel 29 8 8 eTPUA input channel 29,
input 1 on IMUX for external IRQ[8]

eTPUA output channel 28 9 9 eTPUA input channel 28,
input 1 on IMUX for external IRQ[9]

eTPUA output channel 27 10 10 eTPUA input channel 27,
input 1 on IMUX for external IRQ[10]

eTPUA output channel 26 11 11 eTPUA input channel 26,
input 1 on IMUX for external IRQ[11]

eTPUA output channel 25 12 12 eTPUA input channel 25,
input 1 on IMUX for external IRQ[12]

eTPUA output channel 24 13 13 eTPUA input channel 24,
input 1 on IMUX for external IRQ[13]

eMIOS output channel 13 14 14 eMIOS input channel 13,
input 1 on IMUX for external IRQ[14]

eMIOS output channel 12 15 15 eMIOS input channel 12,
input 1 on IMUX for external IRQ[15]

DSPI C

OUT 1

OUT 15
•
•

•
•

•
•

IN 0

IN 3

IN 4

IN 15

•
•

•
•

OUT 0

•
•

not connected

not connected

not connected

not connected

not connected

not connected

not connected

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

19-46 Freescale Semiconductor

Table 19-21 shows that DSPI C is not connected for this device.

The DSPI C connects to the eTPUA and the SIU as shown in Figure 19-24.

Figure 19-24. eTPUA and DSPI C Connectivity

Table 19-22 lists the eTPUA and DSPI C connections.

Table 19-21. eTPU and DSPI C Not Connected

eTPU Channel
DSPI C
IN[n]

DSPI C
OUT[n]

Connected to:

Not connected 0 0 Not connected

Not connected 1 1 Not connected

Not connected 2 2 Not connected

Not connected 3 3 Not connected

Not connected 4 4 Not connected

Not connected 5 5 Not connected

Not connected 6 6 Not connected

Not connected 7 7 Not connected

Not connected 8 8 Not connected

Not connected 9 9 Not connected

Not connected 10 10 Not connected

Not connected 11 11 Not connected

Not connected 12 12 Not connected

Not connected 13 13 Not connected

Not connected 14 14 Not connected

Not connected 15 15 Not connected

Table 19-22. eTPUA and DSPI C Connectivity

eTPU Channel
DSPI C
IN[n]

DSPI C
OUT[n]

Connected to:

eTPUA output channel 12 0 0 Input 2 on IMUX for external IRQ[15]

eTPUA output channel 13 1 1 Input 2 on IMUX for external IRQ[0]

SIU / IMUX

IN2 IRQ[0]

IN2 IRQ[14]

•
•

DSPI C

OUT 1

OUT 15

eTPUA

CH 12

CH 15

•
•

CH 0

CH 11

•
•

•
•

•
•

•
•

IN 0

IN 3

IN 4

IN 15

•
•

•
•

IN2 IRQ[15]OUT 0

•
•

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 19-47

19.4.4.6.4 DSPI D Connectivity

The DSPI D connects to the eTPUA, eMIOS and SIU as shown in Figure 19-25.

Figure 19-25. DSPI D Connectivity

eTPUA output channel 14 2 2 Input 2 on IMUX for external IRQ[1]

eTPUA output channel 15 3 3 Input 2 on IMUX for external IRQ[2]

eTPUA output channel 0 4 4 Input 2 on IMUX for external IRQ[3]

eTPUA output channel 1 5 5 Input 2 on IMUX for external IRQ[4]

eTPUA output channel 2 6 6 Input 2 on IMUX for external IRQ[5]

eTPUA output channel 3 7 7 Input 2 on IMUX for external IRQ[6]

eTPUA output channel 4 8 8 Input 2 on IMUX for external IRQ[7]

eTPUA output channel 5 9 9 Input 2 on IMUX for external IRQ[8]

eTPUA output channel 6 10 10 Input 2 on IMUX for external IRQ[9]

eTPUA output channel 7 11 11 Input 2 on IMUX for external IRQ[10]

eTPUA output channel 8 12 12 Input 2 on IMUX for external IRQ[11]

eTPUA output channel 9 13 13 Input 2 on IMUX for external IRQ[12]

eTPUA output channel 10 14 14 Input 2 on IMUX for external IRQ[13]

eTPUA output channel 11 15 15 Input 2 on IMUX for external IRQ[14]

Table 19-22. eTPUA and DSPI C Connectivity (continued)

eTPU Channel
DSPI C
IN[n]

DSPI C
OUT[n]

Connected to:

SIU / IMUX

IN3 IRQ[14]

IN3 IRQ[2]

IN3 IRQ[11]

•
•

IN3 IRQ[15]

IN3 IRQ[12]
IN3 IRQ[13]

DSPI D

IN 6
IN 7

OUT 0

eMIOS

CH 11
CH 10
CH 13
CH 12

OUT 1

OUT 4

OUT 13

•
•

eMIOS

CH 15

CH 14

OUT 14

OUT 15

eTPUA

CH 21

CH 16

•
•

CH 29

CH 24

•
•

IN 8
IN 9

•
•

•
•

•
•

IN 0

IN 5

IN 10

IN 15

•
•

•
•

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

19-48 Freescale Semiconductor

Table 19-23 lists the DSPI D connections.

19.4.4.7 Multiple Transfer Operation (MTO)

In DSI configuration the MTO feature allows for multiple DSPIs within the MCU to be chained together
in a parallel or serial configuration. The parallel chaining allows multiple DSPIs internal to the MCU and
multiple SPI devices external to the MCU to share SCK and PCS signals thereby saving pins. The serial
chaining allows bits from multiple DSPIs to be concatenated into a single DSI frame from 8- to 64-bits
long. MTO is enabled by setting the MTOE bit in the DSPIx_DSICR.

In parallel and serial chaining there is one bus master and multiple bus slaves. The bus master initiates and
controls the transfers, but the DSPI slaves generate trigger signals for the bus DSPI master when an
internal condition in the slave warrants a transfer. The DSPI slaves also propagate triggers from other
slaves to the master. When a DSPI slave detects a trigger signal on its ht input, the slave generates a trigger
signal on the MTRIG output.

Serial and parallel chaining require multiplexing of signals external to the DSPI. Configure SIU_DISR to
serial or parallel chaining. See, Section 19.4.4.7.1, “Internal Muxing and SIU Support for Serial and
Parallel Chaining, for more information.

Table 19-23. DSPI D Connectivity Table

Connected to:
DSPI D
IN[n]

DSPI D
OUT[n]

Connected to:

eTPUA output channel 21 0 0 Input 3 on IMUX for external IRQ[14]

eTPUA output channel 20 1 1 Input 3 on IMUX for external IRQ[15]

eTPUA output channel 19 2 2 no connect

eTPUA output channel 18 3 3 no connect

eTPUA output channel 17 4 4 Input 3 on IMUX for external IRQ[2]

eTPUA output channel 16 5 5 Input 3 on IMUX for external IRQ[3]

eMIOS output channel 11 6 6 Input 3 on IMUX for external IRQ[4]

eMIOS output channel 10 7 7 Input 3 on IMUX for external IRQ[5]

eMIOS output channel 13 8 8 Input 3 on IMUX for external IRQ[6]

eMIOS output channel 12 9 9 Input 3 on IMUX for external IRQ[7]

eTPUA output channel 29 10 10 Input 3 on IMUX for external IRQ[8]

eTPUA output channel 28 11 11 Input 3 on IMUX for external IRQ[9]

eTPUA output channel 27 12 12 Input 3 on IMUX for external IRQ[10]

eTPUA output channel 26 13 13 Input 3 on IMUX for external IRQ[11]

eTPUA output channel 25 14 14 eMIOS input channel 15,
Input 3 on IMUX for external IRQ[12]

eTPUA output channel 24 15 15 eMIOS input channel 14,
Input 3 on IMUX for external IRQ[13]

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 19-49

19.4.4.7.1 Internal Muxing and SIU Support for Serial and Parallel Chaining

To support MTO, each DSPI in the device has multiplexers on the SINx, SSx, SCKx inputs. The internal
multiplexers are controlled by registers in the SIU block.

See Section 6.5.5.3, “Multiplexed Inputs for DSPI Multiple Transfer Operation.”

Figure 19-26 shows DSPI B and the multiplexers in the IMUX subblock of the SIU. The SOUTx, MTRIG,
SCKx and PCSx0 outputs from the other two DSPIs that connect to the multiplexers on the DSPI B, DSPI
C inputs.

DSPI B, DSPI C and DSPI D have similar multiplexers on their inputs.

Figure 19-26. DSPI B, C, and D Inputs for Multi-transfer Operations

The source for the SINx input of a DSPI can be a pin or the SOUTx of any of the other two DSPIs. The
source for the SSx input of a DSPI can be a pin or the PCSx[0] signal from any of the other DSPIs. The
source for the SCKx input of a DSPI can be a pin or the SCKx output of any of the other DSPIs. The source
for the hardware trigger (ht) input can be the MTRIG signal from any of the other DSPIs. The DSPI input
select register (SIU_DSR) selects the source for each DSPI SINx, SSx, SCKx signal individually.

19.4.4.7.2 Parallel Chaining

Parallel chaining allows an internal slave device and an external slave device to share the PCSx and SCKx
signals from a single master DSPI. Signal sharing reduces the number of DSPI pin used. An example of a
parallel chain is shown in Figure 19-27.

SCKB_GPIO[102]

DSPI C SCKC

DSPI D SCKD

DSPI B

MTRIG

ht

PCSB

SCKB

‘0’

DSPI C PCSC[4] MTRIG

DSPI D PCSD[4] MTRIG

SINB

SOUTB

SS

SIU_DISR[TRIGSELB]

SIU_DISR[SCKSELB]

PCSB_GPIO[105]

DSPI C PCSC[0]

DSPI D PCSD[0]

SINB_GPIO[103]

DSPI C SOUTC

DSPI D SOUTD

SIU_DISR[SINSELB]

SIU_DISR[SSSELB]

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

19-50 Freescale Semiconductor

Figure 19-27. Example of Parallel Chaining of DSPI B, C and D

In the parallel chaining example, the SOUTx and SINx of the DSPIs connect to separate external SPI
devices. All internal and external SPI modules share PCSx and SCKx signals. DSPI B controls and initiates
all transfers, but the DSPI slaves each have a trigger output signal MTRIG that indicates to DSPI B that a
trigger condition has occurred in the DSPI slaves. DSPI B controls and initiates all transfers, but the DSPI
slave has a trigger output signal MTRIG that indicates to DSPI B that a trigger condition has occurred in
the DSPI slave.

When the slave DSPI has a change in data to be serialized, it asserts the MTRIG signal that propagates to
DSPI B which initiates the transfer.

The MTOCNT field in the DSPIx_DSICR must be written with the number of bits to be transferred. In
parallel chaining the number written to MTOCNT must match the FMSZ field in the selected
DSPIx_CTAR.

SOUT

HT

SCK

SIN

MTRIG

SS

MCU

DSPI B

SOUT

HT

SCK

SIN

PCSB[0]

S
IN

B

P
C

S
B

[0
]

S
C

K
B

S
O

U
T

B

S
IN

C

(master)
DSPI C
(slave)

SOUT

SCK

SIN

MTRIG

SS

DSPI D
(slave)

S
O

U
T

C

S
IN

D

S
O

U
T

D

SCKSS

SIN

Slave device
SPI

SOUT

SCKSS

SIN

Slave device
SPI

SOUT

SCKSS

SIN

Slave device
SPI

SOUT

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 19-51

19.4.4.7.3 Serial Chaining

Serial chaining allows transfers of DSI frames consisting of concatenated bits from multiple DSPIs. The
concatenated frames can be from 8- to 64-bits long. Figure shows an example of how the modules can be
connected.

Figure 19-28. Example of Serial Chaining of DSPI B, C and D

In the MCU (master), the SOUT of DSPI B is connected to the SIN of the DSPI C (slave). The SOUT of
the DSPI C (slave) is connected to the SIN input of the DSPI D slave and so on. The SOUT of the last
on-chip DSPI slave is connected to the SIN of the external SPI slave. The SOUT of the external SPI slave
is connected to the SIN of the DSPI B master.

The DSPI B master controls and initiates all transfers, but the slave DSPIs use the trigger output signal
MTRIG to indicate to the DSPI B master that a trigger condition has occurred. When an on-chip DSPI
slave has a change in data to be serialized it can assert the MTRIG signal to the DSPI master which initiates
the transfer. When a DSPI slave has its ht signal asserted, its MTRIG signal asserts and propagates trigger
signals from other DSPI slaves to the DSPI master.

The MTOCNT field in the DSPIx_DSICR must be written with the total number of bits to be transferred.
The MTOCNT field must equal the sum of all FMSZ fields in the selected DSPIx_CTARs for the DSPI
master and all DSPI slaves. For example, if one 16-bit DSI frame is created by concatenating 8 bits from
the DSPI master, and 4 bits from each of the DSPI slaves in Figure 19-28, the DSPI master’s frame size
must be set to eight in the FMSZ field, and the DSPI slaves’ frame size must be set to four. The largest DSI
frame supported by the MTOCNT field is 48 bits. Any number of DSPIs can be connected together to
concatenate DSI frames, as long as each DSPI transfers a minimum of 4 bits and a maximum of 16 bits
and the total size of the concatenated frame is less than or equal to 48 bits long.

SOUT

HT

SCK

SIN

MTRIG

SS

MCU

DSPI B

SOUT

HT

SCK

SIN

PCSB[0]

SINB

PCSB[0]

SCKB

(master)
DSPI C
(slave)

SOUT

SCK

SIN

MTRIG

SS

DSPI D
(slave)

SOUTD
SCKSS

SIN

Slave device
SPI

SOUT

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

19-52 Freescale Semiconductor

19.4.5 Combined Serial Interface (CSI) Configuration

In master mode, the CSI configuration of the DSPI is used to support SPI and DSI functions on a frame by
frame basis. CSI configuration allows interleaving of DSI data frames from the parallel input signals
(from the eTPU or eMIOS) with SPI commands and data from the TX FIFO. The data returned from the
bus slave is either used to drive the parallel output signals (to the eTPU or eMIOS) or is stored in the RX
FIFO. CSI configuration allows serialized data and configuration or diagnostic data to be transferred to a
slave device using only one serial link. The DSPI is in CSI configuration when the DCONF field in the
DSPIx_MCR is 0b10. Figure 19-29 shows an example of how a DSPI can be used with a deserializing
peripheral that supports SPI control for control and diagnostic frames.

Figure 19-29. Example of System using DSPI in CSI Configuration

In CSI configuration the DSPI transfers DSI data based on Section 19.4.4.5, “DSI Transfer Initiation
Control.” When there are SPI commands in the TX FIFO, the SPI data has priority over the DSI frames.
When the TX FIFO is empty, DSI transfer resumes.

Two peripheral chip select signals indicate whether DSI data or SPI data is transmitted. You must configure
the DSPI so the CTARs for the DSI data and SPI data assert different peripheral chip select signals denoted
in the figure as PCSx and PCSy. The CSI configuration is only supported in master mode.

Data returned from the external slave while a DSI frame is transferred is placed on the parallel output
signals. Data returned from the external slave while an SPI frame is transferred is moved to the RX FIFO.
The TX FIFO and RX FIFO are fully functional in CSI mode.

19.4.5.1 CSI Serialization

Serialization in the CSI configuration is similar to serialization in DSI configuration. The transfer
attributes for SPI frames are determined by the DSPIx_CTAR selected by the CTAS field in the SPI
command halfword. The transfer attributes for the DSI frames are determined by the DSPIx_CTAR
selected by the DSICTAS field in the DSPIx_DSICR. Figure 19-30 shows the CSI serialization logic.

SPI

DSPI Master

DSI

Shift register

TX FIFO

TX
priority
control

SINx

SOUTx

SCKx

PCSx

PCSy SPI

External Slave Deserializer

Shift register

frame

Frame
select
logic

SOUTx

SINx

SCKx

SSx

SSy DSI
frame

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 19-53

Figure 19-30. CSI Serialization Diagram

The parallel inputs signal states are latched into the DSPIx_SDR on the rising edge of every system clock
and serialized based on the transfer initiation control settings in the DSPIx_DSICR. For more information
on the DSPIx_SDR. SPI frames written to the TX FIFO have priority over DSI data from the DSPIx_SDR
and are transferred at the next frame boundary. A copy of the most recently transferred DSI frame is stored
in the DSPIx_COMPR. The transfer priority logic selects the source of the serialized data and asserts the
chip select signal.

See Section 19.3.2.11, “DSPI DSI Serialization Data Register (DSPIx_SDR).”

19.4.5.2 CSI Deserialization

The deserialized frames in CSI configuration go into the DSPIx_SDR or the RX FIFO based on the transfer
priority logic. When DSI frames are transferred the returned frames are deserialized and latched into the
DSPIx_DDR. When SPI frames are transferred the returned frames are deserialized and written to the RX
FIFO.

Figure 19-31 shows the CSI deserialization logic.

Figure 19-31. CSI Deserialization Diagram

SOUTx

Parallel

DSI control
register

DSI transmit
comparison register

Clock
logic

0 1 • • • • • 15

Shift registerDSI serialization
data register

Control
logic

SCKx

inputs

PCSx (SPI)
PCSy (DSI)

16

16

16

16

Transfer

Slave bus interface

16

TX FIFO

(P_IN)

priority logic

SIN

Control
logic

0 1 • • • • • 15

Shift register

16

Slave bus interface

Parallel
DSI deserialization

data register
outputs

16

Transfer
priority logic

16

RX FIFO

(P_OUT)

16

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

19-54 Freescale Semiconductor

19.4.6 DSPI Baud Rate and Clock Delay Generation

The SCKx frequency and the delay values for serial transfer are generated by dividing the system clock
frequency by a prescaler and a scaler with the option of doubling the baud rate.

Figure 19-32 shows conceptually how the SCK signal is generated.

Figure 19-32. Communications Clock Prescalers and Scalers

19.4.6.1 Baud Rate Generator

The baud rate is the frequency of the serial communication clock (SCKx). The system clock is divided by
a baud rate prescaler (defined by DSPIx_CTAR[PBR]) and baud rate scaler (defined by
DSPIx_CTAR[BR]) to produce SCKx with the possibility of doubling the baud rate. The DBR, PBR, and
BR fields in the DSPIx_CTARs select the frequency of SCKx using the following formula:

Table 19-24 shows an example of a computed baud rate.

19.4.6.2 PCS to SCK Delay (tCSC)

The PCSx to SCKx delay is the length of time from assertion of the PCSx signal to the first SCKx edge.
See Figure 19-34 for an illustration of the PCSx to SCKx delay. The PCSSCK and CSSCK fields in the
DSPIx_CTARn registers select the PCSx to SCKx delay, and the relationship is expressed by the following
formula:

Table 19-25 shows an example of the computed PCS to SCK delay.

Table 19-24. Baud Rate Computation Example

fSYS PBR
Prescaler

Value
BR

Scaler
Value

DBR
Value

Baud Rate

82 MHz 0b00 2 0b0000 2 0 25 Mb/sec

20 MHz 0b00 2 0b0000 2 1 10 Mb/sec

Table 19-25. PCS to SCK Delay Computation Example

PCSSCK
Prescaler

Value
CSSCK

Scaler
Value

fSYS PCS to SCK Delay

0b01 3 0b0100 32 82 MHz 0.96 μs

Prescaler

1

Scaler

1 + DBR
System clock SCKx

SCK baud rate
fSYS

PBRPrescalerValue
-- 1 DBR+

BRScalerValue
--×=

tCSC =
fSYS

CSSCK× PCSSCK1 ×

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 19-55

19.4.6.3 After SCK Delay (tASC)

The after SCKx delay is the length of time between the last edge of SCKx and the negation of PCSx. See
Figure 19-34 and Figure 19-35 for illustrations of the after SCKx delay. The PASC and ASC fields in the
DSPIx_CTARn registers select the after SCK delay. The relationship between these variables is given in
the following formula:

Table 19-26 shows an example of the computed after SCK delay.

19.4.6.4 Delay after Transfer (tDT)

The delay-after-transfer field is the amount of time between negation of the PCSx signal for a frame and
the assertion of the PCSx signal for the next frame. The PDT and DT fields in the DSPIx_CTARn registers
select the delay after transfer.

See Figure 19-34 for an illustration of the delay after transfer. The following formula expresses the PDT
and DT delay-after-transfer relationship:

Table 19-27 shows an example of the computed delay after transfer.

19.4.6.5 Peripheral Chip Select Strobe Enable (PCSS)

The PCSS signal provides a delay to allow the PCSx signals to settle after transitioning thereby avoiding
glitches. When the DSPI is in master mode and PCSSE bit is set in the DSPIx_MCR, PCSS provides a
signal for an external demultiplexer to decode the PCSx[0:4] signals into as many as 32 glitch-free PCSx
signals.

Table 19-26. After SCK Delay Computation Example

PASC
Prescaler

Value
ASC

Scaler
Value

fSYS After SCK Delay

0b01 3 0b0100 32 82 MHz 0.96 μs

Table 19-27. Delay after Transfer Computation Example

PDT
Prescaler

Value
DT

Scaler
Value

fSYS Delay after Transfer

0b01 3 0b1110 32768 82 MHz 0.98 ms

tASC =
fSYS

ASC× PASC1 ×

 tDT =
 fSYS

DT× PDT
1

×

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

19-56 Freescale Semiconductor

Figure 19-33 shows the timing of the PCSS signal relative to PCS signals.

Figure 19-33. Peripheral Chip Select Strobe Timing

The delay between the assertion of the PCSx signals and the assertion of PCSS is selected by the PCSSCK
field in the DSPIx_CTAR based on the following formula:

At the end of the transfer the delay between PCSS negation and PCSx negation is selected by the PASC
field in the DSPIx_CTAR based on the following formula:

Table 19-28 shows an example of the computed tPCSSCK delay.

Table 19-29 shows an example of the computed the tPASC delay.

19.4.7 Transfer Formats

The SPI serial communication is controlled by the serial communications clock (SCKx) signal and the
PCSx signals. The SCKx signal provided by the master device synchronizes shifting and sampling of the
data by the SINx and SOUTx pins. The PCSx signals serve as enable signals for the slave devices.

When the DSPI is the bus master, the CPOL and CPHA bits in the DSPI clock and transfer attributes
registers (DSPIx_CTARn) select the polarity and phase of the serial clock, SCKx. The polarity bit selects
the idle state of the SCKx. The clock phase bit selects if the data on SOUTx is valid before or on the first
SCKx edge.

Table 19-28. Peripheral Chip Select Strobe Assert Computation Example

PCSSCK Prescaler fSYS Delay before Transfer

0b11 7 82 MHz 70.0 ns

Table 19-29. Peripheral Chip Select Strobe Negate Computation Example

PASC Prescaler fSYS Delay after Transfer

0b11 7 82 MHz 70.0 ns

PCSS

PCSx

tPCSSCK tPASC

 tPCSSCK = PCSSCK×
fSYS

1

 tPASC = PASC×
fSYS

1

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 19-57

When the DSPI is the bus slave, CPOL and CPHA bits in the DSPIx_CTAR0 (SPI slave mode) or
DSPIx_CTAR1 (DSI slave mode) select the polarity and phase of the serial clock. Even though the bus
slave does not control the SCK signal, clock polarity, clock phase and number of bits to transfer must be
identical for the master device and the slave device to ensure proper transmission.

The DSPI supports four different transfer formats:

• Classic SPI with CPHA = 0

• Classic SPI with CPHA = 1

• Modified transfer format with CPHA = 0

• Modified transfer format with CPHA = 1

The classic SPI formats are described in:

Section 19.4.7.1, “Classic SPI Transfer Format (CPHA = 0),” and

Section 19.4.7.2, “Classic SPI Transfer Format (CPHA = 1).”

The modified transfer formats are described in:

Section 19.4.7.3, “Modified Transfer Format Enabled (MTFE = 1) with Classic SPI Transfer Format
Cleared (CPHA = 0) for SPI and DSI,” and

Section 19.4.7.4, “Modified Transfer Format Enabled (MTFE = 1) with Classic SPI Transfer Format
Set (CPHA = 1) for SPI and DSI.”

A modified transfer format supports high-speed communication with peripherals that require longer setup
times. The DSPI can sample the incoming data later than halfway through the cycle to give the peripheral
more setup time. The MTFE bit in the DSPIx_MCR selects between classic SPI format and modified
transfer format.

In the SPI and DSI configurations, the DSPI provides the option of keeping the PCS signals asserted
between frames. See Section 19.4.7.5, “Continuous Selection Format” for details.

19.4.7.1 Classic SPI Transfer Format (CPHA = 0)

The transfer format shown in Figure 19-34 is used to communicate with peripheral SPI slave devices
where the first data bit is available on the first clock edge. In this format, the master and slave sample the
SINx pins on the odd-numbered SCKx edges, and change the data on the SOUTx pins on the
even-numbered SCKx edges.

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

19-58 Freescale Semiconductor

Figure 19-34. DSPI Transfer Timing Diagram (MTFE = 0, CPHA = 0, FMSZ = 8)

The master initiates the transfer by placing its first data bit on the SOUTx pin and asserting the appropriate
peripheral chip select signals to the slave device. The slave responds by placing its first data bit on its
SOUTx pin. After the tCSC delay has elapsed, the master outputs the first edge of SCKx. This is the edge
used by the master and slave devices to sample the first input data bit on their serial data input signals. At
the second edge of the SCKx the master and slave devices place their second data bit on their serial data
output signals. For the rest of the frame the master and the slave sample their SINx pins on the
odd-numbered clock edges and changes the data on their SOUTx pins on the even-numbered clock edges.
After the last clock edge occurs a delay of tASC is inserted before the master negates the PCS signals. A
delay of tDT is inserted before a new frame transfer can be initiated by the master.

For the CPHA = 0 condition of the master, TCF and EOQF are set and the RXCTR counter is updated at
the next to last serial clock edge of the frame (edge 15) of Figure 19-34.

For the CPHA = 0 condition of the slave, TCF is set and the RXCTR counter is updated at the last serial
clock edge of the frame (edge 16) of Figure 19-34.

19.4.7.2 Classic SPI Transfer Format (CPHA = 1)

This transfer format shown in Figure 19-35 is used to communicate with peripheral SPI slave devices that
require the first SCKx edge before the first data bit becomes available on the slave SOUT pin. In this
format the master and slave devices change the data on their SOUTx pins on the odd-numbered SCKx
edges and sample the data on their SINx pins on the even-numbered SCKx edges.

SCK
(CPOL = 0)

PCSx_SS

tASC

SCK
(CPOL = 1)

Master and slave
sample

Master SOUT
Slave SIN

Master SIN
Slave SOUT

Bit 6
Bit 1

Bit 5
Bit 2

Bit 4
Bit 3

Bit 3
Bit 4

Bit 2
Bit 5

Bit 1
Bit 6

LSB
MSB

MSB
LSB

tDT
tCSC

tCSC

MSB first (LSBFE = 0):
LSB first (LSBFE = 1):

tCSC = PCS to SCK delay.
tASC = After SCK delay.
tDT = Delay after transfer (minimum CS idle time).

 Master (CPHA = 0): TCF and EOQF are set and RXCTR counter
is updated at next to last SCK edge of frame (edge 15)

Slave (CPHA = 0): TCF is set and RXCTR counter is updated at
last SCK edge of frame (edge 16)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 1615

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 19-59

Figure 19-35. DSPI Transfer Timing Diagram (MTFE = 0, CPHA = 1, FMSZ = 8)

The master initiates the transfer by asserting the PCSx signal to the slave. After the tCSC delay has elapsed,
the master generates the first SCKx edge and at the same time places valid data on the master SOUTx pin.
The slave responds to the first SCKx edge by placing its first data bit on its slave SOUTx pin.

At the second edge of the SCKx the master and slave sample their SINx pins. For the rest of the frame the
master and the slave change the data on their SOUTx pins on the odd-numbered clock edges and sample
their SINx pins on the even-numbered clock edges. After the last clock edge occurs a delay of tASC is
inserted before the master negates the PCSx signal. A delay of tDT is inserted before a new frame transfer
can be initiated by the master.

For CPHA = 1 the master EOQF and TCF and slave TCF are set at the last serial clock edge (edge 16) of
Figure 19-35. For CPHA = 1 the master and slave RXCTR counters are updated on the same clock edge.

Slave (CPHA = 1): TCF is set and RXCTR counter is updated at
last SCK edge of frame (edge 16)

SCK

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(CPOL = 0)

PCSx / SS

tASC

SCK
(CPOL = 1)

Master and slave
sample

Master SOUT/
Slave SIN

Master SIN/
Slave SOUT

Bit 6
Bit 1

Bit 5
Bit 2

Bit 4
Bit 3

Bit 3
Bit 4

Bit 2
Bit 5

Bit 1
Bit 6

LSB
MSB

MSB
LSB

tDT

tCSC

MSB first (LSBFE = 0):
LSB first (LSBFE = 1):

tCSC = PCS to SCK delay.
tASC = After SCK delay.
tDT = Delay after transfer (minimum CS negation time).

Master (CPHA = 1): TCF and EOQF are set and RXCTR counter
is updated at last SCK edge of frame (edge 16)

16

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

19-60 Freescale Semiconductor

19.4.7.3 Modified Transfer Format Enabled (MTFE = 1) with
Classic SPI Transfer Format Cleared (CPHA = 0) for SPI and DSI

In the modified transfer format, the master and the slave sample later in the SCK period than in classic SPI
mode to allow for delays in device pads and board traces. These delays become a more significant fraction
of the SCK period as the SCK period decreases with increasing baud rates.

NOTE
For the modified transfer format to operate correctly, you must thoroughly
analyze the SPI link timing budget.

The master and the slave send data to the SOUTx pins when the PCSx signal asserts. After the PCSx to
SCKx delay elapses the first SCKx edge is generated. The slave samples the master SOUTx signal on every
odd numbered SCKx edge. The slave also sends more data on the slave SOUTx on every odd numbered
clock edge.

The master sends its second data bit to the SOUTx pin one system clock after the odd numbered SCKx
edge. The master samples the slave SOUTx pins by writing to the SMPL_PT field in the DSPIx_MCR.
Table 19-30 lists the number of system clock cycles (between the active-edge of SCKx and the master
sample point) for different values of the SMPL_PT bit field. The master sample point can be delayed by
one or two system clock cycles.

Table 19-30. Delayed Master Sample Point

SMPL_PT
Number of System Clock Cycles between

Odd-numbered Edge of SCK and Sampling of SIN

00 0

01 1

10 2

11 Invalid value

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 19-61

Figure 19-36 shows the modified transfer format for CPHA = 0. Only the condition where CPOL = 0 is
illustrated. The delayed master sample points are indicated with a lighter shaded arrow.

Figure 19-36. DSPI Modified Transfer Format (MTFE = 1, CPHA = 0, fSCK = fSYS ÷ 4)

19.4.7.4 Modified Transfer Format Enabled (MTFE = 1) with
Classic SPI Transfer Format Set (CPHA = 1) for SPI and DSI

At the start of a transfer the DSPI asserts the PCS signal to the slave device. After the PCS to SCK delay
has elapsed the master and the slave put data on their SOUT pins at the first edge of SCK. The slave
samples the master SOUT signal on the even numbered edges of SCK. The master samples the slave
SOUT signal on the odd numbered SCK edges starting with the third SCK edge. The slave samples the
last bit on the last edge of the SCK. The master samples the last slave SOUT bit one half SCK cycle after
the last edge of SCK. No clock edge is visible on the master SCK pin during the sampling of the last bit.
The SCK-to-PCS delay must be greater or equal to half of the SCK period.

NOTE
For the modified transfer format to operate correctly, you must thoroughly
analyze the SPI link timing budget.

tCSC = PCS to SCK delay.
tASC = After SCK delay.

System clock

1 2 3 4 5 6

PCSx

tASC

SCK

Master sample

Slave SOUT

Master SOUT

System clock
System clock

Slave sample

tCSC

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

19-62 Freescale Semiconductor

Figure 19-37 shows the modified transfer format for CPHA = 1. Only the condition where CPOL = 0 is
described.

Figure 19-37. DSPI Modified Transfer Format (MTFE = 1, CPHA = 1, fSCK = fSYS / 4)

19.4.7.5 Continuous Selection Format

Some peripherals must be deselected between every transfer. Other peripherals must remain selected
between several sequential serial transfers. The continuous selection format provides the flexibility to
handle both cases. The continuous selection format is enabled for the SPI configuration by setting the
CONT bit in the SPI command. Continuous selection is enabled for the DSI configuration by setting the
DCONT bit in the DSPIx_DSICR. The behavior of the PCS signals in the two configurations is identical
so only the SPI configuration is described.

When the CONT bit = 0, the DSPI drives the asserted chip select signals to their idle states in between
frames. The idle states of the chip select signals are selected by the PCSIS field in the DSPIx_MCR.

tCSC = PCS to SCK delay.
tASC = After SCK delay.

System clock

1 2 3 4 5 6

PCS

tASC

SCK

Master sample

Master SOUT

Slave SOUT

Slave sample

tCSC

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 19-63

Figure 19-38 shows the timing diagram for two four-bit transfers with CPHA = 1 and CONT = 0.

Figure 19-38. Example of Non-continuous Format (CPHA = 1, CONT = 0)

When the CONT = 1 and the PCS signal for the next transfer is the same as for the current transfer, the
PCS signal remains asserted for the duration of the two transfers. The delay between transfers (tDT) is not
inserted between the transfers.

Figure 19-39 shows the timing diagram for two 4-bit transfers with CPHA = 1 and CONT = 1.

Figure 19-39. Example of Continuous Transfer (CPHA = 1, CONT = 1)

In Figure 19-39, the period length at the start of the next transfer is the sum of tASC and tCSC; i.e., it does
not include a half-clock period. The default settings for these provide a total of four system clocks. In many
situations, tASC and tCSC must be increased if a full half-clock period is required.

Switching CTARs between frames while using continuous selection can cause errors in the transfer. The
PCS signal must be negated before CTAR is switched.

When the CONT bit = 1 and the PCS signals for the next transfer are different from the present transfer,
the PCS signals behave as if the CONT bit was not set.

SCK
(CPOL = 0)

PCSx

tASC

SCK
(CPOL = 1)

Master SOUT

tDT

tCSC

tCSC = PCS to SCK delay.
tASC = After SCK delay.
tDT = Delay after transfer (minimum CS negation time).

Master SIN

tCSC

SCK
(CPOL = 0)

PCS

tASC

SCK
(CPOL = 1)

Master SOUT

tCSC

tCSC

tCSC = PCS to SCK delay.
tASC = After SCK delay.

Master SIN

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

19-64 Freescale Semiconductor

19.4.7.6 Clock Polarity Switching between DSPI Transfers

To switch polarity between non-continuous DSPI frames, the edge generated by the change in the idle state
of the clock occurs one system clock before the chip select pin for the next frame asserts.

See Section 19.3.2.3, “DSPI Clock and Transfer Attributes Registers 0–7 (DSPIx_CTARn).”

In Figure 19-40, time ‘A’ shows the one clock interval. Time ‘B’ is programmable with a minimum of two
system clocks.

Figure 19-40. Polarity Switching between Frames

19.4.8 Continuous Serial Communications Clock

The DSPI provides the option of generating a continuous SCK signal for slave peripherals that require a
continuous clock.

Continuous SCK is enabled by setting the CONT_SCKE bit in the DSPIx_MCR. Continuous SCK is valid
in all configurations.

Continuous SCK is only supported for CPHA = 1. Setting CPHA = 0 is ignored if the CONT_SCKE bit is
set. Continuous SCK is supported for modified transfer format.

Clock and transfer attributes for the continuous SCK mode are set according to the following rules:

• When the DSPI is in SPI configuration, CTAR0 is used initially. At the start of each SPI frame
transfer, the CTAR specified by the CTAS for the frame is used.

• When the DSPI is in DSI configuration, the CTAR specified by the DSICTAS field is used at all
times.

• When the DSPI is in CSI configuration, the CTAR selected by the DSICTAS field is used initially.
At the start of an SPI frame transfer, the CTAR specified by the CTAS value for the frame is used.
At the start of a DSI frame transfer, the CTAR specified by the DSICTAS field is used.

• In all configurations, the currently selected CTAR remains in use until the start of a frame with a
different CTAR, or the continuous SCK mode is terminated.

The device is designed to use the same baud rate for all transfers made while using the continuous SCK.
Switching clock polarity between frames while using continuous SCK can cause errors in the transfer.
Continuous SCK operation is not guaranteed if the DSPI is put into module disable mode.

PCS

System clock

SCK

Frame 1Frame 0

CPOL = 0 CPOL = 1

A B

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 19-65

Enabling continuous SCK disables the PCS to SCK delay and the After SCK delay. The delay after transfer
is fixed at one SCK cycle. Figure 19-41 shows timing diagram for continuous SCK format with continuous
selection disabled.

Figure 19-41. Continuous SCK Timing Diagram (CONT= 0)

If the CONT bit in the TX FIFO entry is set or the DCONT in the DSPIx_DSICR is set, PCS remains
asserted between the transfers when the PCS signal for the next transfer is the same as for the current
transfer. Figure 19-42 shows timing diagram for continuous SCK format with continuous selection
enabled.

Figure 19-42. Continuous SCK Timing Diagram (CONT=1)

19.4.9 Interrupts and DMA Requests

The DSPI has five conditions that can generate interrupt requests only, and two conditions that can
generate interrupt or DMA requests. Table 19-31 lists the conditions that can generate a DMA request or
interrupt request.

Table 19-31. Interrupt and DMA Request Conditions

Condition Flag Interrupt DMA

End of transfer queue has been reached (EOQ) EOQF X

TX FIFO is not full TFFF X X

Current frame transfer is complete TCF X

SCK
(CPOL = 0)

PCS

SCK
(CPOL = 1)

Master SOUT

tDT
tDT = 1 SCK.

Master SIN

SCK
(CPOL = 0)

PCS

SCK
(CPOL = 1)

Master SOUT

Master SIN

Transfer 1 Transfer 2

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

19-66 Freescale Semiconductor

Each condition has a flag bit and a request enable bit. The flag bits are described in the Section 19.3.2.4,
“DSPI Status Register (DSPIx_SR)” and the request enable bits are described in the Section 19.3.2.5,
“DSPI DMA and Interrupt Request Select and Enable Register (DSPIx_RSER).” The TX FIFO fill flag
(TFFF) and RX FIFO drain flag (RFDF) generate interrupt requests or DMA requests depending on the
TFFF_DIRS and RFDF_DIRS bits in the DSPIx_RSER.

19.4.9.1 End-of-Queue Interrupt Request (EOQF)

The end of queue equest indicates that the end of a transmit queue is reached. The end of queue request is
generated when the EOQ bit in the executing SPI command is asserted and the EOQF_RE bit in the
DSPIx_RSER is set. See the EOQ bit description in Section 19.3.2.4, “DSPI Status Register (DSPIx_SR).”
See Figure 19-34 and Figure 19-35 that illustrate when EOQF is set.

19.4.9.2 Transmit FIFO Fill Interrupt or DMA Request (TFFF)

The transmit FIFO fill request indicates that the TX FIFO is not full. The transmit FIFO fill request is
generated when the number of entries in the TX FIFO is less than the maximum number of possible entries,
and the TFFF_RE bit in the DSPIx_RSER is set. The TFFF_DIRS bit in the DSPIx_RSER selects whether
a DMA request or an interrupt request is generated.

19.4.9.3 Transfer Complete Interrupt Request (TCF)

The transfer complete request indicates the end of the transfer of a serial frame. The transfer complete
request is generated at the end of each frame transfer when the TCF_RE bit is set in the DSPIx_RSER. See
the TCF bit description in Section 19.3.2.4, “DSPI Status Register (DSPIx_SR).” See Figure 19-34 and
Figure 19-35 that illustrate when TCF is set.

19.4.9.4 Transmit FIFO Underflow Interrupt Request (TFUF)

The transmit FIFO underflow request indicates that an underflow condition in the TX FIFO has occurred.
The transmit underflow condition is detected only for DSPI modules operating in slave mode and SPI
configuration. The TFUF bit is set when the TX FIFO of a DSPI operating in slave mode and SPI
configuration is empty, and a transfer is initiated from an external SPI master. If the TFUF bit is set while
the TFUF_RE bit in the DSPIx_RSER is set, an interrupt request is generated.

TX FIFO underflow has occurred TFUF X

RX FIFO is not empty RFDF X X

RX FIFO overflow occurred RFOF X

A FIFO overrun occurred1 TFUF ORed with RFOF X

1 The FIFO overrun condition is created by ORing the TFUF and RFOF flags together.

Table 19-31. Interrupt and DMA Request Conditions (continued)

Condition Flag Interrupt DMA

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 19-67

19.4.9.5 Receive FIFO Drain Interrupt or DMA Request (RFDF)

The receive FIFO drain request indicates that the RX FIFO is not empty. The receive FIFO drain request
is generated when the number of entries in the RX FIFO is not zero, and the RFDF_RE bit in the
DSPIx_RSER is set. The RFDF_DIRS bit in the DSPIx_RSER selects whether a DMA request or an
interrupt request is generated.

19.4.9.6 Receive FIFO Overflow Interrupt Request (RFOF)

The receive FIFO overflow request indicates that an overflow condition in the RX FIFO has occurred. A
receive FIFO overflow request is generated when RX FIFO and shift register are full and a transfer is
initiated. The RFOF_RE bit in the DSPIx_RSER must be set for the interrupt request to be generated.

Depending on the state of the ROOE bit in the DSPIx_MCR, the data from the transfer that generated the
overflow is either ignored or shifted in to the shift register. If the ROOE bit is set, the incoming data is
shifted in to the shift register. If the ROOE bit is negated, the incoming data is ignored.

19.4.9.7 FIFO Overrun Request (TFUF) or (RFOF)

The FIFO overrun request indicates that at least one of the FIFOs in the DSPI has exceeded its capacity.
The FIFO overrun request is generated by logically OR’ing together the RX FIFO overflow and TX FIFO
underflow signals.

19.4.10 Power Saving Features

The DSPI supports two power-saving strategies:

• Module disable mode—clock gating of non-memory mapped logic

• Clock gating of slave interface signals and clock to memory-mapped logic

19.4.10.1 Module Disable Mode

Module disable mode is a module-specific mode that the DSPI can enter to save power. Host software can
initiate the module disable mode by writing a 1 to the MDIS bit in the DSPIx_MCR. In module disable
mode, the DSPI is in a dormant state, but the memory mapped registers are still accessible. Certain read
or write operations have a different affect when the DSPI is in the module disable mode. Reading the RX
FIFO pop register does not change the state of the RX FIFO. Likewise, writing to the TX FIFO push
register does not change the state of the TX FIFO. Clearing either of the FIFOs does not have any effect
in the module disable mode. Changes to the DIS_TXF and DIS_RXF fields of the DSPIx_MCR does not
have any affect in the module disable mode. In the module disable mode, all status bits and register flags
in the DSPI return the correct values when read, but writing to them has no affect. Writing to the
DSPIx_TCR during module disable mode does not have an effect. Interrupt and DMA request signals
cannot be cleared while in the module disable mode.

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

19-68 Freescale Semiconductor

19.4.10.2 Slave Interface Signal Gating

The DSPI module enable signal is used to gate slave interface signals such as address, byte enable,
read/write and data. This prevents toggling slave interface signals from consuming power unless the DSPI
is accessed.

19.5 Initialization and Application Information

19.5.1 How to Change Queues

DSPI queues are not part of the DSPI module, but the DSPI includes features in support of queue
management. Queues are primarily supported in SPI configuration. This section presents an example of
how to change queues for the DSPI.

1. Set the EOQ bit in the command word to indicate the last entry in the queue for the DSPI after the
last command word from a queue is executed.

2. Sample the command word that has the EOQ bit set at the end of the transfer. Set the EOQ flag
(EOQF) in the DSPIx_SR is set.

If EOQF flag is set to 1, the serial interface is disabled, preventing data transmission and reception.
The DSPI is put into the STOPPED state and the TXRXS bit is negated to indicate the STOPPED
state. The eDMA continues to fill the TX FIFO until one of the following conditions occur:

— TX FIFO is full

— Modified DMA descriptor that adds queues to the TX and RX channels is received (step 5)

3. Disable the DSPI DMA transfers by clearing the DMA channel enable bit for the DMA channel
assigned to the TX FIFO and RX FIFO. This is done in the eDMA controller.

4. Ensure all received data in the RX FIFO was transferred to the memory receive queue using one
of the following methods:

— Read RXCNT in DSPIx_SR

— Check RFDF in the DSPIx_SR after each read operation of the DSPIx_POPR

5. Modify the DMA descriptor for the TX and RX channels for additional queues.

6. Flush the TX FIFO and RX FIFO by writing a 1 to the CLR_TXF and the CLR_RXF bits
respectively in the DSPIx_MCR register.

7. Clear the transfer count using one of the following methods:

— Set the CTCNT bit in the command word of the first entry in the new queue

— Write directly to SPI_TCNT field in DSPIx_TCR

8. Enable the DMA channel by setting the DMA enable request bit for the DMA channel assigned to
the DSPI TX and RX FIFOs.

9. Enable serial transmission and serial reception of data by clearing the EOQF bit.

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 19-69

19.5.2 Baud Rate Settings

Table 19-32 shows the baud rate that is generated based on the combination of the baud rate prescaler PBR
and the baud rate scaler BR in the DSPIx_CTARs. The values are calculated at an 82 MHz system
frequency.

Table 19-32. Baud Rate Values

Baud Rate Divider Prescaler Values
(DSPI_CTAR[PBR])

2 3 5 7

B
au

d
 R

at
e

S
ca

le
r

V
al

u
es

 (
D

S
P

I_
C

TA
R

[B
R

])

2 25.0 MHz 16.7 MHz 10.0 MHz 7.14 MHz

4 12.5 MHz 8.33 MHz 5.00 MHz 3.57 MHz

6 8.33 MHz 5.56 MHz 3.33 MHz 2.38 MHz

8 6.25 MHz 4.17 MHz 2.50 MHz 1.79 MHz

16 3.12 MHz 2.08 MHz 1.25 MHz 893 kHz

32 1.56 MHz 1.04 MHz 625 kHz 446 kHz

64 781 kHz 521 kHz 312 kHz 223 kHz

128 391 kHz 260 kHz 156 kHz 112 kHz

256 195 kHz 130 kHz 78.1 kHz 55.8 kHz

512 97.7 kHz 65.1 kHz 39.1 kHz 27.9 kHz

1024 48.8 kHz 32.6 kHz 19.5 kHz 14.0 kHz

2048 24.4 kHz 16.3 kHz 9.77 kHz 6.98 kHz

4096 12.2 kHz 8.14 kHz 4.88 kHz 3.49 kHz

8192 6.10 kHz 4.07 kHz 2.44 kHz 1.74 kHz

16384 3.05 kHz 2.04 kHz 1.22 kHz 872 Hz

32768 1.53 kHz 1.02 kHz 610 Hz 436 Hz

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

19-70 Freescale Semiconductor

19.5.3 Delay Settings

Table 19-33 shows the values for the delay after transfer (tDT) and CS to SCK delay (tCSC) that can be
generated based on the prescaler values and the scaler values set in the DSPIx_CTARs. An 82 MHz system
frequency was used to calculate the values in the Table 19-33.

19.5.4 MPC5xx QSPI Compatibility with the DSPI

Table 19-34 shows the translation of commands written to the TX FIFO command halfword with
commands written to the command RAM of the MPC5xx family QSPI. The table gives you the
DSPIx_CTARs values to use in the control bits of the command RAM for the default cases for the
combinations in the MPC5xx family. The defaults for the MPC5xx family are based on a system clock of
40 MHz.

Table 19-33. Delay Values

Delay Prescaler Values
(DSPI_CTAR[PBR])

1 3 5 7

D
el

ay
 S

ca
le

r
V

al
u

es
 (

D
S

P
I_

C
TA

R
[D

T
])

2 20.0 ns 60.0 ns 100.0 ns 140.0 ns

4 40.0 ns 120.0 ns 200.0 ns 280.0 ns

8 80.0 ns 240.0 ns 400.0 ns 560.0 ns

16 160.0 ns 480.0 ns 800.0 ns 1.1 μs

32 320.0 ns 960.0 ns 1.6 μs 2.2 μs

64 640.0 ns 1.9 μs 3.2 μs 4.5 μs

128 1.3 μs 3.8 μs 6.4 μs 9.0 μs

256 2.6 μs 7.7 μs 12.8 μs 17.9 μs

512 5.1 μs 15.4 μs 25.6 μs 35.8 μs

1024 10.2 μs 30.7 μs 51.2 μs 71.7 μs

2048 20.5 μs 61.4 μs 102.4 μs 143.4 μs

4096 41.0 μs 122.9 μs 204.8 μs 286.7 μs

8192 81.9 μs 245.8 μs 409.6 μs 573.4 μs

16384 163.8 μs 491.5 μs 819.2 μs 1.1 ms

32768 327.7 μs 983.0 μs 1.6 ms 2.3 ms

65536 655.4 μs 2.0 ms 3.3 ms 4.6 ms

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 19-71

The following delay variables generate the same delay, or as close as possible, from the DSPI 82 MHz
system clock that an MPC5xx family part generates from a 40 MHz system clock. For other system clock
frequencies, you can recompute the values using the information presented in Section 19.5.3, “Delay
Settings.”

For BITSE = 0 --> 8 bits per transfer

For DT = 0 --> 0.425 μs delay: for this value, the closest value in the DSPI is 0.480 μs

For DSCK = 0 --> 0.5 of the SCK period: for this value, the value in the DSPI is 20 ns

19.5.5 Calculation of FIFO Pointer Addresses

You can read the TX and RX FIFO contents through the FIFO registers, and identify valid entries using a
memory-mapped pointer and a memory-mapped counter for each FIFO. The pointer to the first-in entry in
each FIFO is memory mapped. For the TX FIFO the first-in pointer is the transmit next pointer
(TXNXTPTR). For the RX FIFO the first-in pointer is the pop next pointer (POPNXTPTR).

See Section 19.4.3.4, “Using the TX FIFO Buffering Mechanism,” and Section 19.4.3.5, “Using the RX
FIFO Buffering Mechanism,” for details on the FIFO operation. The TX FIFO is chosen for the
illustration, but the concepts carry over to the RX FIFO.

Table 19-34. MPC5xx QSPI Compatibility with the DSPI

MPC5xx Family Control Bits
 DSPI Corresponding Control Bits

Corresponding DSPIx_CTAR Register Configuration

BITSE CTAS[0] DT CTAS[1] DSCK CTAS[2] DSPIx_CTARx FMSZ PDT DT PCSSCK CSSCK

0 0 0 0 0111 10 0011 00 0000

0 0 1 1 0111 10 0011 User User

0 1 0 2 0111 User1

1 Selected by user

User 00 0000

0 1 1 3 0111 User User User User

1 0 0 4 User 10 0011 00 0000

1 0 1 5 User 10 0011 User User

1 1 0 6 User User User 00 0000

1 1 1 7 User User User User User

Deserial Serial Peripheral Interface (DSPI)

MPC5534 Microcontroller Reference Manual, Rev. 2

19-72 Freescale Semiconductor

Figure 19-43 illustrates the concept of first-in and last-in FIFO entries along with the FIFO counter.

Figure 19-43. TX FIFO Pointers and Counter

19.5.5.1 Address Calculation for the First-in Entry and Last-in
Entry in the TX FIFO

The memory address of the first-in entry in the TX FIFO is computed by the following equation:

First-in entry address = TXFIFO base + 4 (TXNXTPTR)

The memory address of the last-in entry in the TX FIFO is computed by the following equation:

Last-in entry address = TXFIFO base + (4 x [(TXCTR + TXNXTPTR - 1) modulo TXFIFO depth])

where:
TXFIFO base = base address of transmit FIFO

TXCTR = transmit FIFO counter

TXNXTPTR = transmit next pointer

TX FIFO depth = transmit FIFO depth, implementation specific

19.5.5.2 Address Calculation for the
First-in Entry and Last-in Entry in the RX FIFO

The memory address of the first-in entry in the RX FIFO is computed by the following equation:

First-in entry address = RXFIFO base + 4 x (POPNXTPTR)

The memory address of the last-in entry in the RX FIFO is computed by the following equation:

Last-in entry address = RXFIFO base + 4 x [(RXCTR + POPNXTPTR - 1) modulo RXFIFO depth]

where:
RXFIFO base = base address of receive FIFO

RXCTR = receive FIFO counter

POPNXTPTR = pop next pointer

RX FIFO depth = receive FIFO depth, implementation specific

Entry C

Entry A (first in)

– 1

Entry B

Entry D (last in)

TX FIFO base

Push TX FIFO

TX FIFO counter

Shift register SOUT

register

Transmit next
data pointer

–

–

–

–

+ 1

(TXNXTPTR)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 20-1

Chapter 20
Enhanced Serial Communication Interface (eSCI)

20.1 Introduction
This section gives an overview of the enhanced serial communication interface (eSCI) module, and
presents a block diagram, its features and operating modes.

20.1.1 Block Diagram

Figure 20-1. eSCI Block Diagram

IRQ
generation

Receive & wake-up control

Receive shift register

eSCI data register

LIN receive register

LIN transmit register
DMA

interface

TX DMA

RX DMA

RDRF/
OR IRQ

ORING IRQ to CPU

Data format control÷16BAUD
generator

Transmit control

Transmit shift register

eSCI data register

IDLE
IRQ

IRQ
generation

TC IRQ

TDRE
IRQ

TX data out

LIN FSM1 LIN error detection

RXRDY
TXRDY
LWAKE
FRC

PBERR
BERR
CERR
CKERR
STO
OVFL

LIN error flags

LIN status flags

LIN Hardware

Peripheral
bus clock

RX data In

1 Finite state
1 machine

Enhanced Serial Communication Interface (eSCI)

MPC5534 Microcontroller Reference Manual, Rev. 2

20-2 Freescale Semiconductor

20.1.2 Overview

The eSCI allows asynchronous serial communications with peripheral devices and other CPUs. The eSCI
features allow it to operate as a LIN bus master, complying with the LIN 2.0 specification.

Each of the eSCI modules can be independently disabled by writing to the module disable (MDIS) bit in
the module control register 2 (ESCIx_CR2). Disabling the module turns off the clock to the module,
although the core can access some of eSCI registers using the slave bus. When the eSCI module is not used
in the application, set the MDIS bit to one.

20.1.3 Features

The eSCI includes these features:

• Full-duplex operation

• Standard mark/space non-return-to-zero (NRZ) format

• Configurable 13-bit baud rate

• Programmable 8- or 9-bit data format

• LIN master node support

• Configurable CRC detection for LIN

• Separately enabled transmitter and receiver

• Programmable transmitter output parity

• Two receiver wake-up methods:

— Idle line wake-up

— Address mark wake-up

• Interrupt-driven operation

• Receiver framing error detection

• Hardware parity checking

• 1/16 bit-time noise detection

• Two-channel DMA interface

20.1.4 Modes of Operation

The eSCI functions the same in normal, special, and emulation modes. It has a low-power module disable
mode.

Enhanced Serial Communication Interface (eSCI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 20-3

20.2 External Signal Description
This section provides a description of all eSCI external to the MCU.

Each eSCI module has two I/O signals connected to the external MCU pins. These signals are summarized
in Table 20-1 and described in more detail in the following sections.

20.2.1 Detailed Signal Description

20.2.1.1 eSCI Transmit (TXDA, TXDB)

These signals transmit data out for the eSCI.

20.2.1.2 eSCI Receive Pin (RXDA, RXDB)

These signals receive data input for the eSCI.

20.3 Memory Map and Register Definition
This section provides a detailed description of all memory and registers.

20.3.1 Module Memory Map

The memory map for the eSCI module is shown in Table 20-2. The address offset is listed for each register.
The total address for each register is the sum of the base address for the eSCI module (ESCIx_base) and
the address offset for each register. There are two eSCI modules on this device:

• eSCI A base address is 0xFFFB_0000

• eSCI B base address is 0xFFFB_4000

Table 20-1. eSCI Signals

Signal Name1

1 x indicates eSCI module A or B

I/O Description

RXDx I eSCI receive

TXDx O eSCI transmit

Table 20-2. Module Memory Map

Address Register Name Register Description Bits

Base
0xFFFB_0000 (A)
0xFFFB_4000 (B)

ESCIx_CR1 eSCI control register 1 32

Base + 0x0004 ESCIx_CR2 eSCI control register 2 16

Base + 0x0006 ESCIx_DR eSCI data register 16

Base + 0x0008 ESCIx_SR eSCI status register 32

Enhanced Serial Communication Interface (eSCI)

MPC5534 Microcontroller Reference Manual, Rev. 2

20-4 Freescale Semiconductor

20.3.2 Register Descriptions

This section contains the register descriptions in address order. Each description includes a standard
register diagram with an associated figure number. Details of register bit and field functions follow the
register diagrams, in bit order.

20.3.2.1 eSCI Control Register 1 (ESCIx_CR1)

Base + 0x000C ESCIx_LCR LIN control register 32

Base + 0x0010 ESCIx_LTR LIN transmit register 32

Base + 0x0014 ESCIx_LRR LIN receive register 32

Base + 0x0018 ESCIx_LPR LIN cyclic redundancy check polynomial register 32

Address: Base + 0x0000 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 SBR
0

SBR
1

SBR
2

SBR
3

SBR
4

SBR
5

SBR
6

SBR
7

SBR
8

SBR
9

SBR
10

SBR
11

SBR
12W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
LOOPS

0
RSRC M WAKE ILT PE PT TIE TCIE RIE ILIE TE RE RWU SBK

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 20-2. eSCI Control Register 1 (ESCIx_CR1)

Table 20-3. ESCIx_CR1 Field Descriptions

Field Description

0–2 Reserved

3–15
SBRn

SCI baud rate. Used by the counter to determine the baud rate of the eSCI. The formula for calculating the baud
rate is:

where BR is the content of the eSCI control register 1 (ESCIx_CR1), bits SBR0–SBR12. SBR0–SBR12 can contain
a value from 1 to 8191. See the ESCIx_LCR[WU] bit description on page 20-12.

Table 20-2. Module Memory Map (continued)

Address Register Name Register Description Bits

SCI baud rate eSCI system clock
16 BR×

---=

Enhanced Serial Communication Interface (eSCI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 20-5

16
LOOPS

Loop select. Enables loop operation. In loop operation, the RXD pin is disconnected from the eSCI and the
transmitter output is internally connected to the receiver input. Both the transmitter and the receiver must be enabled
to use the loop function.
0 Normal operation enabled, loop operation disabled
1 Loop operation enabled
Note: The receiver input is determined by the RSRC bit.

17 Reserved

18
RSRC

Receiver source. When LOOPS = 1, the RSRC bit determines the source for the receiver shift register input.
0 Receiver input internally connected to transmitter output
1 Receiver input connected externally to transmitter
The table below shows how LOOPS and RSRC determine the loop function of the eSCI.

19
M

Data format mode. Determines whether data characters are 8 or 9 bits long.
0 1 start bit, 8 data bits, 1 stop bit
1 1 start bit, 9 data bits, 1 stop bit

20
WAKE

Wake-up condition. Determines which condition wakes up the eSCI: a logic 1 (address mark) in the most significant
bit (MSB) position of a received data character or an idle condition on the RXD.
0 Idle line wake-up
1 Address mark wake-up
Note: This is not a wake-up from a power-save mode; this function applies to the receiver standby mode only.

21
ILT

Idle line type. Determines when the receiver starts counting logic 1s as idle character bits. The counting begins
either after the start bit or after the stop bit. If the count begins after the start bit, then a string of logic 1s preceding
the stop bit can cause false recognition of an idle character. Beginning the count after the stop bit avoids false idle
character recognition, but requires correctly synchronized transmissions.
0 Idle character bit count begins after start bit
1 Idle character bit count begins after stop bit

22
PE

Parity enable. Enables the parity function. When enabled, the parity function inserts a parity bit in the most
significant bit position of the transmitted word. During reception, the received parity bit is verified in the most
significant bit position. The received parity bit is not masked out.
0 Parity function disabled
1 Parity function enabled

23
PT

Parity type. Determines whether the eSCI generates and checks for even parity or odd parity. With even parity, an
even number of 1s clears the parity bit and an odd number of 1s sets the parity bit. With odd parity, an odd number
of 1s clears the parity bit and an even number of 1s sets the parity bit.
0 Even parity
1 Odd parity

24
TIE

Transmitter interrupt enable. Enables the transmit data register empty flag ESCIx_SR[TDRE] to generate interrupt
requests. The interrupt is suppressed in TX DMA mode.
0 TDRE interrupt requests disabled
1 TDRE interrupt requests enabled

Table 20-3. ESCIx_CR1 Field Descriptions (continued)

Field Description

LOOPS RSRC Function

0 – Normal operation

1 0 Loop mode with RXD input internally connected to TXD output

1 1 Single-wire mode with RXD input connected to TXD

Enhanced Serial Communication Interface (eSCI)

MPC5534 Microcontroller Reference Manual, Rev. 2

20-6 Freescale Semiconductor

NOTES
After a reset, the baud rate generator is disabled until the TE bit or the RE
bit is initialized (set for the first time).

The baud rate generator is disabled when SBR0–SBR12 = 0x0000.

The baud rate is usually written using a single write. If using 8-bit writes,
writing to ESCIx_CR1[0–7] has no effect until ESCIx_CR1[8–15] is
written, since ESCIx_CR1[0–7] is temporarily buffered until
ESCIx_CR1[8–15] is written.

When parity is enabled, the RX Data parity bit is in the data register.

25
TCIE

Transmission complete interrupt enable. Enables the transmission complete flag ESCIx_SR[TC] to generate
interrupt requests. The interrupt is suppressed in TX DMA mode.
0 TC interrupt requests disabled
1 TC interrupt requests enabled

26
RIE

Receiver full interrupt enable. Enables the receive data register full flag ESCIx_SR[RDRF] and the overrun flag
ESCIx_SR[OR] to generate interrupt requests. The interrupt is suppressed in RX DMA mode.
0 RDRF and OR interrupt requests disabled
1 RDRF and OR interrupt requests enabled

27
ILIE

Idle line interrupt enable. Enables the idle line flag ESCIx_SR[IDLE] to generate interrupt requests.
0 IDLE interrupt requests disabled
1 IDLE interrupt requests enabled

28
TE

Transmitter enable. Enables the eSCI transmitter and configures the TXD pin as being controlled by the eSCI. The
TE bit can be used to queue an idle preamble.
0 Transmitter disabled
1 Transmitter enabled

29
RE

Receiver enable. Enables the eSCI receiver.
0 Receiver disabled
1 Receiver enabled

30
RWU

Receiver wake-up. Standby state.
0 Normal operation.
1 RWU enables the wake-up function and inhibits further receiver interrupt requests. Normally, hardware wakes

the receiver by automatically clearing RWU.

31
SBK

Send break. Toggling SBK sends one break character (See the description of ESCIx_CR2[BRK13] for break
character length). Toggling implies clearing the SBK bit before the break character has finished transmitting. As long
as SBK is set, the transmitter continues to send complete break characters.
0 No break characters
1 Transmit break characters

Table 20-3. ESCIx_CR1 Field Descriptions (continued)

Field Description

Enhanced Serial Communication Interface (eSCI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 20-7

20.3.2.2 eSCI Control Register 2 (ESCIx_CR2)

NOTE
DMA requests are negated when in module disable mode.

Address: Base + 0x0004 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MDIS FBR BSTP

IEB
ERR

RX
DMA

TX
DMA

BRK
13

0
BESM

13
SB

STP

0 0
ORIE NFIE FEIE PFIE

W

Reset 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 20-3. eSCI Control Register 2 (ESCIx_CR2)

Table 20-4. ESCIx_CR2 Field Description

Field Description

0
MDIS

Module disable. By default the module is enabled, but can be disabled by writing a 1 to this bit. DMA requests are
negated if the device is in module disable mode.
0 Module enabled
1 Module disabled

1
FBR

Fast bit error detection. Handles bit error detection on a per bit basis. If this is not enabled, bit errors are detected on
a byte basis.

2
BSTP

Bit error/physical bus error stop. Causes DMA TX requests to be suppressed, as long as the bit error and physical
bus error flags are not cleared. This stops further DMA writes, which would otherwise cause data bytes to be
interpreted as LIN header information.

3
IEBERR

Enable bit error interrupt. Generates an interrupt, when a LIN bit error is detected. For a list of interrupt enables and
flags, See Table 20-21.

4
RXDMA

Activate RX DMA channel. If this bit is enabled and the eSCI has received data, it raises a DMA RX request.

5
TXDMA

Activate TX DMA channel. Whenever the eSCI is able to transmit data, it raises a DMA TX request.

6
BRK13

Break transmit character length. Determines whether the transmit break character is either 10 or 11, or 13 or 14 bits
long. The detection of a framing error is not affected by this bit.

0 Break Character is 10 or 11 bits long
1 Break character is 13 or 14 bits long
Note: LIN 2.0 now requires that a break character is always 13 bits long, always set this bit to 1. The eSCI works

with BRK13=0, but it violates LIN 2.0.

7 Reserved. This bit is readable/writable, but has no effect on the operation of the eSCI module.

Break Length:

ESCIx_CR1[M]

0 1

BRK13
0 10 11

1 13 14

Enhanced Serial Communication Interface (eSCI)

MPC5534 Microcontroller Reference Manual, Rev. 2

20-8 Freescale Semiconductor

20.3.2.3 eSCI Data Register (ESCIx_DR)

8
BESM13

Bit error sample mode, bit 13. Determines when to sample the incoming bit to detect a bit error. This only applies
when FBR is set.
0 Sample at RT clock 9
1 Sample at RT clock 13 (See Section 20.4.5.3, “Data Sampling”)

9
SBSTP

SCI bit error stop. Stops the SCI when a bit error is asserted. This allows to stop driving the LIN bus quickly after a
bit error has been detected.
0 Byte is completely transmitted
1 Byte is partially transmitted

10–11 Reserved

12
ORIE

Overrun error interrupt enable. Generates an interrupt, when a frame error is detected. For a list of interrupt enables
and flags, See Table 20-21.

13
NFIE

Noise flag interrupt enable. Generates an interrupt, when noise flag is set. For a list of interrupt enables and flags,
See Table 20-21.

14
FEIE

Frame error interrupt enable. Generates an interrupt, when a frame error is detected. For a list of interrupt enables
and flags, See Table 20-21.

15
PFIE

Parity flag interrupt enable. Generates an interrupt, when parity flag is set. For a list of interrupt enables and flags,
See Table 20-21.

Address: Base + 0x0006 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R R8
T8

0 0 0 0 0 0 R7 R6 R5 R4 R3 R2 R1 R0

W T7 T6 T5 T4 T3 T2 T1 T0

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 20-4. eSCI Data Register (ESCIx_DR)

Table 20-5. ESCIx_DR Field Description

Field Description

0
R8

Received bit 8. R8 is the ninth data bit received when the eSCI is configured for 9-bit data format (M = 1).

1
T8

Transmit bit 8. T8 is the ninth data bit transmitted when the eSCI is configured for 9-bit data format (M = 1).
Note: If the value of T8 is the same as in the previous transmission, T8 does not have to be rewritten.The same value

is transmitted until T8 is rewritten.

2–7 Reserved

8–15
R7–R0
T7–T0

Received bits/transmit bits 7–0 for 9-bit or 8-bit formats. Bits 7–0 from SCI communication can be read from
ESCIx_DR[8–15] (provided that SCI communication was successful). Writing to ESCIx_DR [8–15] provides bits 7–0
for SCI transmission.

Table 20-4. ESCIx_CR2 Field Description (continued)

Field Description

Enhanced Serial Communication Interface (eSCI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 20-9

NOTES
In 8-bit data format, only bits 8–15 of ESCIx_DR need to be accessed.

When transmitting in 9-bit data format and using 8-bit write instructions,
write first to ESCIx_DR[0–7], then ESCIx_DR[8–15]. For 9-bit
transmissions, a single write can also be used.

Do not use ESCIx_DR in LIN mode, writes to this register are blocked in
LIN mode.

Even if parity generation/checking is enabled via ESCIx_CR[PE], the parity
bit is not masked out.

20.3.2.4 eSCI Status Register (ESCIx_SR)

The ESCIx_SR indicates the current status. The status flags can be polled, and some can also be used to
generate interrupts. All bits in ESCIx_SR except for RAF are cleared by writing 1 to them.

Address: Base + 0x0008 Access: R/W1c

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R TDRE TC RDRF IDLE OR NF FE PF 0 0 0 BERR 0 0 0 RAF

W w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R RX
RDY

TX
RDY

LWAKE STO
PB

ERR
CERR

CK
ERR

FRC 0 0 0 0 0 0 0 OVFL

W w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 20-5. eSCI Status Register (ESCIx_SR)

Enhanced Serial Communication Interface (eSCI)

MPC5534 Microcontroller Reference Manual, Rev. 2

20-10 Freescale Semiconductor

Table 20-6. ESCIx_SR Field Descriptions

Field Description

0
TDRE

Transmit data register empty flag. TDRE is set when the transmit shift register receives a byte from the eSCI data
register. When TDRE is 1, the data register (ESCIx_DR) is empty and can receive a new value to transmit. Clear
TDRE by writing 1 to it.
0 eSCI has not transferred data to the transmit shift register since the last time software cleared TDRE
1 Byte transferred to transmit shift register; transmit data register empty

1
TC

Transmit complete flag. TC is set low when there is a transmission in progress or when a preamble or break character
is loaded. TC is set high when the TDRE flag is set and no data, preamble, or break character is being transmitted.
When TC is set, the TXD out signal becomes idle (logic 1).

After the device is switched on (by clearing the MDIS bit, See Section 20.3.2.2, “eSCI Control Register 2
(ESCIx_CR2),” a preamble is transmitted; if no byte is written to the SCI data register then the completion of the
preamble can be monitored using the TC flag. Clear TC by writing 1 to it.
0 Transmission in progress
1 No transmission in progress. Indicates that TXD out is idle.

2
RDRF

Receive data register full flag. RDRF is set when the data in the receive shift register transfers to the eSCI data
register. Clear RDRF by writing 1 to it.
0 eSCI has not transferred data to the receive data register since last time software cleared RDRF
1 Received data available in eSCI data register

3
IDLE

Idle line flag. IDLE is set when 10 consecutive logic 1s (if M = 0) or 11 consecutive logic 1s (if M = 1) appear on the
receiver input. After the IDLE flag is cleared, a valid frame must again set the RDRF flag before an idle condition can
set the IDLE flag. Clear IDLE by writing 1 to it.
0 Receiver input is either active now or has never become active since the IDLE flag was last cleared
1 Receiver input has become idle
Note: When the receiver wake-up bit (RWU) is set, an idle line condition does not set the IDLE flag.

4
OR

Overrun flag. OR is set when software fails to read the eSCI data register before the receive shift register receives
the next frame. The OR bit is set immediately after the stop bit has been completely received for the second frame.
The data in the shift register is lost, but the data already in the eSCI data registers is not affected. Clear OR by writing
1 to it.
0 No overrun
1 Overrun

5
NF

Noise flag. NF is set when the eSCI detects noise on the receiver input. NF bit is set during the same cycle as the
RDRF flag but does not get set in the case of an overrun. Clear NF by writing 1 to it.
0 No noise
1 Noise

6
FE

Framing error flag. FE is set when a logic 0 is accepted as the stop bit. FE bit is set during the same cycle as the
RDRF flag but does not get set in the case of an overrun. Clear FE by writing 1 to it.
0 No framing error
1 Framing error

7
PF

Parity error flag. PF is set when the parity enable bit, PE, is set and the parity of the received data does not match
its parity bit. Clear PE by writing 1 to it.
0 No parity error
1 Parity error

8–10 Reserved, Must be 0.

Enhanced Serial Communication Interface (eSCI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 20-11

11
BERR

Bit error. Indicates a bit on the bus did not match the transmitted bit. If FBR = 0, checking happens after a complete
byte has been transmitted and received again. If FBR = 1, checking happens bit by bit. This bit is only used for LIN
mode. BERR is also set if an unrequested byte is received (i.e. a byte that is not part of an RX frame) that is not
recognized as a wake-up flag. (Because the data on the RX line does not match the idle state that was assigned to
the TX line.) Clear BERR by writing 1 to it. A bit error causes the LIN finite state machine (FSM) to reset unless
ESCIx_LCR[LDBG] is set.
0 No bit error
1 Bit error

12–14 Reserved

15
RAF

Receiver active flag. RAF is set when the receiver detects a logic 0 during the RT1 time period of the start bit search.
RAF is cleared when the receiver detects an idle character.
0 No reception in progress.
1 Reception in progress.

16
RXRDY

The eSCI has received LIN data. This bit is set when the ESCIx_LCR receives a byte. Write a one to RXRDY to clear
it to 0.
0 No receive data ready
1 Receive data ready

17
TXRDY

The LIN FSM can accept another write to ESCIx_LTR. This bit is set when the ESCIx_LTR register becomes free.
Write a one to TXRDY to clear it to 0.
0 ESCIx_LTR register is not free
1 ESCIx_LTR register is free

18
LWAKE

Received LIN wake-up signal. A LIN slave has sent a wake-up signal on the bus. When this signal is detected, the
LIN FSM resets. If the setup of a frame had already started, it therefore must be repeated.
LWAKE is set if ESCI receives a LIN 2.0 wake-up signal (in which the baud rate is lower than 32K baud). See the
WU bit.
0 LIN2.0 wakeup signal not received
1 LIN2.0 wakeup signal received

19
STO

Slave time out. Represents a NO_RESPONSE_ERROR. This is set if a slave does not complete a frame within the
specified maximum frame length. For LIN 1.3 the following formula is used:

0 No time out detected
1 Slave did not complete a frame within the maximum frame length specified

20
PBERR

Physical bus error. No valid message can be generated on the bus. This is set if, after the start of a byte transmission,
the input remains unchanged for 31 cycles. This resets the LIN FSM.
0 No error
1 Physical bus error

21
CERR

CRC error. The CRC pattern received with an extended frame was not correct.
0 No error
1 CRC error

22
CKERR

Checksum error. Checksum error on a received frame.
0 No error
1 Checksum error

23
FRC

Frame complete. LIN frame completely transmitted. All LIN data bytes received.
0 Frame not complete
1 Frame complete

Table 20-6. ESCIx_SR Field Descriptions (continued)

Field Description

TFRAME_MAX 10 NDATA 44+×() 1.4×=

Enhanced Serial Communication Interface (eSCI)

MPC5534 Microcontroller Reference Manual, Rev. 2

20-12 Freescale Semiconductor

20.3.2.5 LIN Control Register (ESCIx_LCR)

ESCIx_LCR can be written only when there are no ongoing transmissions.

24–30 Reserved

31
OVFL

ESCIx_LRR overflow. The LIN receive register has not been read before a new data byte, CRC, or checksum byte
has been received from the LIN bus. Set when the condition is detected, and cleared by writing 1 to it.
0 No overflow
1 Overflow detected

Address: Base + 0x000C Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
LRES

0 WUD
0

WUD
1

LDBG DSF PRTY LIN RXIE TXIE WUIE STIE PBIE CIE CKIE FCIE
W WU

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0
OFIE

0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 20-6. LIN Control Register (ESCIx_LCR)

Table 20-7. ESCIx_LCR Field Descriptions

Field Description

0
LRES

LIN resynchronize. Causes the LIN protocol engine to return to start state. This happens automatically after bit
errors, but software can force a return to start state manually via this bit. The bit first must be set then cleared, so
that the protocol engine is operational again.

1
WU

LIN bus wake-up. Generates a wake-up signal on the LIN bus. This must be set before a transmission, if the bus is
in sleep mode. This bit auto-clears, so a read from this bit always returns 0.
For LIN 2.0, generating a valid wake-up character requires programming the SCI baud rate to a range of 32K baud
down to 1.6K baud.

Table 20-6. ESCIx_SR Field Descriptions (continued)

Field Description

Enhanced Serial Communication Interface (eSCI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 20-13

2–3
WUD
[0:1]

Wake-up delimiter time. Determines how long the LIN engine waits after generating a wake-up signal, before starting
a new frame. The eSCI does not set ESCIx_SR[TXRDY] before this time expires. In addition to this delimiter time,
the CPU and the eSCI require some setup time to start a new transmission. Typically there is an additional bit time
delay. The following table shows how WUD0 and WUD1 affect the delimiter time.

4
LDBG

LIN debug mode. Prevents the LIN FSM from automatically resetting, after an exception (bit error, physical bus error,
wake-up flag) has been received. This is for debug purposes only.

5
DSF

Double stop flags. When a bit error is detected, an additional stop flag is added to the byte in which the error
occurred.

6
PRTY

Activating parity generation. Generate the two parity bits in the LIN header.

7
LIN

LIN mode. Switch device into LIN mode.
0 LIN disabled
1 LIN enabled
When LIN is enabled, even if parity generation/checking is enabled via ESCIx_CR[PE], the parity bit is not masked
out.

8
RXIE

LIN RXREG ready interrupt enable. Generates an Interrupt when new data is available in the LIN RXREG. For a list
of interrupt enables and flags, See Table 20-21.

9
TXIE

LIN TXREG ready interrupt enable. Generates an Interrupt when new data can be written to the LIN TXREG. For a
list of interrupt enables and flags, See Table 20-21.

10
WUIE

RX wake-up interrupt enable. Generates an Interrupt when a wake-up flag from a LIN slave has been received. For
a list of interrupt enables and flags, See Table 20-21.

11
STIE

Slave timeout error interrupt enable. Generates an Interrupt when the slave response is too slow. For a list of interrupt
enables and flags, See Table 20-21.

12
PBIE

Physical bus error interrupt enable. Generates an Interrupt when no valid message can be generated on the bus. For
a list of interrupt enables and flags, See Table 20-21.

13
CIE

CRC error interrupt enable. Generates an Interrupt when a CRC error on a received extended frame is detected. For
a list of interrupt enables and flags, See Table 20-21.

14
CKIE

Checksum error interrupt enable. Generates an Interrupt on a detected checksum error. For a list of interrupt enables
and flags, See Table 20-21.

15
FCIE

Frame complete interrupt enable. Generates an Interrupt after complete transmission of a TX frame, or after the last
byte of an RX frame is received. (The complete frame includes all header, data, CRC and checksum bytes as
applicable.) For a list of interrupt enables and flags, See Table 20-21.

16–22 Reserved

Table 20-7. ESCIx_LCR Field Descriptions (continued)

Field Description

WUD0 WUD1 Bit Times

0 0 4

0 1 8

1 0 32

1 1 64

Enhanced Serial Communication Interface (eSCI)

MPC5534 Microcontroller Reference Manual, Rev. 2

20-14 Freescale Semiconductor

20.3.2.6 LIN Transmit Register (ESCIx_LTR)

ESCIx_LTR can be written to only when TXRDY is set. The first byte written to the register selects the
transmit address, the second byte determines the frame length, the third and fourth byte set various frame
options and determine the timeout counter. Header parity is automatically generated if the
ESCIx_LCR[PRTY] bit is set. For TX frames, the fourth byte (bits T7–T0) is skipped, since the timeout
function does not apply. All following bytes are data bytes for the frame. CRC and checksum bytes are
automatically appended when the appropriate options are selected.

When a bit error is detected, an interrupt is set and the transmission aborted. The register can only be
written again after the interrupt is cleared. Afterwards a new frame starts, and the first byte needs to contain
a header again.

Additionally it is possible to flush the ESCIx_LTR by setting the ESCIx_LCR[LRES] bit.

NOTE
Not all values written to the ESCIx_LTR generate valid LIN frames. The
values are determined according to the LIN specification.

23
OFIE

Overflow interrupt enable. Generates an Interrupt when a data byte in the ESCIx_LRR has not been read before the
next data byte is received. For a list of interrupt enables and flags, See Table 20-21.

24–31 Reserved

Address: Base + 0x0010 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0

W P1/
L7/

HDCHK/
T7/
D7

P0/
L6/

CSUM/
T6/
D6

ID5/
L5/

CRC/
T5/
D5

ID4/
L4/
TX/
T4/
D4

ID3/
L3/

T11/
T3/
D3

ID2/
L2/

T10/
T2/
D2

ID1/
L1/
T9/
T1/
D1

ID0/
L0/
T8/
T0/
D0

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 20-7. LIN Transmit Register (ESCIx_LTR)

Table 20-7. ESCIx_LCR Field Descriptions (continued)

Field Description

Enhanced Serial Communication Interface (eSCI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 20-15

Address: eSCI x Base + 0x0010 Access: W/O

0 1 2 3 4 5 6 7

R

1st Write (Table 20-8) W P[1:0] ID[5:0]

2nd Write (Table 20-9) W L[7:0]

3rd Write (Table 20-10) W HDCHK CSUM CRC TX (RX) T[11:8]

4th Write (Table 20-11) W T[7:0]

5th Write (Table 20-12) W D[7:0]

Reset 0 0 0 0 0 0 0 0

Figure 20-8. LIN Transmit Register (ESCIx_LTR) Alternate Diagram

Table 20-8. ESCIx_LTR First Byte Field Description

Field Description

0–1
Pn

Parity bit n. When parity generation is enabled (ESCIx_LCR[PRTY] = 1), the parity bits are generated automatically.
Otherwise they must be provided in this field.

2–7
IDn1

1 The values 3C, 3D, 3E and 3F of the ID-field (ID0-5) indicate command and extended frames. See LIN Specification Package
Revision 2.0.

Header bit n. The LIN address, for LIN 1.x standard frames the length bits must be set appropriately so the extended
frames are recognized by their specific patterns. See the Table 20-9.

8–31 Reserved

Table 20-9. ESCIx_LTR Second Byte Field Description

Field Description

0–7
Ln

Length bit n. Defines the length of the frame (0 to 255 data bytes). This information is needed by the LIN state
machine to insert the checksum or CRC pattern as required. LIN 1.x slaves only accepts frames with 2, 4, or 8 data
bytes.

8–31 Reserved

ID5 ID4 data bytes

0 0 2

0 1 2

1 0 4

1 1 8

Enhanced Serial Communication Interface (eSCI)

MPC5534 Microcontroller Reference Manual, Rev. 2

20-16 Freescale Semiconductor

Table 20-10. ESCIx_LTR Third Byte Field Descriptions

Field Description

0
HDCHK

Header checksum enable. Include the header fields into the mod 256 checksum of the standard frames.

1
CSUM

Checksum enable. Append a checksum byte to the end of a TX frame. Verify the checksum byte of an RX frame.

2
CRC

CRC enable. Append two CRC bytes to the end of a TX frame. Verify the two CRC bytes of an RX frame are correct.
If both CSUM and CRC bits are set, the LIN FSM first appends the CRC bytes, then the checksum byte, and are
processed in this order. If HDCHK is set, the CRC calculation includes the header and data bytes, otherwise, the
CRC is performed on the data bytes only. CRC bytes are not part of the LIN standard; they are normal data bytes
and belong to a higher-level protocol.

3
TX

Transmit direction. Indicates that the eSCI transmits a frame to a slave. Otherwise, an RX frame is assumed, and the
eSCI only transmits the header. The data bytes are received from the slave.
0 RX frame
1 TX frame

4–7
Tn

Timeout bit n. Sets the counter to determine a NO_RESPONSE_ERROR, if the frame is a read access to a LIN
slave. Following LIN standard rev 1.3, the value (10 × NDATA + 45) × 1.4 is recommended. For transmissions, this
counter has to be set to 0. The timeout bits 7–0 are not written on a TX frame. For TX frames, the fourth byte written
to the LIN transmit register (ESCIx_LTR) is the first data byte, for RX frames it contains timeout bits 7–0.The time is
specified in multiples of bit times. The timeout period starts with the transmission of the LIN break character.

8–31 Reserved

Table 20-11. ESCIx_LTR Rx Frame Fourth Byte Field Description

Field Description

0–7
Tn

Timeout bit n. Sets the counter to determine a NO_RESPONSE_ERROR, if the frame is a read access to a LIN
slave. Follow the LIN standard rev 1.3, the value (10 × NDATA + 45) × 1.4. For transmissions, this counter must be set
to 0. The timeout bits 7–0 are not written on a TX frame. For TX frames, the fourth byte written to the LIN transmit
register (ESCIx_LTR) is the first data byte. For RX frames, it contains timeout bits 7–0.The time is specified in
multiples of bit times. The timeout period starts with the transmission of the LIN break character.

8–31 Reserved

Table 20-12. ESCIx_LTR Tx Frame Fourth + Byte—Rx Frame Fifth + Byte Field Description

Field Description

0–7
Dn

Data bits for transmission.

8–31 Reserved

Enhanced Serial Communication Interface (eSCI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 20-17

20.3.2.7 LIN Receive Register (ESCIx_LRR)

ESCIx_LRR can be ready only when ESCIx_SR[RXRDY] is set.

NOTE
Application software must ensure that ESCIx_LRR be read before new data
or checksum bytes or CRCs are received from the LIN bus.

Address: Base + 0x0014 Access: R/O

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 20-9. LIN Receive Register (ESCIx_LRR)

Table 20-13. ESCIx_LRR Field Descriptions

Field Description

0–7
Dn

Data bit n. Provides received data bytes from RX frames. Data is only valid when the ESCIx_SR[RXRDY] flag is set.
CRC and checksum information are not available in the ESCIx_LRR unless they are treated as data. It is possible
to treat CRC and checksum bytes as data by deactivating the CSUM respectively CRC control bits in the ESCIx_LTR;
however, then CRC and CSUM checking has to be performed by software.

Data bytes must be read from the ESCIx_LRR (by CPU or DMA) before any new bytes (including CRC or checksum)
are received from the LIN bus otherwise the data byte is lost and OVFL is set.
Note: The data must be collected and the LIN frame finished (including CRC and checksum if applicable) before a

wake-up character can be sent.

8–31 Reserved

Enhanced Serial Communication Interface (eSCI)

MPC5534 Microcontroller Reference Manual, Rev. 2

20-18 Freescale Semiconductor

20.3.2.8 LIN CRC Polynomial Register (ESCIx_LPR)

ESCIx_LPRn can be written when there are no ongoing transmissions.

20.4 Functional Description

20.4.1 Overview

This section provides a complete functional description of the eSCI module, detailing the operation of the
design from the end user perspective in a number of subsections.

Figure 20-11 shows the structure of the eSCI module. The eSCI allows full duplex, asynchronous, NRZ
serial communication between the CPU and remote devices, including other CPUs. The eSCI transmitter
and receiver operate independently, although they use the same baud rate generator. The CPU monitors the
status of the eSCI, writes the data to be transmitted, and processes received data.

Address: Base + 0x0018 Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
P15 P14 P13 P12 P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1 P0

W

Reset 1 1 0 0 0 1 0 1 1 0 0 1 1 0 0 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 20-10. LIN CRC Polynomial Register (ESCIx_LPR)

Table 20-14. ESCIx_LPR Field Description

Field Description

0–15
Pn

 Polynomial bit xn. Bits P15–P0 are used to define the LIN polynomial - standard is x15 + x14 + x10 + x8 + x7 + x4 +
x3 + 1 (the polynomial used for the CAN protocol).

16–31 Reserved

Enhanced Serial Communication Interface (eSCI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 20-19

Figure 20-11. eSCI Operation Block Diagram

20.4.2 Data Format

The eSCI uses the standard NRZ mark/space data format. Each data character is contained in a frame that
includes a start bit, eight or nine data bits, and a stop bit. Clearing the M bit in eSCI control register 1
configures the eSCI for 8-bit data characters. A frame with eight data bits has a total of 10 bits. Setting the
M bit configures the eSCI for 9-bit data characters. A frame with nine data bits has a total of 11 bits.

When the eSCI is configured for 9-bit data characters, the ninth data bit is the T8 bit in the eSCI data
register (ESCIx_DR). It remains unchanged after transmission and can be used repeatedly without
rewriting it. A frame with nine data bits has a total of 11 bits.

The two different data formats are illustrated in Figure 20-12. Table 20-15 and Table 20-16 show the
number of each type of bit in 8-bit data format and 9-bit data format, respectively.

Figure 20-12. eSCI Data Formats

eSCI Data

RE

Register

Receive and
Wake-up Control

RWU

LOOPS

RSRC

M

WAKE

ILT

PE

PT

TE

LOOPS

SBK

RSRC

Data Format
Control

Transmit
Control

Transmit
Shift Register

NF

FE

PF

RAF

R8

IDLE

RDRF

OR

ILIE

RIE

BAUD Rate
Generator

Bus
Clock

IRQ to
CPU

TDRE

TC

TIE

TCIE
TXD

÷16

T8

SBR0–SBR12

RXD

SCI Data
Register

Receive
Shift Register

IDLE
IRQ

TC
IRQ

TDRE
IRQ

RDRF/
OR IRQ

Parity or

STOP
Bit

Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7

Next
START

Bit
START

Bit

Data Bit
8-bit Data Format

Bit M in ESCIx_CR1 Clear

STOP
Bit

Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7

Next
START

Bit
START

Bit

9-bit Data Format
Bit M in ESCIx_CR1 Set

Parity or

Bit 8

Data Bit

Enhanced Serial Communication Interface (eSCI)

MPC5534 Microcontroller Reference Manual, Rev. 2

20-20 Freescale Semiconductor

20.4.3 Baud Rate Generation

A 13-bit modulus counter in the baud rate generator derives the baud rate for both the receiver and the
transmitter. The value, 1 to 8191, written to the SBR0–SBR12 bits determines the system clock divider.
The SBR bits are in the eSCI control register 1 (ESCIx_CR1). The baud rate clock is synchronized with
the system clock and drives the receiver. The baud rate clock divided by 16 drives the transmitter. The
receiver has an acquisition rate of 16 samples per bit time.

Baud rate generation is subject to one source of error when integer division of the system clock does not
result in the exact target frequency.

Table 20-17 lists some examples of achieving target baud rates with a system clock frequency of 128 MHz.

Table 20-15. Example of 8-bit Data Formats

Start
Bit

Data
Bits

Address
Bits

Parity
Bits

Stop
Bit

1 8 0 0 1

1 7 0 1 1

1 7 1 1

1 The address bit identifies the frame as an address
character. See Section 20.4.5.6, “Receiver Wake-up.”

0 1

Table 20-16. Example of 9-Bit Data Formats

Start
Bit

Data
Bits

Address
Bits

Parity
Bits

Stop
Bit

1 9 0 0 1

1 8 0 1 1

1 8 1 1

1 The address bit identifies the frame as an address
character. See Section 20.4.5.6, “Receiver Wake-up.”

0 1

Table 20-17. Baud Rates (Example: System Clock = 128 MHz)

Bits
SBR[0:12]

Receiver
Clock (Hz)

Transmitter
Clock (Hz)

Target Baud
Rate

Error
(%)

0x0023 3,657,143 228,571 230,400 –0.79

0x0045 1,855,072 115,942 115,200 +0.64

0x008B 920,863 57,554 57,600 –0.01

0x00D0 615,385 38,462 38,400 +0.16

SCI baud rate System clock
16 ESCIx_CR1[SBR]×
---=

Enhanced Serial Communication Interface (eSCI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 20-21

20.4.4 Transmitter

Figure 20-13 illustrates the features of the eSCI transmitter.

Figure 20-13. eSCI Transmitter Block Diagram

20.4.4.1 Transmitter Character Length

The eSCI transmitter can accommodate either 8-bit or 9-bit data characters. The state of the M bit in eSCI
control register 1 (ESCIx_CR1) determines the length of data characters. When transmitting 9-bit data, bit
T8 in the eSCI data register (ESCIx_DR) is the ninth bit (bit 8).

0x01A1 306,954 19,185 19,200 –0.08

0x022C 230,216 14,388 14,400 –0.08

0x0341 153,661 9,604 9600 +.04

0x0683 76,785 4,799 4800 –0.02

0x0D05 38,404 2,400.2 2400 +.01

0x1A0A 19,202 1,200.1 1200 +.01

Table 20-17. Baud Rates (Example: System Clock = 128 MHz) (continued)

Bits
SBR[0:12]

Receiver
Clock (Hz)

Transmitter
Clock (Hz)

Target Baud
Rate

Error
(%)

M TXD

÷16

H 8 7 6 5 4 3 2 1 0 L

11-bit transmit shift register
STOP START

MSB

BAUD dividerBus
clock

SBR0–SBR12

SBK

Parity
generation

PE

PT

Load from
ESCIx_DR

Shift
enable

Preamble
(All 1s)

Break
(All 0s)

Transmitter control

T8

TE

TIE

TDRE

LOOP Control

TDRE
interrupt
request

TCIE

TC TC
interrupt
request

RSRC

LOOPS

To

Internal bus

eSCI data registers

RXD

Enhanced Serial Communication Interface (eSCI)

MPC5534 Microcontroller Reference Manual, Rev. 2

20-22 Freescale Semiconductor

20.4.4.2 Character Transmission

To transmit data, the MCU writes the data bits to the eSCI data register (ESCIx_DR), which are transferred
to the transmit shift register. The transmit shift register then shifts a frame out on the TXD signal, after it
has prefaced them with a start bit and appended them with a stop bit. The eSCI data register (ESCIx_DR)
is the buffer (write-only during transmit) between the internal data bus and the transmit shift register.

The eSCI sets the transmit data register empty flag (TDRE) every time it transfers data from the buffer
(ESCIx_DR) to the transmit shift register. The transmit driver routine can respond to this flag by writing
another byte to the transmitter buffer (ESCIx_DR), while the shift register is still shifting out the first byte.

To initiate an eSCI transmission:

1. Configure the eSCI:

a) Turn on the module by clearing ESCIx_CR2[MDIS] if this bit is set.

b) Select a baud rate. Write this value to the eSCI control register 1 (ESCIx_CR1) to start the baud
rate generator. Remember that the baud rate generator is disabled when the ESCIx_CR1[SBR]
field is zero. When using 8-bit writes, writes to the ESCIx_CR1[0–7] have no effect without
also writing to ESCIx_CR1[8–15].

c) Write to ESCIx_CR1 to configure word length, parity, and other configuration bits
(LOOPS, RSRC, M, WAKE, ILT, PE, PT).

d) Enable the transmitter, interrupts, receive, and wake-up as required, by writing to the
ESCIx_CR1 register bits (TIE, TCIE, RIE, ILIE, TE, RE, RWU, SBK). A preamble or idle
character is shifted out of the transmitter shift register.

NOTE
A single 32-bit write to ESCI_CR1 can be used to perform steps b–d above.

2. Transmit procedure for each byte:

a) Poll the TDRE flag by reading the ESCIx_SR or responding to the TDRE interrupt. Keep in
mind that the TDRE bit resets to 1.

b) If the TDRE flag is set, software must then clear it, followed by writing the data to be
transmitted to ESCIx_DR, where the ninth bit is written to the T8 bit in ESCIx_DR if the eSCI
is in 9-bit data format.

3. Repeat step 2 for each subsequent transmission.

NOTE
The TDRE flag is set when the shift register is loaded with the next data to
transmit from ESCIx_DR, which occurs approximately half-way through
the stop bit of the previous frame. This transfer occurs 9/16ths of a bit time
AFTER the start of the stop bit of the previous frame.

Toggling the TE bit from 0 to 1 automatically loads the transmit shift register with a preamble of 10 logic
1s (if M = 0) or 11 logic 1s (if M = 1). After the preamble shifts out, control logic transfers the data from
the eSCI data register into the transmit shift register. A logic 0 start bit automatically goes into the least
significant bit position of the transmit shift register. A logic 1 stop bit goes into the most significant bit
position.

Enhanced Serial Communication Interface (eSCI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 20-23

The eSCI hardware supports odd or even parity. When parity is enabled, the most significant bit (Msb) of
the data character is the parity bit.

The transmit data register empty flag, TDRE, in the eSCI status register (ESCIx_SR) is set when the eSCI
data register transfers a byte to the transmit shift register. The TDRE flag indicates that the eSCI data
register can accept new data from the internal data bus. If the transmit interrupt enable bit (TIE), in eSCI
control register 1 (ESCIx_CR1) is also set, the TDRE flag generates a transmit interrupt request.

When the transmit shift register is not transmitting a frame, the TXD output goes to the idle condition,
logic 1. If at any time software clears the TE bit in eSCI control register 1 (ESCIx_CR1), the transmit
enable signal goes low and the TXD output goes idle.

If software clears TE while a transmission is in progress (ESCIx_CR1[TC] = 0), the frame in the transmit
shift register continues to shift out. To avoid accidentally cutting off the last frame in a message, always
wait for TDRE to go high after the last frame before clearing TE.

To separate messages with preambles with minimum idle line time, use this sequence between messages:

1. Write the last byte of the first message to ESCIx_DR.

2. Wait for the TDRE flag to go high, indicating the transfer of the last frame to the transmit shift
register.

3. Queue a preamble by clearing and then setting the TE bit.

4. Write the first byte of the second message to ESCIx_DR.

20.4.4.3 Break Characters

Setting the break bit, SBK, in eSCI control register 1 (ESCIx_CR1) loads the transmit shift register with a
break character. A break character contains all logic 0s and has no start, stop, or parity bit. Break character
length depends on the M bit in the eSCI control register 1 (ESCIx_CR1) and on the BRK13 bit in the eSCI
control register 2 (ESCIx_CR2). As long as SBK is set, the transmitter logic continuously loads break
characters into the transmit shift register. After software clears the SBK bit, the shift register finishes
transmitting the last break character and then transmits at least one logic 1. The automatic logic 1 at the
end of a break character guarantees the recognition of the start bit of the next frame.

NOTE
LIN 2.0 requires that a break character be 13-bits long, so always set the
BRK13 bit to 1. The eSCI works with BRK13 = 0, but it violates LIN 2.0.

The eSCI recognizes a break character when a start bit is followed by eight or nine logic 0 data bits and a
logic 0 in place of the stop bit. Receiving a break character has the following effects on eSCI registers:

• Sets the framing error flag, FE

• Sets the receive data register full flag, RDRF

• Clears the eSCI data register (ESCIx_DR)

• Can set a flag: overrun (OR), noise flag (NF), parity error flag (PF), or the receiver active flag
(RAF). For more details, see Section 20.3.2.4, “eSCI Status Register (ESCIx_SR).”

Enhanced Serial Communication Interface (eSCI)

MPC5534 Microcontroller Reference Manual, Rev. 2

20-24 Freescale Semiconductor

20.4.4.4 Idle Characters

An idle character contains all logic 1s and has no start, stop, or parity bit. Idle character length depends on
the M bit in eSCI control register 1 (ESCIx_CR1). The preamble is a synchronizing idle character that
begins the first transmission initiated after toggling the TE bit from 0 to 1.

If the TE bit is cleared during a transmission, the TXD output becomes idle after completion of the
transmission in progress. Clearing and then setting the TE bit during a transmission queues an idle
character to be sent after the frame currently being transmitted.

NOTE
When queueing an idle character, return the TE bit to logic 1 before the stop
bit of the current frame shifts out through the TXD output. Setting the TE
bit after the stop bit shifts out through the TXD output causes data
previously written to the eSCI data register to be lost. Toggle the TE bit for
a queued idle character while the TDRE flag is set and immediately before
writing the next byte to the eSCI data register.

20.4.4.5 Fast Bit Error Detection in LIN Mode

Fast bit error detection has been designed to allow flagging of LIN bit errors while they occur, rather than
flagging them after a byte transmission has completed. To use this feature, it is assumed a physical
interface connects to the LIN bus as shown in Figure 20-14.

Figure 20-14. Fast Bit Error Detection on a LIN Bus

If fast bit error detection is enabled (FBR = 1), the eSCI compares the transmitted and the received data
stream when the transmitter is active (not idle). After a mismatch between the transmitted data and the
received data is detected the following actions are performed:

• The LIN frame is aborted (provided LDBG=0).

• The bit error flag BERR is set.

• If SBSTP is 0, the remainder of the byte is transmitted normally.

• If SBSTP is 1, the remaining bits in the byte after the error bit are transmitted as 1s (idle).

Bus Clock

Compare

Bit Error

Receive Shift
Register

Transmit Shift
Register

Sample Point

LIN Bus

RxD Pin

TxD Pin

Synchronizer Stage
LIN Physical Interface

Enhanced Serial Communication Interface (eSCI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 20-25

To adjust to different bus loads the sample point at which the incoming bit is compared to the one which
was transmitted can be selected with the BESM13 bit (see Figure 20-15). If set, the comparison is
performed at RT clock 13, otherwise at RT clock 9 (see Section 20.4.5.3, “Data Sampling.”).

Figure 20-15. Fast Bit Error Detection Timing Diagram

20.4.5 Receiver

Figure 20-16 illustrates the eSCI receiver.

Figure 20-16. eSCI Receiver Block Diagram

Clock

BESM13 = 0 BESM13 = 1

1 3 5 7 9 11 13 152 4 6 8 10 12 14 16RT Clock
Count

TX Output
Shift Reg

RX Input
Shift Reg

Compare
Sample
Points

RXD H 8 7 6 5 4 3 2 1 0 L

11-bit Receive shift register
STOP START

MSB

BAUD dividerBus
Clock

SBR0–SBR12

ILIE

IDLE

LOOP control

IDLE
interrupt
request

RIE

RDRF/OR
interrupt
request

RSRC

LOOPS

TXD

Internal Bus

SCI data registers

Data recovery

RAF

RE

WAKE

M

ILT
Wake-up

logic

All 1s

Parity
checking

PE

PT

NF

FE

PE

RDRF

OR

R8

RWU

Enhanced Serial Communication Interface (eSCI)

MPC5534 Microcontroller Reference Manual, Rev. 2

20-26 Freescale Semiconductor

20.4.5.1 Receiver Character Length

The eSCI receiver accepts 8-bit or 9-bit data characters. The state of the M bit in eSCI control register 1
(ESCIx_CR1) determines the bit-length of data characters. When receiving 9-bit data, bit R8 in the eSCI
data register (ESCIx_DR) is the ninth bit (bit 8).

20.4.5.2 Character Reception

During an eSCI reception, the receive shift register shifts a frame in from the RXD input signal. The eSCI
data register is the buffer (read-only during receive) between the internal data bus and the receive shift
register.

After a complete frame shifts into the receive shift register, the data portion of the frame transfers to the
eSCI data register. The receive data register full flag, RDRF, in eSCI status register (ESCIx_SR) is then
set, indicating that the received byte can be read. If the receive interrupt enable bit, RIE, in eSCI control
register 1 (ESCIx_CR1) is also set, the RDRF flag generates an RDRF interrupt request.

20.4.5.3 Data Sampling

The receiver uses a sampling clock to sample the RXD input signal at the 16 times the baud-rate frequency.
This sampling clock is called the RT clock. To adjust for baud rate mismatch, the RT clock is
re-synchronized (see Figure 20-17).

• After every start bit.

• After the receiver detects a data bit change from logic 1 to logic 0. This data bit change is detected
when a majority of data samples return a valid logic 1 and a majority of the next data samples return
a valid logic 0. Data samples are taken at RT8, RT9, and RT10, as shown in Figure 20-17.

To locate the start bit, eSCI data recovery logic performs an asynchronous search for a logic 0 preceded
by three logic 1s. When the falling edge of a possible start bit occurs, the RT clock begins to count to 16.

Figure 20-17. Receiver Data Sampling

RT clock

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

Start bit
qualification

Start bit
verification

Data
sampling

RT1
RT1

RT1 RT1
RT1

RT1
RT1 RT1

RT1 RT3 RT5 RT7 RT9 RT11 RT13 RT15 RT1 RT3
RT2 RT4 RT6 RT8 RT10 RT12 RT14 RT16 RT2 RT4

Reset
RT clock

RT clock
count

RXD input
signal

samples

Start bit LSB

Enhanced Serial Communication Interface (eSCI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 20-27

To verify the start bit and to detect noise, the eSCI data recovery logic takes samples at RT3, RT5, and
RT7. Table 20-18 summarizes the results of the start bit verification samples.

If start bit verification is not successful, the RT clock is reset and a new search for a start bit begins.

To determine the value of a data bit and to detect noise, eSCI recovery logic takes samples at RT8, RT9,
and RT10. Table 20-19 summarizes the results of the data bit samples.

NOTE
The RT8, RT9, and RT10 samples do not affect start bit verification. If any
or all of the RT8, RT9, and RT10 start bit samples are logic 1s following a
successful start bit verification, the noise flag (NF) is set.

Table 20-18. Start Bit Verification

RT3, RT5, and RT7 Samples Start Bit Verification Noise Flag

000 Yes 0

001 Yes 1

010 Yes 1

011 No 0

100 Yes 1

101 No 0

110 No 0

111 No 0

Table 20-19. Data Bit Recovery

RT8, RT9, and RT10 Samples Data Bit Determination Noise Flag

000 0 0

001 0 1

010 0 1

011 1 1

100 0 1

101 1 1

110 1 1

111 1 0

Enhanced Serial Communication Interface (eSCI)

MPC5534 Microcontroller Reference Manual, Rev. 2

20-28 Freescale Semiconductor

To verify a stop bit and to detect noise, recovery logic takes samples at RT8, RT9, and RT10. Table 20-20
summarizes the results of the stop bit samples.

In Figure 20-18 the verification samples RT3 and RT5 determine that the first low detected was noise and
not the beginning of a start bit. The RT clock is reset and the start bit search begins again. The noise flag
is not set because the noise occurred before the start bit was found.

Figure 20-18. Start Bit Search Example 1

20.4.5.4 Framing Errors

If the data recovery logic sets the framing error flag, ESCIx_SR[FE], it does not detect a logic 1 where the
stop bit must be in an incoming frame. A break character also sets the FE flag because a break character
has no stop bit. The FE flag is set at the same time that the RDRF flag is set.

20.4.5.5 Baud Rate Tolerance

When a transmitting device operates at a baud rate below or above the receiver baud rate, accumulated
bit-time misalignment can cause one of the three stop bit data samples (RT8, RT9, and RT10) to fall outside
the stop bit. A noise error occurs if the RT8, RT9, and RT10 samples are not all the same logical values. A

Table 20-20. Stop Bit Recovery

RT8, RT9, and RT10 Samples Framing Error Flag Noise Flag

000 1 0

001 1 1

010 1 1

011 0 1

100 1 1

101 0 1

110 0 1

111 0 0

RT clock

1 1 1 0 1 1 1 0 0 0

RT1
RT1

RT1 RT2
RT1

RT4
RT3 RT5

RT1 RT2 RT4 RT6 RT8 RT10 RT12 RT14 RT16 RT2
RT1 RT3 RT5 RT7 RT9 RT11 RT13 RT15 RT1 RT3

Reset
RT clock

RT clock
count

RXD input
signal

samples

Start bit LSB

0 0 0 0

Enhanced Serial Communication Interface (eSCI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 20-29

framing error occurs if the receiver clock is misaligned such that the majority of the RT8, RT9, and RT10
stop bit samples are a logic zero.

The receiver samples an incoming frame and re-synchronizes the RT clock on any valid falling edge within
the frame. Re-synchronization within frames corrects a misalignment between transmitter bit times and
receiver bit times.

20.4.5.5.1 Slow Data Tolerance

Figure 20-19 shows how much a slow received frame can be misaligned without causing a noise error or
a framing error. The slow stop bit begins at RT8 instead of RT1 but arrives in time for the stop bit data
samples at RT8, RT9, and RT10.

Figure 20-19. Slow Data

For an 8-bit data character, data sampling of the stop bit takes the receiver RT clock 151 clock cycles, as
is shown below:

With the misaligned character shown in Figure 20-19, the receiver counts 151 RT cycles at the point when
the count of the transmitting device is 9 bit times x 16 RT cycles = 144 RT cycles.

The maximum percent difference between the receiver count and the transmitter count of a slow 8-bit data
character with no errors is 4.63%, as is shown below:

For a 9-bit data character, data sampling of the stop bit takes the receiver 167 RT cycles, as is shown below:

With the misaligned character shown in Figure 20-19, the receiver counts 167 RT cycles at the point when
the count of the transmitting device is 10 bit times x 16 RT cycles = 160 RT cycles.

The maximum percent difference between the receiver count and the transmitter count of a slow 9-bit
character with no errors is 4.19%, as is shown below:

RT1

Receiver
RT clock

RT2 RT3 RT4 RT5 RT6 RT7 RT8 RT9 RT10 RT11 RT12 RT13 RT14 RT15 RT16

MSB STOP

Data samples

9 bit times 16 RT cycles 7 RT cycles+× 151 RT cycles=

151 – 144
151

-------------------------- 100× 4.63%=

10 bit times 16 RT cycles 7 RT cycles+× 167 RT cycles =

167 – 160
167

-------------------------- 100× 4.19%=

Enhanced Serial Communication Interface (eSCI)

MPC5534 Microcontroller Reference Manual, Rev. 2

20-30 Freescale Semiconductor

20.4.5.5.2 Fast Data Tolerance

Figure 20-20 shows how much a fast received frame can be misaligned. The fast stop bit ends at RT10
instead of RT16 but is still sampled at RT8, RT9, and RT10.

Figure 20-20. Fast Data

For an 8-bit data character, data sampling of the stop bit takes the receiver 154 RT cycles, as is shown
below:

With the misaligned character shown in Figure 20-20, the receiver counts 154 RT cycles at the point when
the count of the transmitting device is 10 bit times x 16 RT cycles = 160 RT cycles.

The maximum percent difference between the receiver count and the transmitter count of a fast 8-bit
character with no errors is 3.40%, as is shown below:

For a 9-bit data character, data sampling of the stop bit takes the receiver 170 RT cycles, as shown below:

With the misaligned character shown in Figure 20-20, the receiver counts 170 RT cycles at the point when
the count of the transmitting device is 11 bit times x 16 RT cycles = 176 RT cycles.

The maximum percent difference between the receiver count and the transmitter count of a fast 9-bit
character with no errors is 3.40%, as is shown below:

20.4.5.6 Receiver Wake-up

The receiver can be put into a standby state, which disregards all input requests targeted for other receivers
in multiple-receiver systems. Setting the receiver wake-up bit (RWU) in eSCI control register 1
(ESCIx_CR1) puts the receiver into the standby state, which disregards all receiver interrupts tar. The eSCI
loads the received data into the ESCIx_DR, but does not set the receive data register full (RDRF) flag.

RT1

Receiver
RT clock

RT2 RT3 RT4 RT5 RT6 RT7 RT8 RT9 RT10 RT11 RT12 RT13 RT14 RT15 RT16

STOP IDLE or next frame

Data samples

9 bit times 16 RT cycles 10 RT cycles+× 154 RT cycles=

160 – 154
160

-------------------------- 100× 3.40%=

10 bit times 16 RT cycles 10 RT cycles+× 170 RT cycles=

176 – 170
176

-------------------------- 100× 3.40%=

Enhanced Serial Communication Interface (eSCI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 20-31

The transmitting device can address messages to selected receivers by including addressing information
(address bits) in the initial frame or frames of each message. See section Section 20.4.2, “Data Format,”
for an example of address bits.

The WAKE bit in eSCI control register 1 (ESCIx_CR1) determines how the eSCI is brought out of the
standby state to process an incoming message. The WAKE bit enables either idle line wake-up or address
mark wake-up.

20.4.5.6.1 Idle Input Line Wake-up (WAKE = 0)

Using the receiver idle input line wake-up method allows an idle condition on the RXD signal clears the
ESCIx_CR1[RWU] bit and wakes up the eSCI. The initial frame or frames of every message contain
addressing information. All receivers evaluate the addressing information, and receivers for which the
message is addressed process the frames that follow. Any receiver for which a message is not addressed
can set its RWU bit and return to the standby state. The RWU bit remains set and the receiver remains on
standby until another idle character appears on the RXD signal.

Idle line wake-up requires that messages be separated by at least one idle character and that no message
contains idle characters.

The idle character that wakes a receiver does not set the receiver idle bit, ESCIx_SR[IDLE], or the receive
data register full flag, RDRF.

The idle line type bit, ESCIx_CR1[ILT], determines whether the receiver begins counting logic 1s as idle
character bits after the start bit or after the stop bit.

20.4.5.6.2 Address Mark Wake-up (WAKE = 1)

Using the address mark wake-up method allows a logic 1 in the most significant bit (MSB) position of a
frame to clear the RWU bit and wake-up the eSCI. The logic 1 in the msb position marks a frame as an
address frame that contains addressing information. All receivers evaluate the addressing information, and
the receivers for which the message is addressed process the frames that follow. Any receiver for which a
message is not addressed can set its RWU bit and return to the standby state. The RWU bit remains set and
the receiver remains on standby until another address frame appears on the RXD signal.

The logic 1 msb of an address frame clears the receiver’s RWU bit before the stop bit is received and sets
the RDRF flag.

Address mark wake-up allows messages to contain idle characters but requires that the msb be reserved
for use in address frames.

NOTE
With the WAKE bit clear, setting the RWU bit after the RXD signal has been
idle can cause the receiver to wake-up immediately.

Enhanced Serial Communication Interface (eSCI)

MPC5534 Microcontroller Reference Manual, Rev. 2

20-32 Freescale Semiconductor

20.4.6 Single-Wire Operation

Normally, the eSCI uses two pins for transmitting and receiving. In single-wire operation, the RXD pin is
disconnected from the eSCI. The eSCI uses the TXD pin for both receiving and transmitting.

Figure 20-21. Single-Wire Operation (LOOPS = 1, RSRC = 1)

Enable single-wire operation by setting the LOOPS bit and the receiver source bit, RSRC, in eSCI control
register 1 (ESCIx_CR1). Setting the LOOPS bit disables the path from the RXD signal to the receiver.
Setting the RSRC bit connects the receiver input to the output of the TXD pin driver.

During reception, both the transmitter and receiver must be enabled (TE = 1 and RE = 1). The
SIU_PCR89[PA] and SIU_PCR91[PA] bits must be set to select the TXD function for the relevant eSCI
module, and the TXD pin must be set for open drain operation (SIU_PCRnn[ODE] = 1). Optionally, if the
external transmitting device is also open drain, a weak pullup can be enabled.

See Section 6.4.1.12, “Pad Configuration Registers (SIU_PCR)”.

During transmission, the transmitter must be enabled (TE = 1); the receiver can be enabled or disabled. If
the receiver is enabled (RE = 1), transmissions are echoed back on the receiver. Set or clear open drain
output enable depending on desired operation.

20.4.7 Loop Operation

In loop operation the transmitter output goes to the receiver input. The RXD signal is disconnected from
the eSCI.

Figure 20-22. Loop Operation (LOOPS = 1, RSRC = 0)

Enable loop operation by setting the LOOPS bit and clearing the RSRC bit in eSCI control register 1
(ESCIx_CR1). Setting the LOOPS bit disables the path from the RXD signal to the receiver. Clearing the
RSRC bit connects the transmitter output to the receiver input. Both the transmitter and receiver must be
enabled (TE = 1 and RE = 1).

Transmitter

Receiver

TXDTXD input signal

TXD output signal

RXD

Transmitter

Receiver

TXD
TXD output signal

RXD

Enhanced Serial Communication Interface (eSCI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 20-33

20.4.8 Modes of Operation

20.4.8.1 Run Mode

Run mode is the normal operating mode.

20.4.8.2 Disabling the eSCI

The module disable bit (ESCIx_CR2[MDIS]) in the eSCI control register 2 can be used to turn off the
eSCI. This saves power by stopping the eSCI core from being clocked. By default the eSCI is enabled
(ESCIx_CR2[MDIS]=0).

20.4.9 Interrupt Operation

Only the eSCI originates interrupt requests. The following sections describe how the eSCI generates a
request and how the MCU acknowledges that request. The eSCI only has a single interrupt line (eSCI
interrupt signal, active high operation) and all the following interrupts, when generated, are ORed together
and issued through that port.

20.4.9.1 Interrupt Sources

There are several interrupt sources that can generate an eSCI interrupt to the CPU. They are listed with
details and descriptions in Table 20-21.

Table 20-21. eSCI Interrupt Flags, Sources, Mask Bits, and Descriptions

Interrupt
Source

Flag Description Source
Local

Enable

Transmitter TDRE Indicates that a byte was transferred from ESCIx_DR to the transmit
shift register.
The transmit data register empty (TDRE) interrupt is set high by the
eSCI when the transmit shift register receives data, 8 or 9 bits, from
the eSCI data register, ESCIx_DR. A TDRE interrupt indicates that
the transmit data register (ESCIx_DR) is empty and that a new data
can be written to the ESCIx_DR for transmission. The TDRE bit is
cleared by writing a one to the TDRE bit location in the ESCIx_SR.

ESCIx_SR[0] TIE

Transmitter TC Indicates that a transmit is complete.
The transmit complete (TC) interrupt is set by the eSCI when a
transmission has completed. A TC interrupt indicates that there is no
transmission in progress. TC is set high when the TDRE flag is set and
no data, preamble, or break character is being transmitted. When TC
is set, the TXD pin becomes idle (logic 1). The TC bit is cleared by
writing a one to the TC bit location in the ESCIx_SR.

ESCIx_SR[1] TCIE

Receiver RDRF Indicates that received data is available in the eSCI data register.
The receive data register full (RDRF) interrupt is set when the data in
the receive shift register transfers to the eSCI data register. An RDRF
interrupt indicates that the received data has been transferred to the
eSCI data register and that the received data can now be read by the
MCU. The RDRF bit is cleared by writing a one to the RDRF bit
location in the ESCIx_SR.

ESCIx_SR[2] RIE

Enhanced Serial Communication Interface (eSCI)

MPC5534 Microcontroller Reference Manual, Rev. 2

20-34 Freescale Semiconductor

Receiver IDLE Indicates that receiver input has become idle.
The idle line (IDLE) interrupt is set when 10 consecutive logic 1s (if
M = 0) or 11 consecutive logic 1s (if M = 1) appear on the receiver
input. After the IDLE is cleared, a valid frame must again set the
RDRF flag before an idle condition can set the IDLE flag. The IDLE bit
is cleared by writing a one to the IDLE bit location in the ESCIx_SR.

ESCIx_SR[3] ILIE

Receiver OR Indicates that an overrun condition has occurred.
The overrun (OR) interrupt is set when software fails to read the eSCI
data register before the receive shift register receives the next frame.
The newly acquired data in the shift register is lost in this case, but the
data already in the eSCI data registers is not affected.The OR bit is
cleared by writing a one to the OR bit location in the ESCIx_SR.

ESCIx_SR[4] ORIE

Receiver NF Detect noise error on receiver input.
The NF interrupt is set when the eSCI detects noise on the receiver
input.

ESCIx_SR[5] NFIE

Receiver FE Framing error has occurred.
The interrupt is set when the stop bit is read as a 0; which violates the
SCI protocol. FE is cleared by writing it with 1.

ESCIx_SR[6] FEIE

Receiver PF Parity of received data does not match parity bit; parity error has
occurred. The interrupt is set when the parity of the received data is
not correct. PF is cleared by writing it with 1.

ESCIx_SR[7] PFIE

LIN BERR Detected a bit error, only valid in LIN mode. While the eSCI is in LIN
mode, the bit error (BERR) flag is set when one or more bits in the last
transmitted byte is not read back with the same value. The BERR flag
is cleared by writing a 1 to the bit. A bit error causes the LIN FSM to
reset. Clear the BERR flag by writing a 1 to the bit.

ESCIx_SR[11] IEBERR

LIN RXRDY Indicates LIN hardware has received a data byte. While in LIN mode,
the receiver ready (RXRDY) flag is set when the eSCI receives a valid
data byte in an RX frame. RXRDY is not set for bytes which the
receiver obtains by reading back the data which the LIN finite state
machine (FSM) has sent out. Clear the RXRDY flag by writing a 1 to
the bit.

ESCIx_SR[16] RXIE

LIN TXRDY Indicates LIN hardware can accept a control or data byte. While in LIN
mode, the transmitter ready (TXRDY) flag is set when the eSCI can
accept a control or data byte. Clear the TXRDY flag by writing a 1 to
the bit.

ESCIx_SR[17] TXIE

LIN LWAKE A wake-up character has been received from a LIN frame. The LIN
wake-up (LWAKE) flag is set when the LIN hardware receives a
wake-up character sent by one of the LIN slaves. This occurs only
when the LIN bus is in sleep mode. Clear the LWAKE flag by writing a
1 to the bit.

ESCIx_SR[18] WUIE

LIN STO The response of the slave has been too slow (slave timeout). The
slave timeout (STO) flag is set during an RX frame when the LIN slave
has not transmitted all requested data bytes before the specified
timeout period. Clear the STO flag by writing a 1 to the bit.

ESCIx_SR[19] STIE

Table 20-21. eSCI Interrupt Flags, Sources, Mask Bits, and Descriptions (continued)

Interrupt
Source

Flag Description Source
Local

Enable

Enhanced Serial Communication Interface (eSCI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 20-35

20.4.10 Using the LIN Hardware

The eSCI provides special support for the LIN protocol. It can be used to automate most tasks of a LIN
master. In conjunction with the DMA interface it is possible to transmit entire frames (or sequences of
frames) and receive data from LIN slaves without any CPU intervention. There is no special support for
LIN slave mode. If required, LIN slave mode can be implemented in software.

A LIN frame consists of a break character (10 or 13 bits), a sync field, an ID field, n data fields (n could
be 0) and a checksum field. The data and checksum bytes are either provided by the LIN master (TX frame)
or by the LIN slave (RX frame). The header fields are always generated by the LIN master.

Figure 20-23. Typical LIN frame

LIN PBERR Physical bus error detected. If the RXD input remains at the same
value for 15 cycles after a transmission has started, the LIN hardware
sets the physical bus error (PBERR) flag. Clear the PBERR flag by
writing a 1 to the bit.

ESCIx_SR[20] PBIE

LIN CERR CRC error detected. If an RX frame has the CRC checking flag set,
and the two CRC bytes do not match the calculated CRC pattern, the
CRC error (CERR) flag is set. Clear the CERR flag by writing a 1 to
the bit.

ESCIx_SR[21] CIE

LIN CKERR Checksum error detected. If an RX frame has the checksum checking
flag set and the last byte does not match the calculated checksum, the
checksum error (CKERR) flag is set. Clear the CKERR flag by writing
a 1 to the bit.

ESCIx_SR[22] CKIE

LIN FRC LIN frame completed. The frame complete (FRC) flag is set after the
last byte of a TX frame is transmitted, or after the last byte of an RX
frame is received. The FRC flag indicates that the next frame can be
set up. Clear the FRC flag by writing a 1 to the bit.

Note: The last byte of an outgoing TX frame or incoming RX frame
indicates that the checksum comparison occurred.

Note: It is possible to set the FRC flag before the DMA controller has
completed transferring the last byte from the eSCI port to
system memory. Do not set the FRC flag if the frame is
processed. For frames that are processed, use the DMA
controller interrupt.

ESCIx_SR[23] FCIE

LIN OVFL ESCIx_LRR overflow. The overflow (OVFL) flag is set when a byte is
received in the ESCIx_LRR before the previous byte is read. Since the
system is responsible for reading the register before the next byte
arrives, this condition indicates a problem with CPU load. The OVFL
flag is cleared by writing a 1 to the bit.

ESCIx_SR[31] OFIE

Table 20-21. eSCI Interrupt Flags, Sources, Mask Bits, and Descriptions (continued)

Interrupt
Source

Flag Description Source
Local

Enable

Break Sync ID Data Data CSum...

Enhanced Serial Communication Interface (eSCI)

MPC5534 Microcontroller Reference Manual, Rev. 2

20-36 Freescale Semiconductor

The LIN hardware is highly configurable. This configurability allows the eSCI’s LIN hardware to generate
frames for LIN slaves from all revisions of the LIN standard. The settings are adjusted according to the
capabilities of the slave device.

To activate the LIN hardware, the LIN mode bit in the ESCIx_LCR needs to be set. Other settings, such
as double stop flags after bit errors and automatic parity bit generation, are also available for use in LIN
mode.

The eSCI settings must be made according to the LIN specification. The eSCI must be configured for
2-wire operation (2 wires connected to the LIN transceiver) with 8 data bytes and no parity. Normally a
13-bit break is used, but the eSCI can also be configured for 10-bit breaks as required by the application.

20.4.10.1 Features of the LIN Hardware

The eSCI’s LIN hardware has several features to support different revisions of the LIN slaves. The
ESCIx_LTR can be configured to include or not include header bits in the checksum on a frame by frame
basis. This feature supports LIN slaves with different LIN revisions. The LIN control register allows the
application to automatically calculate the parity bits in the ID field and insert double stop flags a bit error.
The BRK13 bit in ESCIx_CR2 determines the number of break characters generated: 10 or 13.

NOTE
LIN 2.0 requires a 13-bit break character. Set the BRK13 bit to 1. The eSCI
bus works when BRK13 = 0, but the setting does not comply with LIN 2.0.

The application software can disable checksum generation/verification for individual frames to perform
the functions externally and use the LIN hardware to append two CRC bytes (Figure 20-24). Although the
LIN standard does not include CRCs, CRCs are processed as data bytes by the LIN protocol. CRCs are
used in software applications that process very large frames. The eSCI and FlexCAN modules use the same
CRC polynomial, the LIN protocol processes CAN bytes as data bytes.

Figure 20-24. LIN Frame with CRC bytes

To force a resync of the LIN FSM, use the LRES bit in the LIN control register. Typically LIN hardware
automatically discards the frame when a bit error is detected.

20.4.10.2 Generating a TX Frame

The following procedure describes how a basic TX frame is generated.

The frame is controlled via the LIN transmit register (ESCIx_LTR). Initially, the application software must
check the TXRDY bit (either using an interrupt, the TX DMA interface, or by polling the LIN status
register). If TXRDY is set, the register is writable. Before each write, TXRDY must be checked (though
this step is performed automatically in DMA mode). The first write to the ESCIx_LTR must contain the
LIN ID field. The next write to ESCIx_LTR specifies the length of the frame (0 to 255 Bytes). The third
write to ESCIx_LTR contains the control byte (frame direction, checksum/CRC settings). Timeout bits are
not included in TX frames, since they only see LIN slaves. The three previously mentioned writes to the

Break Sync ID Data Data CRC1 CRC2 CSum• • •

Enhanced Serial Communication Interface (eSCI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 20-37

ESCIx_LTR specify the LIN frame data. After the LIN frame data is specified, the eSCI LIN hardware
starts to generate a LIN frame.

First, the eSCI transmits a break field. The sync field is transmitted next. The third field is the ID field.
After these three fields have been broadcast, the ESCIx_LTR accepts data bytes; the LIN hardware
transmits these data bytes as soon as they are available and can be sent out. After the last step the LIN
hardware automatically appends the checksum field.

You can set up a DMA channel to manage all the tasks required to send a TX frame, as shown in
Figure 20-25. For this operation, the TX DMA channel must be activated by setting the
ESCIx_CR2[TXDMA] bit. The control information for the LIN frame (ID, message length, TX/RX type,
timeout, etc.) and the data bytes are stored at an appropriate memory location. The DMA controller is then
set up to transfer this block of memory to a location (the ESCIx_LTR). After transmission is complete,
either the DMA controller or the LIN hardware can generate an interrupt to the CPU.

NOTE
In contrast to the standard software implementation where each byte
transmission requires several interrupts, the DMA controller and eSCI
handle communication, bit error and physical bus error checking,
checksum, and CRC generation (checking on the RX side).

Figure 20-25. DMA Transfer of a TX Frame

20.4.10.3 Generating an RX Frame

For RX frames the header information is provided by the LIN master. The data, CRC and checksum bytes
(as enabled) are provided by the LIN slave. The LIN master verifies CRC and checksum bytes transmitted
by the slave.

For an RX frame, control information must be written to the ESCIx_LTR in the same manner as for the
TX frames. Additionally the timeout bits, which define the time to complete the entire frame, must be
written. Then the ESCIx_SR[RXRDY] bit must be checked (either with an interrupt, RX DMA interface,
or by polling) to detect incoming data bytes. The checksum byte normally does not appear in the

Break Sync ID Data Data CSum• • •

LIN Frame

LIN eSCI

ESCIx_LTR

DMA
Controller

Data n

Data 1
Control/Timeout

Length
ID

•
•
• TX DMA

Channel

Enhanced Serial Communication Interface (eSCI)

MPC5534 Microcontroller Reference Manual, Rev. 2

20-38 Freescale Semiconductor

ESCIx_LRR, instead the LIN hardware verifies the checksum and issue an interrupt, if the checksum value
is not correct.

Two DMA channels can be used when executing an RX frame: one to transfer the header/control
information from a memory location to the ESCIx_LTR, and one to transfer the incoming data bytes from
the ESCIx_LRR to a table in memory. After the last byte from the RX frame has been stored, the DMA
controller can indicate completion to the CPU.

NOTE
It is also possible to setup a whole sequence of RX and TX frames, and
generate a single event at the end of that sequence.

See Figure 20-26 for more information.

Figure 20-26. DMA Transfer of an RX frame

20.4.10.4 LIN Error Handling

The LIN hardware can detect several error conditions of the LIN protocol. LIN hardware receives all
transmitted bytes, and compares the values with expected values to determine if the data is valid. If a
mismatch occurs, a bit error is generated and the LIN FSM returns to its start state.

For an RX frame the LIN hardware can detect a slave timeout error. The exact slave timeout error value
can be set via the timeout bits in the ESCIx_LTR. If the frame is not complete within the number of clock
cycles specified in the register, the LIN FSM returns to its start state, and the STO interrupt is issued.

The LIN protocol supports a sleep mode. After 25,000 bus cycles of inactivity the bus is assumed to be in
sleep mode. Normally entering sleep mode can be avoided, if the LIN master is regularly creating some
bus activity. Otherwise the timeout state needs to be detected by the application software, for example by
setting a timer.

Break Sync ID Data Data CSum• • •

LIN Frame

Transmit

DMA
controller

Data n

Data 1

Timeout
Control/timeout

Length
ID

•••
TX DMA
channel

LIN eSCI

Receive

From master From slave

RX DMA
channel

register

register

Enhanced Serial Communication Interface (eSCI)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 20-39

Both LIN masters and LIN slaves can cause the bus to exit sleep mode by sending a break signal. The LIN
hardware generates a break when the WU bit in the LIN control register is written. After transmitting the
break, data is not sent out (TXRDY = 0) until the wake-up period expires. Define the wakeup period using
the WUD bits in the LIN control register.

Break signals sent by a LIN slave are received by the LIN hardware, and so indicated by setting the WAKE
flag in the LIN status register.

A physical bus error (LIN bus is permanently stuck at a fixed value) sets several error flags. If the input is
permanently low, the eSCI sets the framing error (FE) flag in the eSCI status register. If the RXD input
remains at the same value for 15 cycles after a transmission starts, the LIN hardware sets the PBERR flag
in the LIN status register. A bit error can also occur.

20.4.10.5 LIN Setup

Since the eSCI is for general-purpose use, some of the settings are not applicable for LIN operation. The
following setup applies for most applications, regardless of which kind of LIN slave is addressed:

1. Enable the module by clearing the ESCIx_CR2[MDIS] bit to 0.

2. Enable transmit and receive by setting ESCIx_CR1[TE] = 1, ESCIx_CR1[RE] = 1.

3. Clear the data format bit (ESCIx_CR1[M] = 0) to select 8 data bits, and disable the parity bit
(PE = 0).

4. Use the LIN interrupts by clearing the interrupt enable bits: ESCIx_CR1[TIE],
ESCIx_CR1[TCIE], and ESCIx_CR1[RIE]. Select LIN mode by setting ESCIx_LCR[LIN] = 1.

5. Set the break character (ESCIx_CR2[BRK13] = 1) to comply with the LIN standard requirements.
The eSCI works when BRK13 = 0, but violates LIN 2.0.

6. Bit errors are commonly configured to: reset the LIN FSM, immediately stop bus transfers, and
suspend DMA requests until the BERR flag is cleared. Use the following bit settings to perform
these functions: ESCIx_LCR[LDBG] = 0, ESCIx_CR2[SBSTP] = 1, and ESCIx_CR2[BSTP] = 1.

7. Fast bit error detection provides superior error checking. Set ESCIx_CR2[FBR]; it is commonly
used with ESCIx_CR2[BESM13] = 1.

8. If available, enable a pulldown on the RX input. (If the transceiver fails, the RX pin does not float).

9. Enable the following error indicators NF, FE, BERR, STO, PBERR, CERR, CKERR, and OVFL.

10. Transmit a wake-up character on the LIN bus to activate the LIN slaves.

Other settings like baud rate, length of break character etc., depend on the LIN slaves to which the eSCI
is connected.

Enhanced Serial Communication Interface (eSCI)

MPC5534 Microcontroller Reference Manual, Rev. 2

20-40 Freescale Semiconductor

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 21-1

Chapter 21
FlexCAN2 Controller Area Network

21.1 Introduction
The device MCU contains two controller area network (FlexCAN2) modules. Each FlexCAN2 module is
a communication controller implementing the CAN protocol according to CAN Specification version 2.0B
and ISO Standard 11898.

Each FlexCAN2 module contains a 1024-byte embedded memory, capable of storing up to 64 message
buffers (MBs). The respective functions are described in subsequent sections.This FlexCAN2 version
implements individual mask registers and a reception queue thereby allowing queuing of received frames
before requiring interrupt processing. Also included is a feature for disabling self-reception of TX frames.

FlexCAN2 Controller Area Network

MPC5534 Microcontroller Reference Manual, Rev. 2

21-2 Freescale Semiconductor

21.1.1 Block Diagram

A general block diagram is shown in Figure 21-1, which describes the main submodules implemented in
the FlexCAN2 module, including an embedded RAM for up to 64 message buffers.

Figure 21-1. FlexCAN2 Block Diagram

21.1.2 Overview

The CAN protocol was designed primarily, but not exclusively, to be used as a vehicle serial data bus,
meeting the specific requirements of this field: real-time processing, reliable operation in the EMI
environment of a vehicle, cost-effectiveness and required bandwidth. The FlexCAN2 module is a full
implementation of the CAN protocol specification, Version 2.0 B, which supports both standard and
extended message frames. Sixty-four message buffers (MBs) are stored in an embedded 1024-byte RAM
dedicated to the FlexCAN2 module.

MB60

RAM

Bus Interface Unit

max MB #

(0–63)

Slave interface

CAN Message

CNTXx

CNRXx

FlexCAN2

MB61

MB62

MB63

MB3

MB2

MB1

MB0

Clocks, address and data buses,
interrupt and test signals

Buffer
Management

Protocol
Interface

1 KB

FlexCAN2 Controller Area Network

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 21-3

The CAN protocol interface (CPI) manages the serial communication on the CAN bus, requesting RAM
access for receiving and transmitting message frames, validating received messages and performing error
handling. The message buffer management (MBM) handles message buffer selection for reception and
transmission, taking care of arbitration and ID matching algorithms. The bus interface unit (BIU) controls
the access to and from the internal interface bus, to establish connection to the CPU and to any other
modules. Clocks, address and data buses, interrupt outputs and test signals are accessed through the bus
interface unit.

21.1.3 Features

The FlexCAN2 module includes these distinctive features:

• Based on and includes all existing features of the Freescale TouCAN module
• Reception queue available by setting more than one RX message buffer with the same ID
• Programmable for global (compatible with previous versions) or individual receive ID masking
• Maskable self-reception by setting MCR[SRXDIS]
• Full implementation of the CAN protocol specification, version 2.0B

— Standard data and remote frames

— Extended data and remote frames

— Data length of 0–8 bytes

— Programmable bit rate up to 1 Mb/sec

• Content-related addressing
• 64 flexible message buffers of 0–8 bytes data length
• Each MB configurable as RX or TX, all supporting standard and extended messages
• Includes 1024 bytes of RAM used for message buffer storage
• Includes 256 bytes of RAM used for filtering individual RX mask registers
• Programmable clock source to the CAN protocol interface, either system clock or oscillator clock
• Listen-only mode capability
• Programmable loop-back mode supporting self-test operation
• Three programmable mask registers are turned off by default:

— Global

— RX Buffer 14

— RX Buffer 15

• Programmable transmit-first scheme: lowest ID or lowest buffer number
• Time stamp based on 16-bit free-running timer
• Global network time, synchronized by a specific message
• Maskable interrupts
• Independent of the transmission medium (an external transceiver is assumed)
• Multi master concept
• High immunity to EMI
• Short latency time due to an arbitration scheme for high-priority messages

FlexCAN2 Controller Area Network

MPC5534 Microcontroller Reference Manual, Rev. 2

21-4 Freescale Semiconductor

21.1.4 Modes of Operation

The device supports four FlexCAN functional modes: normal, freeze, listen-only and loop-back. One low
power mode, module disabled, is supported.

21.1.4.1 Normal Mode

In normal mode, the module operates receiving and/or transmitting message frames, errors are handled
normally and all the CAN protocol functions are enabled. In this device, there is no distinction between
user and supervisor modes.

21.1.4.2 Freeze Mode

Freeze mode is entered when the FRZ bit in the module configuration register (CANx_MCR) is asserted
while the HALT bit in the CANx_MCR is set or debug mode is requested by the NPC. In freeze mode no
transmission or reception of frames is done, and synchronization with the CAN bus is lost. See
Section 21.4.6.1, “Freeze Mode,” for more information.

21.1.4.3 Listen-Only Mode

The module enters this mode when the LOM bit in the CANx_CR is asserted. In this mode, FlexCAN
operates in a CAN error passive mode, freezing all error counters and receiving messages without sending
acknowledgments.

21.1.4.4 Loop-Back Mode

The module enters this mode when the LPB bit in the CANx_CR is asserted. In this mode, FlexCAN
performs an internal loop back that can be used for self test operation. The bit stream output of the
transmitter is internally fed back to the receiver input. The CAN receive input pin (CNRXx) is ignored and
the transmit output (CNTXx) goes to the recessive state (logic 1). FlexCAN behaves as it normally does
when transmitting, and treats its own transmitted message as a message received from a remote node. In
this mode, FlexCAN ignores the bit sent during the ACK slot in the CAN frame acknowledge field to
ensure proper reception of its own message. Both transmit and receive interrupts are generated.

21.1.4.5 Module Disabled Mode

This low power mode is entered when the MDIS bit in the CAN_MCR is asserted. When disabled, the
module shuts down the clocks to the CAN protocol interface and message buffer management submodules.
Exit from this mode is done by negating the CAN_MCR[MDIS] bit. See Section 21.4.6.2, “Module
Disabled Mode,” for more information.

FlexCAN2 Controller Area Network

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 21-5

21.2 External Signal Description

21.2.1 Overview

The FlexCAN2 module has two I/O signals connected to the external MCU pins. These signals are
summarized in Table 21-1 and described in more detail in the next sub-sections.

21.2.2 Detailed Signal Description

21.2.2.1 CNRXx

This pin is the receive pin to the CAN bus transceiver. The dominant state is represented by logic level 0.
The recessive state is represented by logic level 1.

21.2.2.2 CNTXx

This pin is the transmit pin to the CAN bus transceiver. The dominant state is represented by logic level 0.
The recessive state is represented by logic level 1.

21.3 Memory Map/Register Definition
This section describes the registers and data structures in the FlexCAN2 module. The addresses presented
are relative to the base address of the module.

The address space occupied by FlexCAN2 is contiguous:

• 128 bytes for registers starting at the module base address

• Extra space for message buffer storage

• 1024 bytes for 64 message buffers

Table 21-1. FlexCAN2 Signals

Signal Name1

1 x indicates FlexCAN2 module A or C.

Direction Description

CNRXx I CAN receive

CNTXx O CAN transmit

FlexCAN2 Controller Area Network

MPC5534 Microcontroller Reference Manual, Rev. 2

21-6 Freescale Semiconductor

21.3.1 Memory Map

The complete memory map for a FlexCAN2 module with its 64 MBs is shown in Table 21-2. Except for
the base addresses, the two FlexCAN2 modules have identical memory maps. Each individual register is
identified by its complete name and the corresponding mnemonic.

The FlexCAN2 module stores CAN messages for transmission and reception using a message buffer
structure. Each individual MB is formed by 16 bytes of memory mapped as described in Table 21-3. The
FlexCAN2 module can manage up to 64 message buffers.

Table 21-2. Module Memory Map

Address Register Name Register Description Bits

Base = 0xFFFC_0000 (FlexCAN A)
Base = 0xFFFC_8000 (FlexCAN C)

CANx_MCR Module configuration register 32

Base + 0x0004 CANx_CR Control register 32

Base + 0x0008 CANx_TIMER Free running timer 32

Base + 0x000C — Reserved —

Base + 0x0010 CANx_RXGMASK RX global mask 32

Base + 0x0014 CANx_RX14MASK RX buffer 14 mask 32

Base + 0x0018 CANx_RX15MASK RX buffer 15 mask 32

Base + 0x001C CANx_ECR Error counter register 32

Base + 0x0020 CANx_ESR Error and status register 32

Base + 0x0024 CANx_IMRH Interrupt masks high register 32

Base + 0x0028 CANx_IMRL Interrupt masks low register 32

Base + 0x002C CANx_IFRH Interrupt flags high register 32

Base + 0x0030 CANx_IFRL Interrupt flags low register 32

Base + (0x0034–0x005F) — Reserved —

Base + (0x0060–0x007F) — Reserved —

Base + (0x0080–0x017F) MB0–MB15 Message buffers 0–15 128 per buffer

Base + (0x0180–0x027F) MB16–MB31 Message buffers 16–31 128 per buffer

Base + (0x0280–0x047F) MB32–MB63 Message buffers 32–63 128 per buffer

Base + (0x0880–0x08BF) CANx_RXIMR0–CANx_RXIMR15 RX individual mask register 0–15 32

Base + (0x08C0–0x08FF) CANx_RXIMR16–CANx_RXIMR31 RX individual mask register 16–31 32

Base + (0x0900–0x097F) CANx_RXIMR32–CANx_RXIMR63 RX individual mask register 32–63 32

FlexCAN2 Controller Area Network

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 21-7

Table 21-3 shows the standard and extended message buffer (MB0) memory map, using 16 bytes
(0x80–0x8F) total space.

NOTE
Reading the control and status word (first word) of a message buffer locks
it from receiving further messages until it is unlocked by reading: another
message buffer, or the timer.

21.3.2 Message Buffer Structure

The message buffer structure used by the FlexCAN2 module is represented in Figure 21-2. Both extended
and standard frames (29-bit and 11-bit identifier, respectively) used in the CAN specification (version 2.0
Part B) are represented.

Table 21-3. Message Buffer MB0 Memory Mapping

Address
Offset

MB Field

0x80 Control and status (C/S)

0x84 Identifier field

0x88–0x8F Data fields 0–7 (1 byte each)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0x0000 CODE

S
R

R

ID
E

R
T

R LENGTH TIME STAMP

0x0004 ID (Standard or Extended) ID (Extended)

0x0008 Data byte 0 Data byte 1 Data byte 2 Data byte 3

0x000C Data byte 4 Data byte 5 Data byte 6 Data byte 7

Figure 21-2. Message Buffer Structure

Table 21-4. Message Buffer Field Descriptions

Word
Bits and

Field Name
Description

0x0000 0–3 Reserved

4–7
CODE

Message buffer code. This 4-bit field can be accessed (read or write) by the CPU and by the
FlexCAN2 module itself, as part of the message buffer matching and arbitration process. The
encoding is shown in Table 21-5 and Table 21-6. See Section 21.4, “Functional Description,”
for additional information.

8 Reserved

9
SRR

Substitute remote request. Fixed recessive bit, used only in extended format. You must set the
SSR bit to ‘1’ for transmission (TX Buffers) and is stored with the value received on the CAN
bus for RX receiving buffers. It can be received as either recessive or dominant. If FlexCAN2
receives this bit as dominant, then it is interpreted as arbitration loss.
0 Dominant is not a valid value for transmission in extended format frames
1 Recessive value is compulsory for transmission in extended format frames

FlexCAN2 Controller Area Network

MPC5534 Microcontroller Reference Manual, Rev. 2

21-8 Freescale Semiconductor

0x0000
(continued)

10
IDE

ID extended bit. This bit identifies whether the frame format is standard or extended.
0 Frame format is standard
1 Frame format is extended

11
RTR

Remote transmission request. This bit is used for requesting transmissions of a data frame. If
FlexCAN2 transmits this bit as ‘1’ (recessive) and receives it as ‘0’ (dominant), it is interpreted
as arbitration loss. If this bit is transmitted as ‘0’ (dominant), then if it is received as ‘1’
(recessive), the FlexCAN2 module treats it as bit error. If the value received matches the value
transmitted, it is considered as a successful bit transmission.
0 Indicates the current MB has a data frame to be transmitted
1 Indicates the current MB has a remote frame to be transmitted

12–15
LENGTH

Length of data in bytes. This 4-bit field is the length (in bytes) of the RX or TX data, which is
located in offset 0x8 through 0xF of the MB space (see Figure 21-2). In reception, this field is
written by the FlexCAN2 module, copied from the DLC (data length code) field of the received
frame. In transmission, this field is written by the CPU and corresponds to the DLC field value
of the frame to be transmitted. When RTR = 1, the Frame to be transmitted is a remote frame
and does not include the data field, regardless of the length field.

16–31
TIME STAMP

Free-running counter time stamp. This 16-bit field is a copy of the free-running timer, captured
for Tx and Rx frames at the time when the beginning of the Identifier field appears on the CAN
bus.

0x0004 0–2 Reserved

3–13,
14–31

ID

Frame identifier.
 • Standard frame format: the 11 (3:13) most significant bits (MSB) are the frame ID in receive

and transmit frames. The 18 (14:31) least significant bits (LSB) are ignored.
 • Extended frame format: all bits are the frame ID in receive and transmit frames.

0x0008
and

0x000C

DATA
Bytes 0–3

Bytes 4–7

Data field.
Up to eight bytes can be used for a data frame. For RX frames, the data is stored as it is
received from the CAN bus. For TX frames, the CPU prepares the data field to be transmitted
within the frame.

Table 21-5. Message Buffer Codes for RX Buffers

RX Code
before

RX Frame
Description

RX Code
after

RX Frame
Comment

0000 NOT ACTIVE: MB is not active. — MB does not participate in the matching process.

0100 EMPTY: MB is active and empty. 0010 MB participates in the matching process. When a frame
is received successfully, the code is automatically
updated to FULL.

Table 21-4. Message Buffer Field Descriptions (continued)

Word
Bits and

Field Name
Description

FlexCAN2 Controller Area Network

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 21-9

c

0010 FULL: MB is full. 0010 The act of reading the C/S word followed by unlocking the
MB does not make the code return to EMPTY. It remains
FULL. If a new frame is written to the MB after the C/S
word was read and the MB was unlocked, the code still
remains FULL.

0110 If the MB is FULL and a new frame is overwritten to this
MB before the CPU had time to read it, the code is
automatically updated to OVERRUN. See
Section 21.4.3.1, “Matching Process for details about
overrun behavior.

0110 OVERRUN: A frame was overwritten
into a full buffer.

0010 If the code indicates OVERRUN but the CPU reads the
C/S word and then unlocks the MB, when a new frame is
written to the MB the code returns to FULL.

0110 If the code already indicates OVERRUN, and yet another
new frame must be written, the MB is overwritten again,
and the code remains OVERRUN. See Section 21.4.3.1,
“Matching Process for details about overrun behavior.

0XY11 BUSY: FlexCAN is updating the
contents of the MB. The CPU must
not access the MB.

0010 EMPTY buffer was written with a new frame (XY was 01).

0110 FULL/OVERRUN buffer was overwritten (XY was 11).

1 For TX message buffers (see Table 21-6), the BUSY bit must be ignored when read.

Table 21-6. Message Buffer Code for TX Buffers

RTR
Initial TX

Code

Code after
Successful

Transmission
Description

X 1000 — INACTIVE: MB does not participate in the arbitration process.

0 1100 1000 Transmit data frame unconditionally once. After transmission, the MB
automatically returns to the INACTIVE state.

1 1100 0100 Transmit remote frame unconditionally once. After transmission, the MB
automatically becomes and RX MB with the same ID.

0 1010 1010 Transmit a data frame whenever a remote request frame with the same ID is
received. This MB participates simultaneously in both the matching and
arbitration processes. The matching process compares the ID of the incoming
remote request frame with the ID of the MB. If a match occurs this MB is
allowed to participate in the current arbitration process and the CODE field is
automatically updated to ‘1110’ to allow the MB to participate in future
arbitration runs. When the frame is eventually transmitted successfully, the
Code automatically returns to ‘1010’ to restart the process again.

0 1110 1010 The MBM generates this code as a result of match to a remote request frame.
The data frame is transmitted unconditionally once, and then the code
automatically returns to ‘1010’. The CPU can write the code with the same
effect.

Table 21-5. Message Buffer Codes for RX Buffers (continued)

RX Code
before

RX Frame
Description

RX Code
after

RX Frame
Comment

FlexCAN2 Controller Area Network

MPC5534 Microcontroller Reference Manual, Rev. 2

21-10 Freescale Semiconductor

21.3.3 Register Descriptions

The FlexCAN2 registers are described in this section. There are two separate, identical FlexCAN2
modules: A, B, C, and D. In the following sections, the ‘x’ in the registers’ names represents the individual
module.

21.3.3.1 Module Configuration Register (CANx_MCR)

CANx_MCR defines global system configurations, such as the module operation mode and maximum
message buffer configuration. Most of the fields in this register can be accessed at any time, except the
MAXMB field, which can be changed only while the module is in freeze mode.

Address: Base + 0x0000 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MDIS FRZ

0
HALT

NOTRDY 0
SOFTRST

FRZACK 1 0 WRN
EN

MDISACK 0 0 SRX
DIS

MBFEN
W

Reset 0 1 0 1 1 0 0 1 1 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0
MAXMB

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

Figure 21-3. Module Configuration Register (CANx_MCR)

Table 21-7. CANx_MCR Field Descriptions

Field Description

0
MDIS

Module disable. Controls whether FlexCAN2 is enabled or not. When disabled, FlexCAN2 shuts down the
clock to the CAN protocol interface and message buffer management submodules. This is the only bit in
CANx_MCR not affected by soft reset. See Section 21.4.6.2, “Module Disabled Mode,” for more information.
0 Enable the FlexCAN2 module
1 Disable the FlexCAN2 module

1
FRZ

Freeze enable. Specifies the FlexCAN2 behavior when the HALT bit in the CANx_MCR is set or when debug
mode is requested at MCU level. When FRZ is asserted, FlexCAN2 is enabled to enter freeze mode.
Negation of this bit field causes FlexCAN2 to exit from freeze mode.
0 Not enabled to enter freeze mode
1 Enabled to enter freeze mode

2 Reserved

3
HALT

Halt FlexCAN. Assertion of this bit puts the FlexCAN2 module into freeze mode if FRZ is asserted. The CPU
must clear it after initializing the message buffers and CANx_CR. If FRZ is set, no reception or transmission
is performed by FlexCAN2 before this bit is cleared. While in freeze mode, the CPU has write access to the
CANx_ECR, that is otherwise read-only. Freeze mode cannot be entered while FlexCAN2 is disabled. See
Section 21.4.6.1, “Freeze Mode,” for more information.
0 No freeze mode request.
1 Enters freeze mode if the FRZ bit is asserted.

4
NOTRDY

FlexCAN2 not ready. Indicates that FlexCAN2 is either disabled or in freeze mode. It is negated after
FlexCAN2 has exited these modes.
0 FlexCAN2 module is either in normal mode, listen-only mode or loop-back mode
1 FlexCAN2 module is either disabled or freeze mode

FlexCAN2 Controller Area Network

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 21-11

5 Reserved

6
SOFTRST

Soft reset. When asserted, FlexCAN2 resets its internal state machines and some of the memory-mapped
registers. The following registers are affected by soft reset:
 • CANx_MCR (except the MDIS bit)
 • CANx_TIMER
 • CANx_ECR
 • CANx_ESR
 • CANx_IMRL
 • CANx_IMRH
 • CANx_IFRL
 • CANx_IFRH
Configuration registers that control the interface to the CAN bus are not affected by soft reset. The following
registers are unaffected:
 • CANx_CR
 • CANx_RXGMASK
 • CANx_RX14MASK
 • CANx_RX15MASK
 • all Message buffers
The SOFTRST bit can be asserted directly by the CPU when it writes to the CANx_MCR, but it is also
asserted when global soft reset is requested at MCU level. Because soft reset is synchronous and has to
follow a request/acknowledge procedure across clock domains, it can take time to fully propagate its effect.
The SOFTRST bit remains asserted while reset is pending, and is automatically negated when reset
completes. Therefore, software can poll this bit to know when the soft reset has completed.
0 No reset request
1 Resets values in registers indicated above.

7
FRZACK

Freeze mode acknowledge. Indicates that FlexCAN2 is in freeze mode and its prescaler is stopped. The
freeze mode request cannot be granted until current transmission and reception processes have finished.
Therefore the software can poll the FRZACK bit to know when FlexCAN2 has actually entered freeze mode.
If freeze mode request is negated, then this bit is negated after the FlexCAN2 prescaler is running again. If
freeze mode is requested while FlexCAN2 is disabled, then the FRZACK bit is set only after exiting the low
power mode. See Section 21.4.6.1, “Freeze Mode,” for more information.
0 FlexCAN2 not in freeze mode, prescaler running
1 FlexCAN2 in freeze mode, prescaler stopped

8–9 Reserved

10
WRNEN

Warning interrupt enable. When asserted, this bit enables the generation of the TWRNINT and RWRNINT
flags in the Error and Status Register. If WRNEN is negated, the TWRNINT and RWRNINT flags are always
0, independent of the values of the error counters, and no warning interrupt is generated.
1 = TWRNINT and RWRNINT bits are set when the respective error counter transition from less than 96 to

greater than or equal to 96.
0 = TWRNINT and RWRNINT bits are zero, independent of the values in the error counters.

11
MDISACK

Low power mode acknowledge. Indicates whether FlexCAN2 is disabled. This cannot be performed until all
current transmission and reception processes have finished, so the CPU can poll the MDISACK bit to know
when FlexCAN2 has actually been disabled. See Section 21.4.6.2, “Module Disabled Mode,” for more
information.
0 FlexCAN2 not disabled
1 FlexCAN2 is disabled

12–13 Reserved

Table 21-7. CANx_MCR Field Descriptions (continued)

Field Description

FlexCAN2 Controller Area Network

MPC5534 Microcontroller Reference Manual, Rev. 2

21-12 Freescale Semiconductor

21.3.3.2 Control Register (CANx_CR)

CANx_CR is defined for specific FlexCAN2 control features related to the CAN bus, such as bit-rate,
programmable sampling point within an RX bit, loop-back mode, listen-only mode, bus off recovery
behavior, and interrupt enabling (for example, bus-off, error). It also determines the division factor for the
clock prescaler. BOFFMSK, ERRMSK, and BOFFREC bits can be accessed at any time. CANx_CR is
unaffected by soft reset, which occurs when CAN_MCR[SOFTRST] is asserted.

14
SRXDIS

This bit defines whether FlexCAN is allowed to receive frames transmitted by itself. If this bit is
asserted, frames transmitted by the module is not stored in any MB, regardless if the MB is
programmed with an ID that matches the transmitted frame, and no interrupt flag or interrupt signal
is generated due to the frame reception.
1 = Self reception disabled
0 = Self reception enabled

15
MBFEN

Message buffer filter enable. This bit provides the capability of enabling either individual masking of every
message buffer, or global masking of message buffers.

By negating MBFEN, global masking is enabled and FlexCAN uses the Rx ID masking scheme of
RXGMASK, RX14MASK and RX15MASK. MB14 and MB15 have individual masks and the others share the
global mask. The scheme does not provide a reception queue; i.e. a received message always fills the first
matching buffer, setting the CODE field to overrun if the buffer contained an unread message. See
Section 21.3.3.4, “RX Mask Registers” for more information. Use global masking for compatibility with
previous FlexCAN versions, which negates MBFEN at reset to retain compatibility with existing software.

By asserting MBFEN, individual Rx ID masking and the reception queue features are enabled. In this
scheme, individual receive mask registers (RXIM[0-63]) are provided for each MB. Upon receiving a
message, FlexCAN searches the reception queue for the first empty matching MB. See Section 21.3.3.5, “RX
Individual Mask Registers (CANx_RXIMR0 through CANx_RXIMR63)” and Section 21.4.3.2, “Reception
Queue” for more information.

0 = Individual RX masking and reception queue features are disabled (thus the device is compatible with
previous FlexCAN versions, i.e. one global mask register is used).

1 = Individual RX masking and reception queue features are enabled.

16–25 Reserved

26–31
MAXMB[0:5]

Maximum number of message buffers. This 6-bit field defines the maximum number of message buffers of
the FlexCAN2 module. The reset value (0x0F) is equivalent to 16 MB configuration. FlexCAN must be in
freeze mode before changing this value.

Note: MAXMB must be less than or equal to the number of available message buffers. FlexCAN2 cannot
transmit or receive frames if this value is greater than the number of available message buffers.

Table 21-7. CANx_MCR Field Descriptions (continued)

Field Description

Maximum MBs in use MAXMB 1+=

FlexCAN2 Controller Area Network

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 21-13

Address: Base + 0x0004 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
PRESDIV RJW PSEG1 PSEG2

W

Reset1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R BOFF
MSK

ERR
MSK

CLK_
SRC

LPB
TWRN
MSK

RWRN
MSK

0 0
SMP

BOFF
REC

TSYN LBUF LOM PROPSEG
W

Reset1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 CANx_CR is unaffected by soft reset (which occurs when CAN_MCR[SOFTRST] is asserted).

Figure 21-4. Control Register (CANx_CR)

Table 21-8. CANx_CR Field Descriptions

Bits Description

0–7
PRESDIV[0:7]

Prescaler division factor. Defines the ratio between the CPI clock frequency and the serial clock (SCK)
frequency. The SCK period defines the time quantum of the CAN protocol. For the reset value, the SCK
frequency is equal to the CPI clock frequency. The maximum value of this register is 0xFF, that gives a
minimum SCK frequency equal to the CPI clock frequency divided by 256. For more information, see
Section 21.4.5.4, “Protocol Timing.”

8–9
RJW[0:1]

Resync jump width. Defines the maximum number of time quanta1 that a bit time can be changed by one
re-synchronization. The valid programmable values are 0–3.

10–12
PSEG1[0:2]

Phase segment 1. Defines the length of phase buffer segment 1 in the bit time. The valid programmable
values are 0–7.

13–15
PSEG2[0:2]

Phase segment 2. Defines the length of phase buffer segment 2 in the bit time. The valid programmable
values are 1–7.

16
BOFFMSK

Bus off mask. Provides a mask for the bus off interrupt.
0 Bus off interrupt disabled
1 Bus off interrupt enabled

17
ERRMSK

Error mask. Provides a mask for the error interrupt.
0 Error interrupt disabled
1 Error interrupt enabled

18
CLK_SRC

CAN engine clock source. Selects the clock source to the CAN Protocol Interface (CPI) to be either the
system clock (driven by the PLL) or the crystal oscillator clock. The selected clock is fed into the prescaler
to generate the serial clock (SCK).
0 = The CAN engine clock source is the oscillator clock
1 = The CAN engine clock source is the system clock

S-clock frequency CPI clock frequency
PRESDIV 1+

---=

Resync Jump Width RJW + 1=

Phase Buffer Segment 1 PSEG1 + 1() Time Quanta×=

Phase Buffer Segment 2 PSEG2 + 1() Time Quanta×=

FlexCAN2 Controller Area Network

MPC5534 Microcontroller Reference Manual, Rev. 2

21-14 Freescale Semiconductor

19
LPB

Loop back. Configures FlexCAN2 to operate in loop-back mode. See Section 21.1.4, “Modes of Operation”
for information about this operating mode.
0 Loop back disabled
1 Loop back enabled

20
TWRNMSK

This bit provides a mask for the TX Warning Interrupt associated with the TWRNINT flag in the Error
and Status Register. This bit has no effect if the WRNEN bit in CANx_MCR is negated and it is read as zero
when WRNEN is negated.
1 = Tx Warning Interrupt enabled
0 = Tx Warning Interrupt disabled

21
RWRNMSK

This bit provides a mask for the RX Warning Interrupt associated with the RWRNINT flag in the Error
and Status Register. This bit has no effect if the WRNEN bit in CANx_MCR is negated and it is read as zero
when WRNEN is negated.
1 = Rx Warning Interrupt enabled
0 = Rx Warning Interrupt disabled

22–23 Reserved

24
SMP

Sampling mode. Defines the sampling mode of each bit in the receiving messages (RX).
0 Just one sample is used to determine the RX bit value
1 Three samples are used to determine the value of the received bit: the regular one (sample point) and

two preceding samples, a majority rule is used

25
BOFFREC

Bus off recovery mode. Defines how FlexCAN2 recovers from bus off state. If this bit is negated, automatic
recovering from bus off state occurs according to the CAN Specification 2.0B. If the bit is asserted,
automatic recovering from bus off is disabled and the module remains in bus off state until you negate the
bit. If the negation occurs before 128 sequences of 11 recessive bits are detected on the CAN bus, then
bus off recovery happens as if the BOFFREC bit had never been asserted. If the negation occurs after 128
sequences of 11 recessive bits are detected, then FlexCAN2 re-synchronizes to the bus by waiting for 11
recessive bits before joining the bus. After negation, the BOFFREC bit can be re-asserted again during bus
off, but it is only effective the next time the module enters bus off. If BOFFREC was negated when the
module entered bus off, asserting it during bus off is not effective for the current bus off recovery.
0 Automatic recovering from bus off state enabled, according to CAN Spec 2.0 part B
1 Automatic recovering from bus off state disabled

26
TSYN

Timer sync mode. Enables a mechanism that resets the free-running timer each time a message is
received in message buffer 0. This feature provides means to synchronize multiple FlexCAN2 stations with
a special SYNC message (that is, global network time).
0 Timer sync feature disabled
1 Timer sync feature enabled
Note: There is a possibility of 4–5 ticks count skew between the different FlexCAN2 stations that would

operate in this mode.

27
LBUF

Lowest buffer transmitted first. This bit defines the ordering mechanism for message buffer transmission.
0 Buffer with lowest ID is transmitted first
1 Lowest number buffer is transmitted first

Table 21-8. CANx_CR Field Descriptions (continued)

Bits Description

FlexCAN2 Controller Area Network

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 21-15

21.3.3.3 Free Running Timer (CANx_TIMER)

CANx_TIMER represents a 16-bit free running counter that can be read and written by the CPU. The timer
starts from 0x0000 after Reset, counts linearly to 0xFFFF, and wraps around.

The timer is clocked by the FlexCAN2 bit-clock (which defines the baud rate on the CAN bus). During a
message transmission/reception, it increments by one for each bit that is received or transmitted. When
there is no message on the bus, it counts using the previously programmed baud rate. During freeze mode,
the timer is not incremented.

The timer value is captured at the beginning of the identifier field of any frame on the CAN bus. This
captured value is written into the TIME STAMP entry in a message buffer after a successful reception or
transmission of a message.

Writing to the timer is an indirect operation. The data is first written to an auxiliary register and then an
internal request/acknowledge procedure across clock domains is executed. This operation is transparent to
you, except for the time delay required for the data write to the register. Software can poll the register to
verify that the data was written.

28
LOM

Listen-only mode. Configures FlexCAN2 to operate in listen-only mode. In this mode, the FlexCAN2 module
receives messages without giving any acknowledge. It is not possible to transmit any message in this mode.
0 FlexCAN2 module is in normal active operation, listen only mode is deactivated
1 FlexCAN2 module is in listen only mode operation

29–31
PROPSEG

[0:2]

Propagation segment. Defines the length of the propagation segment in the bit time. The valid
programmable values are 0–7.

1 One time quantum is equal to the S clock period.

Address: Base + 0x0008 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TIMER

W

Reset 0

Figure 21-5. Free Running Timer (CANx_TIMER)

Table 21-8. CANx_CR Field Descriptions (continued)

Bits Description

Propagation Segment Time (PROPSEG + 1) Time Quanta×=

Time Quantum = one S clock period

FlexCAN2 Controller Area Network

MPC5534 Microcontroller Reference Manual, Rev. 2

21-16 Freescale Semiconductor

21.3.3.4 RX Mask Registers

By negating the CANx_MCR[MBFEN] bit, the CANx_RXGMASK, CANx_RX14MASK, and
CANx_RX15MASK registers are used as acceptance masks for received frame IDs. Three masks are
defined: a global mask, used for RX buffers 0–13 and 16–63, and two extra masks dedicated for buffers 14
and 15.

The meaning of each mask bit is the following:

• Mask bit = 0: the corresponding incoming ID bit is “don’t care.”

• Mask bit = 1: the corresponding ID bit is checked against the incoming ID bit, to see if a match
exists.

These masks are used both for standard and extended ID formats. Do not change the value of mask
registers while in normal operation. Locked frames which match a message buffer through a mask can be
transferred into the message buffer (upon release) even if they no longer match. Table 21-9 shows some
examples of ID masking for standard and extended message buffers.

Table 21-9. Mask Examples for Standard/Extended Message Buffers

Mask ID
Base ID

ID28.................ID18
IDE

Extended ID
ID17......................................ID0

Match

MB2 ID 1 1 1 1 1 1 1 1 0 0 0 0

MB3 ID 1 1 1 1 1 1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

MB4 ID 0 0 0 0 0 0 1 1 1 1 1 0

MB5 ID 0 0 0 0 0 0 1 1 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

MB14 ID 1 1 1 1 1 1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

RX Global Mask 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1

RX Msg in 1

1 Match for Extended Format (message buffer 3).

1 1 1 1 1 1 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 3

RX Msg in 2

2 Match for Standard Format. (message buffer 2).

1 1 1 1 1 1 1 1 0 0 1 0 2

RX Msg in 3

3 Mismatch for message buffer 3 because of ID0.

1 1 1 1 1 1 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0

RX Msg in 4

4 Mismatch for message buffer 2 because of ID28.

0 1 1 1 1 1 1 1 0 0 0 0

RX Msg in 5

5 Mismatch for message buffer 3 because of ID28, match for message buffer 14 (uses RX14MASK).

0 1 1 1 1 1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 14

RX 14 Mask 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

RX Msg in 6

6 Mismatch for message buffer 14 because of ID27 (uses RX14MASK).

1 0 1 1 1 1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

RX Msg in 7

7 Match for message buffer 14 (uses RX14MASK).

0 1 1 1 1 1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 14

FlexCAN2 Controller Area Network

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 21-17

21.3.3.4.1 RX Global Mask (CANx_RXGMASK)

The RX global mask bits are applied to all RX identifiers excluding RX buffers 14 and 15, that have their
specific RX mask registers. Access to this register is unrestricted. CANx_RXGMASK is unaffected by
soft reset (which occurs when CAN_MCR[SOFTRST] asserts).

21.3.3.4.2 RX 14 Mask (CANx_RX14MASK)

The CANx_RX14MASK register has the same structure as the RX global mask register and is used to
mask message buffer 14. Access to this register is unrestricted. CANx_RX14MASK is unaffected by soft
reset (which occurs when CAN_MCR[SOFTRST] is asserted).

• Address offset: 0x0014

• Reset value: 0x1FFF_FFFF

21.3.3.4.3 RX 15 Mask (CANx_RX15MASK)

The CANx_RX15MASK register has the same structure as the RX global mask register and is used to
mask message buffer 15. Access to this register is unrestricted. CANx_RX15MASK is unaffected by soft
reset (which occurs when CAN_MCR[SOFTRST] is asserted).

• Address offset: 0x0018

• Reset value: 0x1FFF_FFFF

Address: Base + 0x0010 (CANx_RXGMASK)
Base + 0x0014 (CANx_RX14MASK)
Base + 0x0018 (CANx_RX15MASK)

Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0
MI28 MI27 MI26 MI25 MI24 MI23 MI22 MI21 MI20 MI19 MI18 MI17 MI16

W

Reset 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
MI15 MI14 MI13 MI12 MI11 MI10 MI9 MI8 MI7 MI6 MI5 MI4 MI3 MI2 MI1 MI0

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 CANx_RXGMASK is unaffected by soft reset (which occurs when CAN_MCR[SOFTRST] is asserted).

Figure 21-6. RX Global Mask Register (CANx_RXGMASK)

Table 21-10. CANx_RXGMASK Field Descriptions

Field Description

0–2 Reserved, must be cleared.

3–13
MIn

Standard ID mask bits. These bits are the same mask bits for the standard and extended formats.

14–31
MIn

Extended ID mask bits. These bits are used to mask comparison only in extended format.

FlexCAN2 Controller Area Network

MPC5534 Microcontroller Reference Manual, Rev. 2

21-18 Freescale Semiconductor

21.3.3.5 RX Individual Mask Registers (CANx_RXIMR0 through CANx_RXIMR63)

By asserting the CANx_MCR[MBFEN] bit, the CANx_RXIMR[0–63] registers are used as acceptance
masks for received frame IDs, in both standard and extended ID formats. One mask register is provided
for each message buffer for individual ID masking per message buffer.

The meaning of each mask bit is the following:

• Mask bit = 0: The corresponding incoming ID bit is a “don’t care.”

• Mask bit = 1: The corresponding ID bit is checked against the incoming ID bit, to see if a match
exists.

The Individual Rx Mask Registers are implemented in RAM, so they are not affected by reset and must be
explicitly initialized prior to any reception. Furthermore, they can only be accessed by the CPU while the
module is in freeze mode. Out of freeze mode, write accesses are blocked and read accesses return all 0s.
Furthermore, if the MBFEN bit in the MCR register is negated, any read or write operation to these
RXIMRn registers results in access error.

Address: Base + 0x0880–0x097F Access: User R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0
MI28 MI27 MI26 MI25 MI24 MI23 MI22 MI21 MI20 MI19 MI18 MI17 MI16

W

Reset 1 U U U U U U U U U U U U U U U U

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
MI15 MI14 MI13 MI12 MI11 MI10 MI9 MI8 MI7 MI6 MI5 MI4 MI3 MI2 MI1 MI0

W

Reset 1 U U U U U U U U U U U U U U U U
1 The ‘U’ indicates the value is undefined after reset.

Figure 21-7. RX Individual Mask Registers (CANx_RXIMR0 through CANx_RXIMR63)

Table 21-11. CANx_RXIMR0–CANx_RXIMR63 Field Descriptions

Field Description

0–2 Reserved

3–13
MI28–MI18

Standard ID mask bits. These bits are the same mask bits for the standard and extended formats.

14–31
MI17–MI0

Extended ID mask bits. These bits are used to mask comparison only in extended format.

FlexCAN2 Controller Area Network

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 21-19

21.3.3.6 Error Counter Register (CANx_ECR)

CANx_ECR has two 8-bit fields with the value of two FlexCAN2 error counters: the transmit error counter
(TXECTR field) and receive error counter (RXECTR field). The rules for increasing and decreasing these
counters are described in the CAN protocol and are completely implemented in the FlexCAN2 module.
Both counters are read only except in freeze mode, where they can be written by the CPU.

Writing to the CANx_ECR while in freeze mode is an indirect operation. The data is first written to an
auxiliary register, and then an internal request/acknowledge procedure across clock domains is executed.
This occurs internally without indication, except for the time delay required for the data write to the
register. Software can poll the register to verify that the data is written.

FlexCAN2 responds to any bus state as described in the protocol: transmitting, for example, an ‘error
active’ or ‘error passive’ flag, delaying its transmission start time (‘error passive’), and avoiding any
influence on the bus when in the bus off state. The following are the basic rules for FlexCAN2 bus state
transitions:

• If the value of TXECTR or RXECTR increases to be greater than or equal to 128, the FLTCONF
field in the CANx_ESR is updated to reflect the ‘error passive’ state.

• If the FlexCAN2 state is ‘error passive,’ and either TXECTR or RXECTR decrements to a value
less than or equal to 127 while the other already satisfies this condition, the FLTCONF field in the
CANx_ESR is updated to reflect the ‘error active’ state.

• If the value of TXECTR increases to greater than 255, the FLTCONF field in the CANx_ESR is
updated to reflect the bus off state, and can issue an interrupt. The value of TXECTR is then reset
to zero.

• If FlexCAN2 is in the bus off state, then TXECTR is cascaded together with another internal
counter to count the 128th occurrences of 11 consecutive recessive bits on the bus. Hence,
TXECTR is reset to zero and counts in a manner where the internal counter counts 11 such bits and
then wraps around while incrementing the TXECTR. When TXECTR reaches the value of 128, the
FLTCONF field in CANx_ESR is updated to be ‘error active’ and both error counters are reset to
zero. At any instance of dominant bit following a stream of less than 11 consecutive recessive bits,
the internal counter resets itself to zero without affecting the TXECTR value.

• If during system start-up, only one node is operating, then its TXECTR increases in each message
it is trying to transmit, as a result of acknowledge errors (indicated by the ACKERR bit in
CANx_ESR). After the transition to the ‘error passive’ state, the TXECTR does not increment
anymore by acknowledge errors. Therefore the device never goes to the bus off state.

• If the RXECTR increases to a value greater than 127, it is not incremented further, even if more
errors are detected while being a receiver. At the next successful message reception, the counter is
set to a value between 119 and 127 to resume to ‘error active’ state.

Address: Base + 0x001C Access: User R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RXECTR TXECTR

W

Reset 0

Figure 21-8. Error Counter Register (CANx_ECR)

FlexCAN2 Controller Area Network

MPC5534 Microcontroller Reference Manual, Rev. 2

21-20 Freescale Semiconductor

21.3.3.7 Error and Status Register (CANx_ESR)

CANx_ESR reflects various error conditions, some general status of the device, and it is the source of two
interrupts to the CPU. The reported error conditions (bits 16–21) are those that occurred since the last time
the CPU read this register. The CPU read action clears BIT1ERR, BIT0ERR, ACKERR, CRCERR,
FRMERR, and STFERR. TXWRN, RXWRN, IDLE, TXRX, FLTCONF, BOFFINT, and ERRINT are
status bits.

Most bits in this register are read-only, except BOFFINT, ERRINT, TWRNINT, and RWRNINT which are
interrupt flags that can be cleared by writing 1 to them (writing 0 has no effect).

See Section 21.4.7, “Interrupts,” for more details.

NOTE
A read clears BIT1ERR, BIT0ERR, ACKERR, CRCERR, FRMERR, and
STFERR, therefore these bits must not be read speculatively. For future
compatibility, the TLB entry covering the CANx_ESR must be configured
to be guarded.

Address: Base + 0x0020 Access: User R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWRN
INT

RWRN
INT

W w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R BIT1
ERR

BIT0
ERR

ACK
ERR

CRC
ERR

FRM
ERR

STF
ERR

TX
WRN

RX
WRN

IDLE TXRX FLTCONF 0
BOFF
INT

ERR
INT

0

W w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-9. Error and Status Register (CANx_ESR)

Table 21-12. CANx_ESR Field Descriptions

Field Description

0–13 Reserved

14
TWRNINT

If the WRNEN bit in CANx_MCR is asserted, the TWRNINT bit is set when the TXWRN flag transitions
from 0 to 1, meaning that the TX error counter reached 96. If the corresponding mask bit in the
Control Register (TWRNMSK) is set, an interrupt is generated to the CPU. This bit is cleared by
writing to 1. Writing 0 has no effect.
0 No such occurrence
1 TXECTR ≥ 96

FlexCAN2 Controller Area Network

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 21-21

15
RWRNINT

If the WRNEN bit in CANx_MCR is asserted, the RWRNINT bit is set when the RXWRN flag transitions
from 0 to 1, meaning that the RX error counter reached 96. If the corresponding mask bit in the
Control Register (RWRNMSK) is set, an interrupt is generated to the CPU. This bit is cleared by
writing to 1. Writing 0 has no effect.
0 No such occurrence
1 RXECTR ≥ 96

16
BIT1ERR

Bit 1 error. Indicates when an inconsistency occurs between the transmitted and the received message in
a bit. A read clears BIT1ERR.
0 No such occurrence
1 At least one bit sent as recessive is received as dominant
Note: This bit is not set by a transmitter in case of arbitration field or ACK slot, or in case of a node sending

a passive error flag that detects dominant bits.

17
BIT0ERR

Bit 0 error. Indicates when an inconsistency occurs between the transmitted and the received message in
a bit. A read clears BIT0ERR.
0 No such occurrence
1 At least one bit sent as dominant is received as recessive

18
ACKERR

Acknowledge error. Indicates that an acknowledge error has been detected by the transmitter node; that
is, a dominant bit has not been detected during the ACK SLOT. A read clears ACKERR.
0 No such occurrence
1 An ACK error occurred since last read of this register

19
CRCERR

Cyclic redundancy code error. Indicates that a CRC error has been detected by the receiver node; that is,
the calculated CRC is different from the received. A read clears CRCERR.
0 No such occurrence
1 A CRC error occurred since last read of this register.

20
FRMERR

Form error. Indicates that a form error has been detected by the receiver node; that is, a fixed-form bit field
contains at least one illegal bit. A read clears FRMERR.
0 No such occurrence
1 A form error occurred since last read of this register

21
STFERR

Stuffing error. Indicates that a stuffing error has been detected. A read clears STFERR.
0 No such occurrence.
1 A stuffing error occurred since last read of this register.

22
TXWRN

TX error counter. This status bit indicates that repetitive errors are occurring during message transmission.
0 No such occurrence
1 TXECTR ≥ 96

23
RXWRN

RX error counter. This status bit indicates when repetitive errors are occurring during messages reception.
0 No such occurrence
1 RXECTR ≥ 96

24
IDLE

CAN bus IDLE state. This status bit indicates when CAN bus is in IDLE state.
0 No such occurrence
1 CAN bus is now IDLE

25
TXRX

Current FlexCAN2 status (transmitting/receiving). This status bit indicates if FlexCAN2 is transmitting or
receiving a message when the CAN bus is not in IDLE state. This bit has no meaning when IDLE is
asserted.
0 FlexCAN2 is receiving a message (IDLE = 0)
1 FlexCAN2 is transmitting a message (IDLE = 0)

Table 21-12. CANx_ESR Field Descriptions (continued)

Field Description

FlexCAN2 Controller Area Network

MPC5534 Microcontroller Reference Manual, Rev. 2

21-22 Freescale Semiconductor

21.3.3.8 Interrupt Masks High Register (CANx_IMRH)

CANx_IMRH allows any number of a range of 32 message buffer interrupts to be enabled or disabled. It
contains one interrupt mask bit per buffer, enabling the CPU to determine which buffer generates an
interrupt after a successful transmission or reception (that is, when the corresponding IFRH bit is set).

26–27
FLTCONF[0:1]

Fault confinement state. This status bit indicates the confinement state of the FlexCAN2 module. If the
LOM bit in the CANx_CR asserts, the FLTCONF field indicates “Error Passive”. Since the CANx_CR is not
affected by a soft reset, the FLTCONF field is not affected by a soft reset if the LOM bit asserts.
00 Error active
01 Error passive
1X Bus off

28 Reserved

29
BOFFINT

Bus off interrupt. This status bit is set when FlexCAN2 is in the bus off state. If CANx_CR[BOFFMSK] is
set, an interrupt is generated to the CPU. This bit is cleared by writing it to 1. Writing 0 has no effect.
0 No such occurrence
1 FlexCAN2 module is in ‘Bus Off’ state

30
ERRINT

Error interrupt. This status bit indicates that at least one of the error bits (bits 16-21) is set. If
CANx_CR[ERRMSK] is set, an interrupt is generated to the CPU. This bit is cleared by writing it to 1.
Writing 0 has no effect.
0 No such occurrence
1 Indicates setting of any error bit in the CANx_ESR

31 Reserved

Address: Base + 0x0024 Access: User R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R BUF
63M

BUF
62M

BUF
61M

BUF
60M

BUF
59M

BUF
58M

BUF
57M

BUF
56M

BUF
55M

BUF
54M

BUF
53M

BUF
52M

BUF
51M

BUF
50M

BUF
49M

BUF
48MW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R BUF
47M

BUF
46M

BUF
45M

BUF
44M

BUF
43M

BUF
42M

BUF
41M

BUF
40M

BUF
39M

BUF
38M

BUF
37M

BUF
36M

BUF
35M

BUF
34M

BUF
33M

BUF
32MW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-10. Interrupt Masks High Register (CANx_IMRH)

Table 21-13. CANx_IMRH Field Descriptions

Field Description

0–31
BUFnM

Message buffer n mask. Enables or disables the respective FlexCAN2 message buffer (MB63 to MB32)
Interrupt.
0 The corresponding buffer Interrupt is disabled
1 The corresponding buffer Interrupt is enabled
Note: Setting or clearing a bit in the IMRH register can assert or negate an interrupt request, respectively.

Table 21-12. CANx_ESR Field Descriptions (continued)

Field Description

FlexCAN2 Controller Area Network

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 21-23

21.3.3.9 Interrupt Masks Low Register (CANx_IMRL)

CANx_IMRL allows enabling or disabling any number of a range of 32 message buffer interrupts. It
contains one interrupt mask bit per buffer, enabling the CPU to determine which buffer generates an
interrupt after a successful transmission or reception (that is, when the corresponding IFRL bit is set).

21.3.3.10 Interrupt Flags High Register (CANx_IFRH)

CANx_IFRH defines the flags for 32 message buffer interrupts. It contains one interrupt flag bit per buffer.
Each successful transmission or reception sets the corresponding IFRH bit. If the corresponding IMRH bit
is set, an interrupt is generated. Write a 1 to the interrupt flag to clear its value to zero. Writing a 0 has no
effect.

Address: Base + 0x0028 Access: User R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R BUF
31M

BUF
30M

BUF
29M

BUF
28M

BUF
27M

BUF
26M

BUF
25M

BUF
24M

BUF
23M

BUF
22M

BUF
21M

BUF
20M

BUF
19M

BUF
18M

BUF
17M

BUF
16MW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R BUF
15M

BUF
14M

BUF
13M

BUF
12M

BUF
11M

BUF
10M

BUF
09M

BUF
08M

BUF
07M

BUF
06M

BUF
05M

BUF
04M

BUF
03M

BUF
02M

BUF
01M

BUF
00MW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-11. Interrupt Masks Low Register (CANx_IMRL)

Table 21-14. CANx_IMRL Field Descriptions

Field Description

0–31
BUFnM

Message buffer n mask. Enables or disables the respective FlexCAN2 message buffer (MB31 to MB0)
Interrupt.
0 The corresponding buffer Interrupt is disabled
1 The corresponding buffer Interrupt is enabled
Note: Setting or clearing a bit in the IMRL register can assert or negate an interrupt request, respectively.

Address: Base + 0x002C Access: User R/W1c

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R BUF
63I

BUF
62I

BUF
61I

BUF
60I

BUF
59I

BUF
58I

BUF
57I

BUF
56I

BUF
55I

BUF
54I

BUF
53I

BUF
52I

BUF
51I

BUF
50I

BUF
49I

BUF
48I

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R BUF
47I

BUF
46I

BUF
45I

BUF
44I

BUF
43I

BUF
42I

BUF
41I

BUF
40I

BUF
39I

BUF
38I

BUF
37I

BUF
36I

BUF
35I

BUF
34I

BUF
33I

BUF
32I

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-12. Interrupt Flags High Register (CANx_IFRH)

FlexCAN2 Controller Area Network

MPC5534 Microcontroller Reference Manual, Rev. 2

21-24 Freescale Semiconductor

21.3.3.11 Interrupt Flags Low Register (CANx_IFRL)

CANx_IFRL defines the flags for 32 message buffer interrupts. It contains one interrupt flag bit per buffer.
Each successful transmission or reception sets the corresponding IFRL bit. If the corresponding IMRL bit
is set, an interrupt is generated. Write a 1 to the interrupt flag to clear its value to zero. Writing 0 has no
effect.

Table 21-15. CANx_IFRH Field Descriptions

Field Description

0–31
BUFnI

Message buffer n interrupt. Each bit represents the respective FlexCAN2 message buffer (MB63–MB32)
interrupt. Write 1 to clear.
0 No such occurrence
1 The corresponding buffer has successfully completed transmission or reception.

Address: Base + 0x0030 Access: User R/W1c

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R BUF
31I

BUF
30I

BUF
29I

BUF
28I

BUF
27I

BUF
26I

BUF
25

BUF
24I

BUF
23I

BUF
22I

BUF
21I

BUF
20I

BUF
19I

BUF
18I

BUF
17I

BUF
16I

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R BUF
15I

BUF
14I

BUF
13I

BUF
12I

BUF
11I

BUF
10I

BUF
09I

BUF
08I

BUF
07I

BUF
06I

BUF
05I

BUF
04I

BUF
03I

BUF
02I

BUF
01I

BUF
00I

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-13. Interrupt Flags Low Register (CANx_IFRL)

Table 21-16. CANx_IFRL Field Descriptions

Field Description

0–31
BUFnI

Message buffer n interrupt. Each bit represents the respective FlexCAN2 message buffer (MB31 to MB0)
interrupt. Write 1 to clear.
0 No such occurrence
1 The corresponding buffer has successfully completed transmission or reception.

FlexCAN2 Controller Area Network

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 21-25

21.4 Functional Description

21.4.1 Overview

The FlexCAN2 module is a CAN protocol engine with a very flexible message buffer configuration
scheme. The module can have up to 64 message buffers, any of which can be assigned as either a TX buffer
or an RX buffer. Each message buffer has an assigned interrupt flag to indicate successful completion of
transmission or reception.

21.4.2 Transmit Process

The CPU prepares a message buffer for transmission by executing the following steps:

1. Write the CODE field of the control and status word to keep the TX MB inactive (code = 1000).

2. Write the ID word.

3. Write the DATA bytes.

4. Write the LENGTH, SRR, IDE, RTR, and CODE fields of the control and status word to activate
the TX MB.

The first and last steps are mandatory.

21.4.2.1 Arbitration Process

This process selects the next MB to transmit. All MBs programmed as transmit buffers are scanned to find
the lowest ID1 or the lowest MB number, depending on the LBUF bit in the CANx_CR. The selected MB
is transferred to an internal serial message buffer (SMB), which is not software accessible, and then
transmitted. The arbitration process is triggered in the following events:

• During the CRC field of the CAN frame

• During the error delimiter field of the CAN frame

• During Intermission, if the winner MB defined in a previous arbitration was deactivated, or if there
was no MB to transmit, but the CPU wrote to the C/S word of any MB after the previous arbitration
finished.

• When MBM is in idle or bus off state and the CPU writes to the C/S word of any MB

• Upon leaving freeze mode

When arbitration is complete, and an MB is selected to transmit, the frame is first transferred to the SMB.
This is called ‘move out.’ After move out, the CAN transmit machine starts to transmit the frame according
to the CAN protocol rules. FlexCAN2 transmits up to eight data bytes, even if the value of the data length
code (DLC) is greater.

At the end of a successful transmission, the value of the free running timer at the beginning of the identifier
field is written into the TIME STAMP field in the MB, the CODE field in the control and status word of
the MB is updated, a status flag is set in CANx_IFRL or CANx_IFRH, and an MB interrupt is generated
if allowed by the corresponding interrupt mask register bit.

1. If LBUF is negated, arbitration uses the ID, RTR and IDE bits inside the ID in the same positions they are transmitted in the
CAN frame.

FlexCAN2 Controller Area Network

MPC5534 Microcontroller Reference Manual, Rev. 2

21-26 Freescale Semiconductor

21.4.3 Receive Process

The CPU prepares a message buffer for frame reception by executing the following steps:

1. Write the CODE field of the control and status word to keep the RX MB as INACTIVE
(CODE = 0000).

2. Write the ID word.

3. Write the CODE field of the control and status word to mark the MB as EMPTY.

The first and last steps are mandatory.

21.4.3.1 Matching Process

The matching process compares the IDs of all active RX message buffers to newly received frames, so
that, if a match occurs, a newly received frame is transferred (moved in) to the first (that is, lowest entry)
matching MB when the reception queue feature is disabled. Only MBs marked as EMPTY, FULL, or
OVERRUN participate in the internal matching process at the CRC frame field. The internal matching
process takes place every time the receiver receives an error free frame.

The value of the free running timer is written into the TIME STAMP field in the MB. The ID field, the
DATA field (8 bytes at most), and the LENGTH field are stored, the CODE field is updated, and a status
flag is set in CANx_IFRL or CANx_IFRH, and an interrupt is generated if the corresponding interrupt
mask is enabled in CANx_IMRL/H.

The CPU must read the following fields in an RX frame from its MB:

• Control and status word (mandatory, activates internal lock for this buffer)

• ID (optional, needed only if a mask was used)

• DATA field words

• Free running timer (optional, releases internal lock)

Reading the free running timer is not mandatory. If not executed, the MB remains locked, unless the CPU
starts reading another MB. Only a single MB is locked at a time. The only mandatory CPU read operation
is of the control and status word, to assure data coherency. If the BUSY bit is set in the CODE field, then
the CPU must defer the access to the MB until this bit is negated.

The CPU must synchronize to frame reception by the status flag bit for the specific MB in one of the
CANx_IFRH and CANx_IFRL registers and not by the control and status word code field of that MB.
Polling the CODE field does not work because after a frame was received and the CPU services the MB
(by reading the C/S word followed by unlocking the MB), the CODE field does not return to EMPTY. It
remains FULL, as explained in Table 21-5. If the CPU tries to work around this behavior by writing to the
C/S word to force an EMPTY code after reading the MB, the MB is deactivated from any current matching
process. As a result, a newly received frame matching the ID of that MB can be lost. Never poll by directly
reading the C/S word of the MBs. Instead, read the CANx_IFRH and CANx_IFRL registers.

The received ID field is always stored in the matching MB, thus the contents of the ID field in a MB can
change if the match was due to mask.

FlexCAN2 Controller Area Network

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 21-27

21.4.3.2 Reception Queue

A queue of received messages can be implemented that allows the CPU more time for servicing MBs. By
programming more than one MB with the same ID, received messages are queued into the MBs. Matching
to a range of IDs is possible by using ID acceptance masks that mask individual MBs. During the matching
algorithm, if a mask bit is asserted, then the corresponding ID bit is compared. If the mask bit is negated,
the corresponding ID bit is a don’t care.

Suppose, for example, that the second and fifth MBs in an array have the same ID, and FlexCAN starts
receiving messages with that ID. When FlexCAN receives the first message, the matching algorithm
matches it to MB number 2. The code of this MB is EMPTY, so the message is stored there. When the
second message arrives, the matching algorithm finds MB number 2 again, but it is not free to receive1.
Therefore, the matching process continues, finds MB number 5, and stores the message there. If yet
another message with the same ID arrives, the matching algorithm determines that no matching MBs are
free to receive the data, and overwrites the last matched MB (number 5). When this occurs, the code field
of the MB is set to OVERRUN.

A reception queue is built that orders the messages according to the value in the time stamp field that is
read by the CPU. This functionality is set by asserting the CANx_MCR[MBFEN] bit. The RXIMRn
registers are not initialized out of reset, since they reside in RAM and can only be programmed if the
MBFEN bit is asserted while the module is in freeze mode.

FlexCAN also supports an alternate masking scheme with only three mask registers (CANx_RXGMASK,
CANx_RX14MASK, and CANx_RX15MASK) for backwards compatibility. This alternate masking
scheme is enabled when CANx_MCR[MBFEN] is negated.

See Section 21.3.3.4, “RX Mask Registers.”

21.4.3.3 Self Received Frames

FlexCAN2 receives frames transmitted by itself if there exists an RX matching MB, but only if an ACK
is generated by an external node or if loop-back mode is enabled. Note also that FlexCAN does receive
frames transmitted by itself if there exists an RX matching MB, provided the MCR[SRXDIS] bit is not
asserted. If SRXDIS is asserted, FlexCAN does not store frames transmitted by itself in any MB, even if
it contains a matching MB, and no interrupt flag or interrupt signal is generated due to the frame reception.

21.4.4 Message Buffer Handling

To maintain data coherency and FlexCAN2 proper operation, the CPU must obey the rules described in
Section 21.4.2, “Transmit Process,” and Section 21.4.3, “Receive Process.” Any form of CPU accessing a
MB structure within FlexCAN2 other than those specified can cause FlexCAN2 to behave in an
unpredictable way.

Deactivation of a message buffer is a CPU action that causes that MB to be excluded from FlexCAN2
transmit or receive processes during the current match/arbitration round. Any CPU write access to a
control and status word of the MB structure deactivates that MB, excluding it from the current RX/TX

1. If, however, the CPU has read the MB2 data and released it before the next matching process at the CRC frame, then, even if
the MB2 RX code is FULL, the MB2 is free to receive and the message is stored in MB2 rather than in MB5.

FlexCAN2 Controller Area Network

MPC5534 Microcontroller Reference Manual, Rev. 2

21-28 Freescale Semiconductor

process. However, deactivation is not permanent. The MB that was deactivated during the current
match/arbitration pass is available to transmit or receive in the next pass.

The purpose of deactivation is data coherency. The match/arbitration process scans the MBs to decide
which MB to transmit or receive. If the CPU updates the MB in the middle of a match or arbitration
process, the data coherency in the MB can become corrupt, therefore that MB is deactivated.

Match and arbitration are one-pass processes. After scanning all MBs, a winner is determined. If MBs are
changed after they are scanned, no re-evaluation is done to determine a new match/winner; and a frame
can be lost if the matched MB has been deactivated. If two RX MBs have a matching ID to a received
frame, then it is not guaranteed reception if the matching MB is deactivated after FlexCAN2 has scanned
the second.

21.4.4.1 Notes on TX Message Buffer Deactivation

There is a point in time until which the deactivation of a TX MB causes it not to be transmitted (end of
move out). After this point, it is transmitted but no interrupt is issued and the CODE field is not updated.

If a TX MB containing the lowest ID (or lowest buffer if LBUF is set) is deactivated after FlexCAN2 has
scanned it while in arbitration process, then FlexCAN2 can transmit a MB with an ID that is not the lowest
at that time.

21.4.4.2 Notes on RX Message Buffer Deactivation

If the deactivation occurs during move in, the move operation is aborted and no interrupt is issued, but the
MB contains mixed data from two different frames.

In case the CPU writes data into RX MB data words while it is being moved in, the move operation is
aborted and no interrupt is issued, but the control/status word can change to reflect FULL or OVRN. This
action must be avoided.

21.4.4.3 Data Coherency Mechanisms

The FlexCAN2 module has a mechanism to assure data coherency in both receive and transmit processes.
The mechanism includes a lock status for MBs and two internal storage areas, called serial message buffers
(SMB), to buffer frame transfers within FlexCAN. The details of the mechanism are the following:

• CPU reads the control and status word of an MB, which triggers a lock for that MB; therefore a
new RX frame that matches the MB cannot be written to the MB.

• To release a locked MB, the CPU must either lock another MB (by reading its control and status
word), or globally release any locked MB (by reading the free-running timer).

• If the CPU reads a RX MB while it is being transferred to (from) SMB, then the BUSY bit is set
in the CODE field of the control and status word. To ensure data coherency, the CPU must wait
until this BUSY bit is negated before further reading from that MB. In this case, the MB is not
locked.

• If the CPU deactivates a locked RX MB, then its lock status is negated, but no data is transferred
to the MB.

FlexCAN2 Controller Area Network

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 21-29

The following bullets apply only if:

• reception queue is disabled,

• no other matching buffers in the reception queue,

• or for the last available queue element when all other MBs are not free to receive (the last queue
element is overwritten in this manner for a single MB in non-queue mode).

If the reception queue is enabled, the state machine searches for the next matching message buffer.

• If while an MB is locked and an RX frame with a matching ID is received, the RX frame cannot
be stored in the MB and remains in the SMB. The CANx_ESR does not indicate the RX frame
remained in the SMB.

• If while a MB is locked when two or more RX frames with matching ID are received, the last RX
frame remains in the SMB, while all preceding RX frames are lost. The CANx_ESR does not
indicate that the preceding frames are discarded.

• If a locked MB is released and a matching frame exists in the SMB, the frame is transferred to the
matching MB.

21.4.5 CAN Protocol Related Features

21.4.5.1 Remote Frames

A remote frame is a special kind of frame. You can program an MB to be a request remote frame by writing
the MB as transmit with the RTR bit set to 1. After the remote request frame is transmitted successfully,
the MB becomes a receive message buffer, with the same ID as before.

When a remote request frame is received by FlexCAN, its ID is compared to the IDs of the transmit
message buffers with the CODE field ‘1010’. If there is a matching ID, then the MB frame is transmitted.
If the matching MB has the RTR bit set, then FlexCAN2 transmits a remote frame as a response.

A received remote request frame is not stored in a receive buffer. It is only used to trigger a transmission
of a frame in response. The mask registers are not used in remote frame matching, and all ID bits (except
RTR) of the incoming received frame must match.

In the case that a remote request frame was received and matched a MB, this message buffer immediately
enters the internal arbitration process, but is considered as normal TX MB, with no higher priority. The
data length of this frame is independent of the DLC field in the remote frame that initiated its transmission.

21.4.5.2 Overload Frames

FlexCAN2 transmits overload frames if the dominant bit satisfies any of the following conditions:

• First or second bit of intermission

• Seventh (last) bit of the end-of-frame field in RX frames

• Eighth bit (last) of error frame delimiter or overload frame delimiter

FlexCAN2 Controller Area Network

MPC5534 Microcontroller Reference Manual, Rev. 2

21-30 Freescale Semiconductor

21.4.5.3 Time Stamp

The value of the free running timer is sampled at the beginning of the identifier field on the CAN bus, and
is stored at the end of ‘move in’ in the TIME STAMP field, providing network activity with respect to time.

The free running timer can be reset upon a specific frame reception, enabling network time
synchronization. See TSYN description in Section 21.3.3.2, “Control Register (CANx_CR).”

21.4.5.4 Protocol Timing

The clock source to the CAN protocol interface (CPI) can be either the system clock or a direct feed from
the oscillator pin EXTAL. The clock source is selected by the CLK_SRC bit in the CAN_CR. The clock
is fed to the prescaler to generate the serial clock (SCK).

The FlexCAN2 module supports a variety of means to setup bit timing parameters that are required by the
CAN protocol. The CANx_CR has various fields used to control bit timing parameters: PRESDIV,
PROPSEG, PSEG1, PSEG2 and RJW. See Section 21.3.3.2, “Control Register (CANx_CR).”

The PRESDIV field controls a prescaler that generates the serial clock (SCK), whose period defines the
‘time quantum’ used to compose the CAN waveform. A time quantum is the atomic unit of time handled
by FlexCAN.

A bit time is subdivided into three segments1 (see Figure 21-14 and Table 21-17):

• SYNCSEG: This segment has a fixed length of one time quantum. Signal edges are expected to
happen within this section.

• Time segment 1: This segment includes the propagation segment and the phase segment 1 of the
CAN standard. It can be programmed by setting the PROPSEG and the PSEG1 fields of the CTRL
register so that their sum (plus 2) is in the range of 4 to 16 time quanta.

• Time segment 2: This segment represents the phase segment 2 of the CAN standard. It can be
programmed by setting the PSEG2 field of the CTRL register (plus 1) to be 2 to 8 time quanta long.

1. For further explanation of the underlying concepts see ISO/DIS 11519–1, Section 10.3. See also the Bosch CAN 2.0A/B
protocol specification dated September 1991 for bit timing.

fTq

fCANCLK
Prescaler Value
--=

Bit rate
fTq

Number of Time Quanta()
---=

FlexCAN2 Controller Area Network

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 21-31

Figure 21-14. Segments within the Bit Time

Table 21-17 describes the time segment syntax:

Table 21-18 gives an overview of the CAN compliant segment settings and the related parameter values.

NOTE
Ensure the bit time settings are in compliance with the CAN standard.

Table 21-17. Time Segment Syntax

Syntax Description

SYNCSEG System expects transitions to occur on the bus during this period.

Transmit point A node in transmit mode transfers a new value to the CAN bus at this point.

Sample point A node in receive mode samples the bus at this point. If the three samples per
bit option is selected, then this point marks the position of the third sample.

Table 21-18. CAN Standard Compliant Bit Time Segment Settings

Time Segment 1 Time Segment 2
 Resynchronization

Jump Width

5 .. 10 2 1 .. 2

4 .. 11 3 1 .. 3

5 .. 12 4 1 .. 4

6 .. 13 5 1 .. 4

7 .. 14 6 1 .. 4

8 .. 15 7 1 .. 4

9 .. 16 8 1 .. 4

SYNCSEG Time segment 1 Time segment 2

1 4 ... 16 2 ... 8

8 ... 25 time quanta = 1 bit time

NRZ signal

Sample point (single or triple sampling)

 (PROPSEG + PSEG1 + 2) (PSEG2 + 1)

Transmit Point

FlexCAN2 Controller Area Network

MPC5534 Microcontroller Reference Manual, Rev. 2

21-32 Freescale Semiconductor

21.4.5.5 Arbitration and Matching Timing

During normal transmission or reception of frames, the arbitration, match, move in and move out processes
are executed during certain time windows inside the CAN frame, as shown in Figure 21-15. When doing
matching and arbitration, FlexCAN2 needs to scan the whole message buffer memory during the available
time slot. To have sufficient time to do that, the following restrictions must be observed:

• A valid CAN bit timing must be programmed, as indicated in Figure 21-15.

• The system clock frequency cannot be smaller than the oscillator clock frequency, i.e. the PLL
cannot be programmed to divide down the oscillator clock.

• There must be a minimum ratio of 16 between the system clock frequency and the CAN bit rate.

Figure 21-15. Arbitration, Match and Move Time Windows

21.4.6 Modes of Operation Details

21.4.6.1 Freeze Mode

This mode is entered by asserting the HALT bit in the CANx_MCR or when the MCU is put into debug
mode. In both cases it is also necessary that the FRZ bit is asserted in the CANx_MCR. When freeze mode
is requested during transmission or reception, FlexCAN2 does the following:

• Waits to be in either intermission, passive error, bus off or idle state

• Waits for all internal activities like move in or move out to finish

• Ignores the RX input pin and drives the TX pin as recessive

• Stops the prescaler, thus halting all CAN protocol activities

• Grants write access to the CANx_ECR, which is read-only in other modes

• Sets the NOTRDY and FRZACK bits in CANx_MCR

After requesting freeze mode, you must wait for the FRZACK bit to assert in CANx_MCR before
executing any other action, otherwise FlexCAN2 can operate in an unpredictable way. In freeze mode, all
memory mapped registers are accessible; CANx_RXIMRn registers can be programmed only if the
MBFEN bit is asserted.

Exit freeze mode using one of the following methods:

• CPU negates the FRZ bit in the CANx_MCR

• The MCU exits debug mode and/or the HALT bit negates.

CRC (15) EOF (7) Interim

Start move

Matching and arbitration window (24 bits)
Move

(bit 6)

window

FlexCAN2 Controller Area Network

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 21-33

After exiting freeze mode, FlexCAN2 tries to re-synchronize to the CAN bus by waiting for 11 consecutive
recessive bits.

21.4.6.2 Module Disabled Mode

This low power mode is entered when the CANx_MCR[MDIS] bit is asserted. If the module is disabled
during freeze mode, it shuts down the clocks to the CPI and MBM sub-modules, sets the
CANx_MCR[MDISACK] bit and negates the CANx_MCR[FRZACK] bit.

If the module is disabled during transmission or reception, FlexCAN2 completes the following sequence:

1. Waits to enter the idle or bus off state, or waits for the third bit of the intermission and checks to
determine if the bit is recessive.

2. Waits for all internal activities, like move-in or move-out, to finish.

3. Ignores the RX input pin and drives the TX pin as recessive.

4. Shuts down the clocks to the CPI and MBM sub-modules.

5. Sets the NOTRDY and MDISACK bits in CANx_MCR.

The bus interface unit continues to operate by enabling the CPU to access memory mapped registers except
the free running timer, CANx_ECR, and the message buffers, which cannot be accessed when the module
is disabled. To exit this mode, negate the CANx_MCR[MDIS] bit, which resumes the clocks and negates
the CANx_MCR[MDISACK] bit.

21.4.7 Interrupts

The module can generate interrupts from 20 interrupt sources (16 interrupts due to message buffers, one
interrupt due to an error condition, two interrupts for the OR'd MB16–MB31 and MB32–63, and one
interrupt for one of the following: a bus off condition, a transmit warning, or a receive warning).

Each of the 64 message buffers can be an interrupt source, if its corresponding CANx_IMRH or
CANx_IMRL bit is set. There is no distinction between TX and RX interrupts for a particular buffer, under
the assumption that the buffer is initialized for either transmission or reception. Each of the buffers has
assigned a flag bit in the CANx_IFRH or CANx_IFRL registers. The bit is set when the corresponding
buffer completes a successful transmission/reception and is cleared when the CPU writes it to 1.

A combined interrupt for each of two MB groups, MB16–MB31 and MB32–MB63, is also generated by
an OR of all the interrupt sources from the associated MBs. This interrupt gets generated when any of the
MBs generates an interrupt. In this case the CPU must read the CANx_IFRH and CANx_IFRL registers
to determine which MB caused the interrupt.

The other two interrupt sources (bus off/transmit warning/receive warning and error) generate interrupts
like the MB interrupt sources, and can be read from CANx_ESR. The bus off/transmit warning/receive
warning and error interrupt mask bits are located in the CANx_CR.

FlexCAN2 Controller Area Network

MPC5534 Microcontroller Reference Manual, Rev. 2

21-34 Freescale Semiconductor

21.4.8 Bus Interface

The CPU access to FlexCAN2 registers are subject to the following rules:

• Read and write access to unimplemented or reserved address space also results in access error. Any
access to unimplemented MB locations results in access error.

• For a FlexCAN2 configuration that uses less than the total number of MBs and MAXMB is set
accordingly, the remaining MB and RX mask register memory can be used as general-purpose
RAM space. Byte, word and long word accesses are allowed to the unused MB space.

NOTE
Unused MB space must not be used as general purpose RAM while
FlexCAN is transmitting and receiving CAN frames.

21.5 Initialization and Application Information
This section provides instructions for initializing the FlexCAN2 module.

21.5.1 FlexCAN2 Initialization Sequence

The FlexCAN2 module can be reset in three ways:

• MCU-level hard reset, which resets all memory mapped registers asynchronously

• MCU-level soft reset, which resets some of the memory mapped registers synchronously
(see Table 21-2 for the registers affected by a soft reset)

• SOFTRST bit in CANx_MCR, which has the same effect as the MCU level soft reset

A soft reset is synchronous and must follow an internal request/acknowledge procedure across clock
domains. Therefore, it can take some time to fully propagate its effects. The SOFTRST bit remains
asserted while a soft reset is pending, so software can poll this bit to determine when the reset completes.

After the module is enabled (CANx_MCR[MDIS] bit negated), put FlexCAN2 in freeze mode before
beginning the configuration. In freeze mode, FlexCAN2 is un-synchronized to the CAN bus, the HALT
and FRZ bits in CANx_MCR are set, the internal state machines are disabled and the FRZACK and
NOTRDY bits in the CANx_MCR are set. The CNTX pin is in recessive state and FlexCAN2 does not
initiate frame transmission nor receives any frames from the CAN bus. The message buffer contents are
not affected by reset, therefore are not automatically initialized.

For any configuration change or initialization, FlexCAN2 must be set to freeze mode
(see Section 21.4.6.1, “Freeze Mode). A basic initialization sequence for the FlexCAN2 module is:

1. Initialize CANx_CR.

— Determine bit timing parameters: PROPSEG, PSEG1, PSEG2, RJW.

— Determine the bit rate by programming the PRESDIV field.

— Determine internal arbitration mode (LBUF bit).

2. Initialize message buffers.

— The control and status word of all message buffers can be written as active or inactive.

— Initialize other entries in each message buffer as required.

FlexCAN2 Controller Area Network

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 21-35

3. Initialize CANx_MCR bits MBFEN, SRXDIS, and WRNEN.

The initialization of FlexCAN registers for either global or individual acceptance masking depends
on the configuration of MBFEN:

— If MBFEN is negated, initialize CANx_RXGMASK, CANx_RX14MASK, and
CANx_RX15MASK registers for acceptance mask.

— If MBFEN is asserted, initialize CANx_RXIMR[0-63] for individual acceptance masking.

4. Set required mask bits in CANx_IMRH and CANx_IMRL registers (for all MBs interrupts), and
in CANx_CR (for bus off and error interrupts).

5. Negate the CANx_MCR[HALT] bit.

Starting with this last event, FlexCAN2 attempts to synchronize with the CAN bus.

21.5.2 FlexCAN2 Addressing and RAM Size

There are 1024 bytes of RAM for a maximum of 64 message buffers. You can program the maximum
number of message buffers (MBs) using the MAXMB field in the CANx_MCR. For a 1024-byte RAM
configuration, MAXMB can be any number from 0–63.

FlexCAN2 Controller Area Network

MPC5534 Microcontroller Reference Manual, Rev. 2

21-36 Freescale Semiconductor

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 22-1

Chapter 22
Voltage Regulator Controller (VRC) and POR Module

22.1 Introduction
The voltage regulator controller (VRC) and power-on reset (POR) module contains circuitry to control
regulation of the external 1.5 V supply used by the device. It also contains POR circuits for the 1.5 V
supply, VDDSYN and the VDDE supply that powers the RESET pad.

22.1.1 Block Diagram

The block diagram of the VRC and POR module is shown in Figure 22-1. The diagram represents the
various submodules as implemented on the device.

Figure 22-1. Voltage Regulator Controller and POR Blocks

3.3 V
POR

POR

RESET pin
supply

1.5 V
POR

Voltage
regulator
controller

VDDSYN

VDDEH6

VRCSNS
1

VRCCTL

VRC33

VRCVSS

POR to
other blocks
within MCU

Functional
OR

Functional
AND

1 This is not a package pin

Voltage Regulator Controller (VRC) and POR Module

MPC5534 Microcontroller Reference Manual, Rev. 2

22-2 Freescale Semiconductor

22.2 External Signal Description
Table 22-1 describes the VRC signals.

22.3 Memory Map and Register Definition
The VRC and POR module have no memory-mapped registers.

22.4 Functional Description
The VRC portion of the module contains a voltage regulator controller, and the POR portion contains
circuits to monitor the voltage levels of the 1.5 V and VDDSYN power supplies, as well as circuits to
monitor the power supply for the RESET pad. The PORs indicate whether each supply monitored is above
the specified voltage threshold. The PORs ensure that the device is correctly powered up during a
power-on reset. POR holds the device in reset when any of the monitored supplies fall below the specified
minimum voltage.

22.4.1 Voltage Regulator Controller

The VRC circuit has a control current for use with an external NPN transistor and an external resistor to
power the 1.5 V VDD supply. The control current is output on the VRCCTL pin. The voltage regulator
controller slowly turns on the pass transistor while the 3.3 V POR is asserted. The pass transistor is
completely turned on by the time the 3.3 V POR negates.

Table 22-1. Voltage Regulator Controller and POR Block External Signals

Signal Type Signal Level Description

VRC33 Supply pin 3.3 V Regulator supply input. 3.3 V VRC supply input.

VDDSYN Supply pin 3.3 V FMPLL supply input. This is the 3.3 V supply input for the frequency
modulated phase lock loop (FMPLL) module.

VDDEH6 Supply pin 3.3–5.0 V RESET pin supply input. Power supply input for padring segment that
contains the RESET pad.

VRCVSS Supply pin 0.0 V Regulator supply ground. VRCVSS is the 3.3 V ground reference for the
on-chip 1.5 V regulator control circuit.

VRCSNS 1.5 V sense 1.5 V 1.5 V sense used by VRC. Pad connected to VDD plane in package—not a
package ball. This is the 1.5 V sense from the external 1.5 V supply output
of NPN transistor. This input is monitored by the VRC to determine the value
for VRCCTL. VRCSNS is a pad on the die that is connected to a VDD plane
inside the package. It is not a package ball.

VRCCTL Current output — Regulator control output. The VRCCTL sources base current to the external
bypass transistor. The VRCCTL signal is used with internal and external
transistors to provide VDD, which is the MCU 1.5 V power supply.

VDD Supply pin 1.5 V Internal 1.5 V power supply input.

Voltage Regulator Controller (VRC) and POR Module

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 22-3

The voltage regulator controller keeps the 1.5 V supply in regulation as long as VRC33 is in regulation. If
more protection is desired, you can also supply an external 1.5 V low voltage reset circuit.

• If the on-chip voltage regulator controller is not used, an external 1.5 V supply is required. To avoid
a power sequencing requirement when an external power supply is used, external 3.3 V must power
VRC33 while the VRCCTL pad is unconnected. In this case, the internal 1.5 V POR remains enabled.

• If VRC33 is not powered, the device is subject to the power sequencing requirements for the 1.5 V
and 3.3 V, or RESET supplies. This ensures that the 1.5 V supply is high enough for internal logic
to operate correctly during power-up.

See Section 22.5.3, “Power Sequencing Requirements” for more information.

22.4.2 POR Circuits

The individual POR circuits asserts whenever the supply being monitored drops below the specified
threshold. The entire device is in power-on reset if any of these supplies are below the values specified in
the device data sheet.

Power-on reset asserts as soon as possible after the voltage level of the POR supplies begin to rise. Each
POR circuit negates before its supply rises to its specified range. Power-on reset remains asserted until all
POR supplies rise above the maximum POR threshold. Each POR asserts after its supply drops below its
specified range. The behavior for each POR during power sequencing is shown in Figure 22-2.

Before the 3.3 V POR circuit asserts when ramping up, or after it negates when ramping down, the device
can exit POR but remain in system reset. In this case, MDO[0] is driving high and no clocks are toggling.

If the 3.3 V POR circuit is asserted, the device behaves as if in POR even if the 1.5 V and RESET power
POR circuits have not yet asserted when ramping up or have negated when ramping down.

NOTE
The PORs for each supply are not intended to indicate that the voltage has
dropped below the specified voltage range. You must monitor the supplies
externally and assert RESET to achieve precise monitoring.

Voltage Regulator Controller (VRC) and POR Module

MPC5534 Microcontroller Reference Manual, Rev. 2

22-4 Freescale Semiconductor

Figure 22-2. Regions POR is Asserted

22.4.2.1 1.5 V POR Circuit

The 1.5 V POR circuit monitors the voltage on the VRCSNS pad. The 1.5 V POR functions if the VRC33
pad is powered. If you do not power VRC33 to the specified voltage, the 1.5 V POR is disabled and you
must follow the specified power sequence.

22.4.2.2 3.3 V POR Circuit

The 3.3 V POR circuit is used to ensure that VDDSYN is high enough that the FMPLL begins to operate
correctly.

22.4.2.3 RESET Power POR Circuit

The RESET power POR circuit monitors the supply that powers the RESET pin, and ensures that the
voltage supply to the RESET pin is high enough to reliably propagate the state of the input. The supply
monitored by this POR cannot exceed 5.5 V.

POR negates
(Ramp up)

POR indeterminate POR asserts
(Ramp down)

POR indeterminate

POR asserts

Specified power supply range

Power supply

Voltage Regulator Controller (VRC) and POR Module

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 22-5

22.5 Initialization and Application Information

22.5.1 Voltage Regulator Example

Figure 22-3 shows how to connect the VRC to the device.

Figure 22-3. Voltage Regulator Controller Hookup

NOTE
Do not use Figure 22-3 as a reference for board design. See Application
Note AN3254 for resistor requirements.

22.5.2 Compatible Power Transistors

The following NPN transistors are compatible with the on-chip VRC:

• ON SemiconductorTM NJD2873

• Phillips SemiconductorTM BCP68

See the device data sheet for information on the operating characteristics.

22.5.3 Power Sequencing Requirements

This section describes the following power sequencing requirements for the device:

• If an external 1.5 V power supply is used and VRC33 is tied to ground, power sequencing is required
between the 1.5 V power supply, and VDDSYN and the RESET power supplies. To avoid this power
sequencing requirement, power up VRC33 within the specified operating range, even if not using
the on-chip voltage regulator controller.
See Section 22.5.3.1, “Power-Up Sequence If VRC33 Grounded” and Section 22.5.3.2,
“Power-Down Sequence If VRC33 Grounded.”

• The VDD33 voltage must be high enough before POR negates to ensure the values on certain pins
are treated as 1s when POR negates.
See Section 22.5.3.3, “Input Value of Pins During POR Dependent on VDD33.”

MCU

VRC33

VRCCTL

VDD

VRCVSS

Note AN3254 for
resistor requirements.

See Application

11 This is the digital Vss

Voltage Regulator Controller (VRC) and POR Module

MPC5534 Microcontroller Reference Manual, Rev. 2

22-6 Freescale Semiconductor

• When powering up, power sequencing is not required between VRC33 and VDDSYN. However, for
the VRC staged turn-on to operate within specification, VRC33 must not lead VDDSYN by more than
600 mV, nor lag by more than 100 mV. Higher spikes in the emitter current of the pass transistor
occur if VRC33 leads or lags VDDSYN by exceeding these tolerances. The value of the current for
the higher spikes depends on the board power supply circuitry and the amount of board-level
capacitance.

• When powering down, delta tolerances between VRC33 and VDDSYN are not required because the
bypass capacitors internal and external to the device are already charged.

• When not powering up or down, delta tolerances between VRC33 and VDDSYN are not required for
the VRC to operate within specification.

22.5.3.1 Power-Up Sequence If VRC33 Grounded

The 1.5 V VDD supply must rise to 1.35 V before the 3.3 V VDDSYN and the RESET supplies rise above
2.0 V. This ensures that digital logic in the PLL for the 1.5 V supply does not begin to operate below the
lower limit of the 1.35 V operation range. Because the internal 1.5 V POR is disabled, the internal 3.3 V
POR or the RESET power POR must hold the device in reset. Since they can negate as low as 2.0 V, VDD
must be within the specification range before the 3.3 V POR and the RESET power POR negate.

Figure 22-4. Power-Up Sequence, VRC33 Grounded

22.5.3.2 Power-Down Sequence If VRC33 Grounded

The only requirement for the power-down sequence when VRC33 is grounded is that if VDD decreases to
less than its operating range, VDDSYN or the RESET power must decrease to less than 2.0 V before the
VDD power is allowed to increase to its operating range. This ensures that the digital 1.5 V logic, which is
reset by the ORed POR only that can cause the 1.5 V supply to decrease below its specification, is reset
correctly.

22.5.3.3 Input Value of Pins During POR Dependent on VDD33

To avoid selecting the bypass clock because PLLCFG[0:1] and RSTCFG were not treated as 1s when POR
negates, VDD33 must not lag VDDSYN and the RESET pin power when powering the device by more than
the VDD33_LAG specification. VDD33 can independently lag VDDSYN or RESET by more than the
VDD33_LAG specification. The VDD33_LAG specification applies regardless of whether VRC33 is powered.
The VDD33_LAG specification only applies during power up. VDD33 has no lead or lag requirements when
powering down. See the device data sheet for the VDD33_LAG specification.

1.35V

2.0V

VDDSYN and RESET power

VDD

NOTE: VDD must reach 1.35 V before VDDSYN

and RESET reach 2.0 V.

Voltage Regulator Controller (VRC) and POR Module

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 22-7

22.5.3.4 Pin Values after POR Negates

Depending on the final PLL mode required, the PLLCFG[0:1] and RSTCFG pins must have the values
shown in Table 22-2 after POR negates. See application note AN2613, “MPC5554 Minimum Board
Configuration” for one example of the external configuration circuit.

Table 22-3 lists external signals used by the FMPLL during normal operation.

NOTE
After POR negates, RSTCFG and PLLCFG[0:1] can change to their final
value, but do not switch through the 0, 0, 0 state on the pins.

Table 22-2. Clock Mode Selection

Clock Mode
Package Pins

Synthesizer Status Register
(FMPLL_SYNSR)1 Bits

1 See Section 11.3.1.2, “Synthesizer Status Register (FMPLL_SYNSR)” for more information.

RSTCFG2

2 Because the 208 package has no RSTCFG pin, the signal is internally asserted (driven to 0), therefore
the PLLCFG pins are always used to configure the FMPLL. After the device resets, the PLLCFG values
remain the same as before the reset. The device does not reset to the crystal reference mode. Bypass
mode is not enabled in the 208 package.

PLLCFG[0] PLLCFG[1] MODE PLLSEL PLLREF

Crystal reference
(324 package only)

1 PLLCFG pins ignored.
1 1 1

0 1 0

External reference 0 0 1 1 1 0

Bypass 0 0 0 0 0 0

Dual-controller 0 1 1 1 0 0

Table 22-3. PLL External Pin Interface

Name I/O Type Function Pull

RSTCFG_GPIO[210]1

1 The 208 package does not have a RSTCFG pin, and the signal is internally asserted (driven to 0).

I/O Determines the configuration to use during reset. GPIO used
otherwise.

Up

PLLCFG[0]_GPIO[208] I/O Configures the mode during reset. GPIO used otherwise. Up

PLLCFG[1]_GPIO[209] I/O Configures the mode during reset. GPIO used otherwise. Up

XTAL Output Output drive for external crystal —

EXTAL_EXTCLK Input Crystal external clock input —

VDDSYN Power Analog power supply (3.3 V ±10%) —

VSSSYN Ground Analog ground —

Voltage Regulator Controller (VRC) and POR Module

MPC5534 Microcontroller Reference Manual, Rev. 2

22-8 Freescale Semiconductor

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 23-1

Chapter 23
IEEE 1149.1 Test Access Port Controller (JTAGC)

23.1 Introduction
The JTAG port of the device consists of four inputs and one output. These pins include JTAG compliance
select (JCOMP), test data input (TDI), test data output (TDO), test mode select (TMS), and test clock input
(TCK). TDI, TDO, TMS, and TCK are compliant with the IEEE 1149.1-2001 standard and are shared with
the NDI through the test access port (TAP) interface.

23.1.1 Block Diagram

Figure 23-1 is a block diagram of the JTAG Controller (JTAGC).

Figure 23-1. JTAG Controller Block Diagram

TCK

TMS

TDI

Test access port (TAP)

TDO

32-bit device identification register

Boundary scan register

.

.

controller

1-bit bypass register.

5-bit TAP instruction decoder

5-bit TAP instruction register

.

.

.

JCOMP

Power-on
reset

IEEE 1149.1 Test Access Port Controller (JTAGC)

MPC5534 Microcontroller Reference Manual, Rev. 2

23-2 Freescale Semiconductor

23.1.2 Overview

The JTAGC provides the means to test chip functionality and connectivity while remaining transparent to
system logic when not in test mode. Testing is performed via a boundary scan technique, as defined in the
IEEE 1149.1-2001 standard. In addition, instructions can be executed that allow the Test Access Port
(TAP) to be shared with other modules on the MCU. All data input to and output from the JTAGC is
communicated in serial format.

23.1.3 Features

The JTAGC is compliant with the IEEE 1149.1-2001 standard, and supports the following features:

• IEEE 1149.1-2001 Test Access Port (TAP) interface.

• 4 pins (TDI, TMS, TCK, and TDO). See Section 23.2, “External Signal Description.”

• A JCOMP input that provides the ability to share the TAP.

• A 5-bit instruction register that supports several IEEE 1149.1-2001 defined instructions, as well as
several public and private MCU specific instructions.

• Four test data registers: a bypass register, a boundary scan register, and a device identification
register. The size of the boundary scan register is 432 bits.

• A TAP controller state machine that controls the operation of the data registers, instruction register
and associated circuitry.

23.1.4 Modes of Operation

The JTAGC uses JCOMP and a power-on reset indication as its primary reset signals. Several IEEE
1149.1-2001 defined test modes are supported, as well as a bypass mode.

23.1.4.1 Reset

The JTAGC is placed in reset when the TAP controller state machine is in the TEST-LOGIC-RESET state.
The TEST-LOGIC-RESET state is entered upon the assertion of the power-on reset signal, negation of
JCOMP, or through TAP controller state machine transitions controlled by TMS. Asserting power-on reset
or negating JCOMP results in asynchronous entry into the reset state. While in reset, the following actions
occur:

• The TAP controller is forced into the test-logic-reset state, thereby disabling the test logic and
allowing normal operation of the on-chip system logic to continue unhindered.

• The instruction register is loaded with the IDCODE instruction.

In addition, execution of certain instructions can result in assertion of the internal system reset. These
instructions include EXTEST, CLAMP, and HIGHZ.

IEEE 1149.1 Test Access Port Controller (JTAGC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 23-3

23.1.4.2 IEEE 1149.1-2001 Defined Test Modes

The JTAGC supports several IEEE 1149.1-2001 defined test modes. The test mode is selected by loading
the appropriate instruction into the instruction register while the JTAGC is enabled. Supported test
instructions include EXTEST, HIGHZ, CLAMP, SAMPLE and SAMPLE/PRELOAD. Each instruction
defines the set of data registers that can operate and interact with the on-chip system logic while the
instruction is current. Only one test data register path is enabled to shift data between TDI and TDO for
each instruction.

The boundary scan register is enabled for serial access between TDI and TDO when the EXTEST,
SAMPLE or SAMPLE/PRELOAD instructions are active. The single-bit bypass register shift stage is
enabled for serial access between TDI and TDO when the HIGHZ, CLAMP or reserved instructions are
active. The functionality of each test mode is explained in more detail in Section 23.4.4, “JTAGC
Instructions.”

23.1.4.3 Bypass Mode

When no test operation is required, the BYPASS instruction can be loaded to place the JTAGC into bypass
mode. While in bypass mode, the single-bit bypass shift register is used to provide a minimum-length
serial path to shift data between TDI and TDO.

23.1.4.4 TAP Sharing Mode

There are three selectable auxiliary TAP controllers that share the TAP with the JTAGC. Selectable TAP
controllers include the Nexus port controller (NPC), e200 OnCE, and eTPU Nexus. The instructions
required to grant ownership of the TAP to the auxiliary TAP controllers are ACCESS_AUX_TAP_NPC,
ACCESS_AUX_TAP_ONCE, ACCESS_AUX_TAP_eTPUN3. Instruction opcodes for each instruction
are shown in Table 23-3.

When the access instruction for an auxiliary TAP is loaded, control of the JTAG pins is transferred to the
selected TAP controller. Any data input via TDI and TMS is passed to the selected TAP controller, and any
TDO output from the selected TAP controller is sent back to the JTAGC to be output on the pins. The
JTAGC regains control of the JTAG port during the UPDATE-DR state if the PAUSE-DR state was
entered. Auxiliary TAP controllers are held in RUN-TEST/IDLE while they are inactive.

For more information on the TAP controllers see Chapter 24, “Nexus Development Interface.”

IEEE 1149.1 Test Access Port Controller (JTAGC)

MPC5534 Microcontroller Reference Manual, Rev. 2

23-4 Freescale Semiconductor

23.2 External Signal Description
The JTAGC consists of five signals that connect to off-chip development tools and allow access to test
support functions. The JTAGC signals are outlined in the following table:

23.3 Memory Map/Register Definition
This section provides a detailed description of the JTAGC registers accessible through the TAP interface,
including data registers and the instruction register. Individual bit-level descriptions and reset states of
each register are included. These registers are not memory-mapped and can only be accessed through the
TAP.

23.3.1 Instruction Register

The JTAGC uses a 5-bit instruction register as shown in Figure 23-2. The instruction register allows
instructions to be loaded into the module to select the test to be performed or the test data register to be
accessed or both. Instructions are shifted in through TDI while the TAP controller is in the Shift-IR state,
and latched on the falling edge of TCK in the Update-IR state. The latched instruction value can only be
changed in the update-IR and test-logic-reset TAP controller states. Synchronous entry into the
test-logic-reset state results in the IDCODE instruction being loaded on the falling edge of TCK.
Asynchronous entry into the test-logic-reset state results in asynchronous loading of the IDCODE
instruction. During the capture-IR TAP controller state, the instruction shift register is loaded with the
value 0b10101, making this value the register’s read value when the TAP controller is sequenced into the
Shift-IR state.

Table 23-1. JTAG Signal Properties

Name I/O Function Reset State1

1 The pull is not implemented in the Nexus module. Pullup/down devices are implemented
in the pads.

TCK I Test clock Pulldown

TDI I Test data in Pullup

TDO O Test data out High Z / Pullup 2

2 TDO output buffer enable is negated when JTAGC is not in the Shift-IR or Shift-DR
states. A weak pullup is implemented on TDO.

TMS I Test mode select Pullup

JCOMP I JTAG compliancy Pulldown

MSB 0 1 2 3 4

R 1 0 1 0 1

W Instruction Code

Reset 0 0 0 0 1

Figure 23-2. 5-Bit Instruction Register

IEEE 1149.1 Test Access Port Controller (JTAGC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 23-5

23.3.2 Bypass Register

The bypass register is a single-bit shift register path selected for serial data transfer between TDI and TDO
when the BYPASS, CLAMP, HIGHZ or reserve instructions are active. After entry into the capture-DR
state, the single-bit shift register is set to a logic 0. Therefore, the first bit shifted out after selecting the
bypass register is always a logic 0.

23.3.3 Device Identification Register

The device identification register, shown in Figure 23-3, allows the part revision number, design center,
part identification number, and manufacturer identity code to be determined through the TAP. The device
identification register is selected for serial data transfer between TDI and TDO when the IDCODE
instruction is active. Entry into the capture-DR state while the device identification register is selected
loads the IDCODE into the shift register to be shifted out on TDO in the Shift-DR state. No action occurs
in the update-DR state.

23.3.4 Boundary Scan Register

The boundary scan register is connected between TDI and TDO when the EXTEST, SAMPLE or
SAMPLE/PRELOAD instructions are active. It is used to capture input pin data, force fixed values on
output pins, and select a logic value and direction for bidirectional pins. Each bit of the boundary scan
register represents a separate boundary scan register cell, as described in the IEEE 1149.1-2001 standard
and discussed in Section 23.4.5, “Boundary Scan.” The size of the boundary scan register is 432 bits.

IR[4:0]: 0_0001 (IDCODE) Access: R/O

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R PRN DC PIN MIC ID

W

Reset 0 0 0 1 1 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 1

Figure 23-3. Device Identification Register

Table 23-2. Device Identification Register Field Descriptions

Field Description

0–3
PRN

Part revision number. Contains the revision number of the device. This field changes with each revision of the device
or module.

4–9
DC

Design center. Indicates the Freescale design center. For the MPC5534 this value is 0x20.

10–19
PIN

Part identification number. Contains the part number of the device. For the MPC5534, this value is 0x134.

20–30
MIC

Manufacturer identity code. Contains the reduced Joint Electron Device Engineering Council (JEDEC) ID for
Freescale, 0xE.

31
ID

IDCODE register ID. Identifies this register as the device identification register and not the bypass register. Always
set to 1.

IEEE 1149.1 Test Access Port Controller (JTAGC)

MPC5534 Microcontroller Reference Manual, Rev. 2

23-6 Freescale Semiconductor

23.4 Functional Description

23.4.1 JTAGC Reset Configuration

While in reset, the TAP controller is forced into the test-logic-reset state, thus disabling the test logic and
allowing normal operation of the on-chip system logic. In addition, the instruction register is loaded with
the IDCODE instruction.

23.4.2 IEEE 1149.1-2001 (JTAG) Test Access Port

The JTAGC uses the IEEE 1149.1-2001 TAP for accessing registers. This port can be shared with other
TAP controllers on the MCU. Ownership of the port is determined by the value of the JCOMP signal and
the currently loaded instruction. For more detail on TAP sharing via JTAGC instructions see
Section 23.4.4.2, “ACCESS_AUX_TAP_x Instructions.”

Data is shifted between TDI and TDO though the selected register starting with the least significant bit, as
illustrated in Figure 23-4. This applies for the instruction register, test data registers, and the bypass
register.

Figure 23-4. Shifting Data Through a Register

23.4.3 TAP Controller State Machine

The TAP controller is a synchronous state machine that interprets the sequence of logical values on the
TMS pin. Figure 23-5 shows the machine’s states. The value shown next to each state is the value of the
TMS signal sampled on the rising edge of the TCK signal.

As Figure 23-5 shows, holding TMS at logic 1 while clocking TCK through a sufficient number of rising
edges also causes the state machine to enter the test-logic-reset state.

Selected register

MSB LSB

TDI TDO

IEEE 1149.1 Test Access Port Controller (JTAGC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 23-7

Figure 23-5. IEEE 1149.1-2001 TAP Controller Finite State Machine

Test logic
reset

Run-test/idle Select-DR-scan Select-IR-scan

Capture-DR Capture-IR

Shift-DR Shift-IR

Exit1-DR Exit1-IR

Pause-DR Pause-IR

Exit2-DR Exit2-IR

Update-DR Update-IR

1

0

111

0 0

0 0

1 1

0 0

1 1

1 1

0 0

0 0

1 1

1 1

0 0

1 1
0 0

0

NOTE: The value shown adjacent to each state transition in this figure represents the value of TMS at the time
of a rising edge of TCK.

IEEE 1149.1 Test Access Port Controller (JTAGC)

MPC5534 Microcontroller Reference Manual, Rev. 2

23-8 Freescale Semiconductor

23.4.3.1 Enabling the TAP Controller

The JTAGC TAP controller is enabled by setting JCOMP to a logic 1 value.

23.4.3.2 Selecting an IEEE 1149.1-2001 Register

Access to the JTAGC data registers is done by loading the instruction register with any of the JTAGC
instructions while the JTAGC is enabled. Instructions are shifted in via the select-IR-scan path and loaded
in the update-IR state. At this point, all data register access is performed via the select-DR-scan path.

The select-DR-scan path is used to read or write the register data by shifting in the data (LSB first) during
the shift-DR state. When reading a register, the register value is loaded into the IEEE 1149.1-2001 shifter
during the capture-DR state. When writing a register, the value is loaded from the IEEE 1149.1-2001
shifter to the register during the update-DR state. When reading a register, there is no requirement to shift
out the entire register contents. Shifting can be terminated after fetching the required number of bits.

23.4.4 JTAGC Instructions

This section gives an overview of each instruction, see the IEEE 1149.1-2001 standard for more details.

The JTAGC implements the IEEE 1149.1-2001 defined instructions listed in Table 23-3.

Table 23-3. JTAG Instructions

Instruction Code[0:4] Instruction Summary

IDCODE 00001 Selects device identification register for shift

SAMPLE/PRELOAD 00010 Selects boundary scan register for shifting, sampling, and preloading
without disturbing functional operation

SAMPLE 00011 Selects boundary scan register for shifting and sampling without
disturbing functional operation

EXTEST 00100 Selects boundary scan register while applying preloaded values to
output pins and asserting functional reset

HIGHZ 01001 Selects bypass register while three-stating all output pins and
asserting functional reset

CLAMP 01100 Selects bypass register while applying preloaded values to output pins
and asserting functional reset

ACCESS_AUX_TAP_NPC 10000 Grants the Nexus port controller (NPC) ownership of the TAP

ACCESS_AUX_TAP_ONCE 10001 Grants the Nexus e200z3 core interface (NZ3C3) ownership of the TAP

ACCESS_AUX_TAP_eTPUN3 10010 Grants the Nexus eTPU development interface (NSEDI) ownership of
the TAP

BYPASS 11111 Selects bypass register for data operations

Reserved 00101
00110
01010
10011

Do not use these settings.

Reserved1 All other codes Do not use these settings. Defaults to bypass register.

IEEE 1149.1 Test Access Port Controller (JTAGC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 23-9

23.4.4.1 BYPASS Instruction

BYPASS selects the bypass register, creating a single-bit shift register path between TDI and TDO.
BYPASS enhances test efficiency by reducing the overall shift path when no test operation of the MCU is
required. This allows more rapid movement of test data to and from other components on a board that are
required to perform test functions. While the BYPASS instruction is active the system logic operates
normally.

23.4.4.2 ACCESS_AUX_TAP_x Instructions

The ACCESS_AUX_TAP_x instructions allow the Nexus modules on the MCU to take control of the TAP.
When this instruction is loaded, control of the TAP pins is transferred to the selected auxiliary TAP
controller. Any data input via TDI and TMS is passed to the selected TAP controller, and any TDO output
from the selected TAP controller is sent back to the JTAGC to be output on the pins. The JTAGC regains
control of the JTAG port during the UPDATE-DR state if the PAUSE-DR state was entered. Auxiliary TAP
controllers are held in RUN-TEST/IDLE while they are inactive.

23.4.4.3 CLAMP Instruction

CLAMP allows the state of signals driven from MCU pins to be determined from the boundary scan
register while the bypass register is selected as the serial path between TDI and TDO. CLAMP enhances
test efficiency by reducing the overall shift path to a single bit (the bypass register) while conducting an
EXTEST type of instruction through the boundary scan register. CLAMP also asserts the internal system
reset for the MCU to force a predictable internal state.

23.4.4.4 EXTEST—External Test Instruction

EXTEST selects the boundary scan register as the shift path between TDI and TDO. It allows testing of
off-chip circuitry and board-level interconnections by driving preloaded data contained in the boundary
scan register onto the system output pins. Typically, the preloaded data is loaded into the boundary scan
register using the SAMPLE/PRELOAD instruction before the selection of EXTEST. EXTEST asserts the
internal system reset for the MCU to force a predictable internal state while performing external boundary
scan operations.

23.4.4.5 HIGHZ Instruction

HIGHZ selects the bypass register as the shift path between TDI and TDO. While HIGHZ is active, all
output drivers are placed in an inactive drive state (for example, high impedance). HIGHZ also asserts the
internal system reset for the MCU to force a predictable internal state.

1 Freescale reserves the right to change the decoding of reserved instruction codes.

IEEE 1149.1 Test Access Port Controller (JTAGC)

MPC5534 Microcontroller Reference Manual, Rev. 2

23-10 Freescale Semiconductor

23.4.4.6 IDCODE Instruction

IDCODE selects the 32-bit device identification register as the shift path between TDI and TDO. This
instruction allows interrogation of the MCU to determine its version number and other part identification
data. IDCODE is the instruction placed into the instruction register when the JTAGC is reset.

23.4.4.7 SAMPLE Instruction

The SAMPLE instruction obtains a sample of the system data and control signals present at the MCU input
pins and just before the boundary scan register cells at the output pins. This sampling occurs on the rising
edge of TCK in the capture-DR state when the SAMPLE instruction is active. The sampled data is viewed
by shifting it through the boundary scan register to the TDO output during the Shift-DR state. There is no
defined action in the update-DR state. Both the data capture and the shift operation are transparent to
system operation.

23.4.4.8 SAMPLE/PRELOAD Instruction

The SAMPLE/PRELOAD instruction has two functions:

• The SAMPLE part of the instruction samples the system data and control signals on the MCU input
pins and just before the boundary scan register cells at the output pins. This sampling occurs on the
rising-edge of TCK in the capture-DR state when the SAMPLE/PRELOAD instruction is active.
The sampled data is viewed by shifting it through the boundary scan register to the TDO output
during the shift-DR state. Both the data capture and the shift operation are transparent to system
operation.

• The PRELOAD part of the instruction initializes the boundary scan register cells before selecting
the EXTEST or CLAMP instructions to perform boundary scan tests. This is achieved by shifting
in initialization data to the boundary scan register during the shift-DR state. The initialization data
is transferred to the parallel outputs of the boundary scan register cells on the falling edge of TCK
in the update-DR state. The data is applied to the external output pins by the EXTEST or CLAMP
instruction. System operation is not affected.

23.4.5 Boundary Scan

The boundary scan technique allows signals at component boundaries to be controlled and observed
through the shift-register stage associated with each pad. Each stage is part of a larger boundary scan
register cell, and cells for each pad are interconnected serially to form a shift-register chain around the
border of the design. The boundary scan register consists of this shift-register chain, and is connected
between TDI and TDO when the EXTEST, SAMPLE, or SAMPLE/PRELOAD instructions are loaded.
The shift-register chain contains a serial input and serial output, as well as clock and control signals.

IEEE 1149.1 Test Access Port Controller (JTAGC)

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 23-11

23.5 Initialization and Application Information
The test logic is a static logic design, and TCK can be stopped in either a high or low state without loss of
data. However, the system clock is not synchronized to TCK internally. Any mixed operation using both
the test logic and the system functional logic requires external synchronization.

To initialize the JTAGC module and enable access to registers, the following sequence is required:

1. Set the JCOMP signal to logic 1, thereby enabling the JTAGC TAP controller.

2. Load the appropriate instruction for the test or action to be performed.

IEEE 1149.1 Test Access Port Controller (JTAGC)

MPC5534 Microcontroller Reference Manual, Rev. 2

23-12 Freescale Semiconductor

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 24-1

Chapter 24
Nexus Development Interface

24.1 Introduction
The device microcontroller contains multiple Nexus clients that communicate over a single IEEE®-ISTO
5001™-2003 Nexus class 3 combined JTAG IEEE® 1149.1/auxiliary out interface. Combined, all of the
Nexus clients are referred to as the Nexus development interface (NDI). Class 3 Nexus allows for program,
data, and ownership trace of the microcontroller execution without access to the external data and address
buses.

This chapter is organized into sections that provide a high level view of the Nexus development interface:
Section 24.1, “Introduction” through Section 24.8, “NPC Initialization and Application Information.”

The chapter contains sections that discuss the modules of the Nexus development interface:

• Nexus single-eTPU development interface (NSEDI). The device has one eTPU engines. See
Section 24.9, “Nexus Single eTPU Development Interface (NSEDI)” and the eTPU Reference
Manual for information about the NSEDI.

• Nexus e200z3 core interface (NZ3C3). In this chapter, the NZ3C3 interface is discussed in
Section 24.10, “e200z3 Class 3 Nexus Module (NZ3C3) through Section 24.11, “NZ3C3 Memory
Map and Register Definition.”

Communication to the NDI is managed via the auxiliary port and the JTAG port.

• The auxiliary port is comprised of nine or 17 output pins and 1 input pin. The output pins include
one message clock out (MCKO) pin, four or 12 message data out (MDO) pins, two message
start/end out (MSEO) pins, one ready (RDY) pin, and one event out (EVTO) pin. Event in (EVTI)
is the only input pin for the auxiliary port.

• The JTAG port consists of four inputs and one output. These pins include JTAG compliance select
(JCOMP), test data input (TDI), test data output (TDO), test mode select (TMS), and test clock
input (TCK). TDI, TDO, TMS, and TCK are compliant with the IEEE® 1149.1-2001 standard and
are shared with the NDI through the test access port (TAP) interface. JCOMP along with power-on
reset and the TAP state machine are used to control reset for the NDI module. Ownership of the
TAP is achieved by loading the appropriate enable instruction for the desired Nexus client in the
JTAG controller (JTAGC) when JCOMP is asserted. See Table 24-4 for the JTAGC opcodes to
access the different Nexus clients.

Nexus Development Interface

MPC5534 Microcontroller Reference Manual, Rev. 2

24-2 Freescale Semiconductor

24.1.1 Block Diagram

Figure 24.1.2 shows a general block diagram of the NDI components.

Figure 24-1. NDI General Block Diagram

JCOMP

Program, data,
ownership,
watchpoint,

trace

R/W register,
halt, step,
continue

Program, data,
ownership,
watchpoint,

trace

R/W register,
R/W data,
halt, step,
continue

Read/write
access

Buffer

NZ3C3

Nexus port controller
(NPC)

JTAG port controller

RDY TDI TCK TDO TMS

EVTI

Auxiliary port

MSEO[1:0] MCKO MDO(4 or 12)1 EVTO

• • •

Buffer

On-chip
memory
and I/O

Off-chip
memory
and I/O

XBAR

MMU
cacheEngine

1

CDC

eTPU
e200z3

NSEDI

1 The 208 package does not have MDO[11:4] pins due to pin limitations.
The 208 package has MDO[3:0] pins only.

Nexus Development Interface

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 24-3

24.1.2 Features

The NDI module is compliant with the IEEE-ISTO 5001-2003 standard. The following features are
implemented:

• 15- or 23-bit full duplex pin interface for medium and high visibility throughput

— One of two modes selected by register configuration: full port mode (FPM) and reduced port
mode (RPM). FPM comprises 12 MDO pins, and RPM comprises four MDO pins.

— Auxiliary output port

– One MCKO (message clock out) pin

– Four or 12 MDO (message data out) pins

– Two MSEO (message start/end out) pins

– One RDY (ready) pin

– One EVTO (event out) pin

— Auxiliary input port uses one EVTI (event in) pin

— Five-pin JTAG port (JCOMP, TDI, TDO, TMS, and TCK)

• Host processor (e200z3) development support features (NZ3C3)

— IEEE-ISTO 5001-2003 standard class 3 compliant.

— Data trace via data write messaging (DWM) and data read messaging (DRM). This allows the
development tool to trace reads and/or writes to selected internal memory resources.

— Ownership trace via ownership trace messaging (OTM). OTM facilitates ownership trace by
providing visibility of which process ID or operating system task is activated. An ownership
trace message is transmitted when a new process/task is activated, allowing development tools
to trace ownership flow.

— Program trace via branch trace messaging (BTM). Branch trace messaging displays program
flow discontinuities (direct branches, indirect branches, exceptions, etc.), allowing the
development tool to interpolate what transpires between the discontinuities. Thus, static code
can be traced.

— Watchpoint messaging (WPM) via the auxiliary port.

— Watchpoint trigger enable of program and/or data trace messaging.

— Data tracing of instruction fetches via private opcodes.

— Subset of Power Architecture Book E software debug facilities with OnCE block
(Nexus class 1 features).

• eTPU development support features (NSEDI)

— IEEE-ISTO 5001-2002 standard Class 3 compliant for the eTPU engines.

— Data trace via data write messaging and data read messaging. This allows the development tool
to trace reads and writes to selected shared parameter RAM (SPRAM) address ranges. Two
data trace windows are shared by the eTPU engine.

— Ownership trace via ownership trace messaging (OTM). OTM facilitates ownership trace by
providing visibility of which channel is being serviced. An ownership trace message is
transmitted to indicate when a new channel service request is scheduled, allowing the

Nexus Development Interface

MPC5534 Microcontroller Reference Manual, Rev. 2

24-4 Freescale Semiconductor

development tools to trace task flow. A special OTM is sent when the engine enters in idle state,
meaning that all requests were serviced and no new requests are yet scheduled.

— Program trace via branch trace messaging. BTM displays program flow discontinuities (start,
jumps, return, etc.), allowing the development tool to interpolate what transpires between the
discontinuities. Thus static code can be traced. The branch trace messaging method uses the
branch/predicate method to reduce the number of generated messages.

— Watchpoint messaging via the auxiliary port. WPM provides visibility of the occurrence of the
eTPU’s’ watchpoints and breakpoints.

— Nexus based breakpoint/watchpoint configuration and single step support.

• Run-time access to the on-chip memory map via the Nexus read/write access protocol. This feature
supports accesses for run-time internal visibility, calibration variable acquisition, calibration
constant tuning, and external rapid prototyping for powertrain automotive development systems.

• All features are independently configurable and controllable via the IEEE® 1149.1 I/O port.

• The NDI block reset is controlled with JCOMP, power-on reset, and the TAP state machine. These
sources are independent of system reset.

• System clock locked status indication via MDO[0] following power-on reset.

24.1.3 Modes of Operation

The NDI block is in reset when the TAP controller state machine is in the TEST-LOGIC-RESET state. The
TEST-LOGIC-RESET state is entered on the assertion of the power-on reset signal, negation of JCOMP,
or through state machine transitions controlled by TMS. Assertion of JCOMP allows the NDI to move out
of the reset state, and is a prerequisite to grant Nexus clients control of the TAP. Ownership of the TAP is
achieved by loading the appropriate enable instruction for the desired Nexus client in the JTAGC controller
(JTAGC) block when JCOMP is asserted.

Following negation of power-on reset, the NPC remains in reset until the system clock achieves lock. In
PLL bypass mode, the NDI can transition out of the reset state immediately following negation of
power-on reset. See Section 24.4.5, “System Clock Locked Indication” for more details.

24.1.3.1 Nexus Reset Mode

In Nexus reset mode, the following actions occur:

• Register values default back to their reset values.

• The message queues are marked as empty.

• The auxiliary output port pins are negated if the NDI controls the pads.

• The TDO output buffer is disabled if the NDI has control of the TAP.

• The TDI, TMS, and TCK inputs are ignored.

• The NDI block indicates to the MCU that it is not using the auxiliary output port. This indication
can be used to three-state the output pins or use them for another function.

Nexus Development Interface

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 24-5

24.1.3.2 Full-Port Mode

In full-port mode, all the available MDO pins are used to transmit messages. All trace features are enabled
or can be enabled by writing the configuration registers via the JTAG port. The number of MDO pins
available is 12.

24.1.3.3 Reduced-Port Mode

In reduced-port mode, a subset of the available MDO pins are used to transmit messages. All trace features
are enabled or can be enabled by writing the configuration registers via the JTAG port. The number of
MDO pins available is four. Unused MDO (MDO[11:4]) pins can be used as GPIO. Details on GPIO
functionality configuration can be found in Chapter 6, “System Integration Unit (SIU).”

24.1.3.4 Disabled-Port Mode

In disabled-port mode, message transmission is disabled. Any debug feature that generates messages can
not be used. The primary features available are class 1 features and read/write access.

24.1.3.5 Censored Mode

When the device is in censored mode, reading the contents of internal flash externally is not allowed. To
prevent Nexus modules from violating censorship, the NPC is held in reset when in censored mode,
asynchronously holding all other Nexus modules in reset as well. This prevents Nexus read/write to
memory mapped resources and the transmission of Nexus trace messages. See Table 13-18 for information
on Nexus port enabling and disabling regarding censorship.

24.2 External Signal Description
The auxiliary and JTAG pin interfaces provide for the transmission of messages from Nexus modules to
the external development tools and for access to Nexus client registers. The auxiliary/JTAG pin definitions
are outlined in Table 24-1.

Table 24-1. Signal Properties

Signal Name Port Function Reset State

EVTO Auxiliary Event out pin Negated

EVTI Auxiliary Event in pin Pullup

MCKO Auxiliary Message clock out pin (from NPC) Enabled

MDO[3:0] or
MDO[11:0]

Auxiliary Message data out pins Driven Low1

MSEO[1:0] Auxiliary Message start/end out pins Negated

RDY Auxiliary Ready out pin Negated

JCOMP JTAG JTAG compliancy and TAP sharing control Pulldown

TCK JTAG Test clock input Pulldown

TDI JTAG Test data input Pullup

Nexus Development Interface

MPC5534 Microcontroller Reference Manual, Rev. 2

24-6 Freescale Semiconductor

24.2.1 Detailed Signal Descriptions

This section describes each of the signals listed in Table 24-1 in more detail.

24.2.1.1 Event Out (EVTO)

EVTO is an output pin that is asserted upon breakpoint occurrence to provide breakpoint status indication
or to signify that an event has occurred. The EVTO output of the NPC is generated based on the values of
the individual EVTO signals from all Nexus modules that implement the signal.

24.2.1.2 Event In (EVTI)

EVTI is used to initiate program and data trace synchronization messages or to generate a breakpoint.
EVTI is edge-sensitive for synchronization and breakpoint generation.

24.2.1.3 Message Data Out (MDO[3:0] or [11:0])

Message data out (MDO) are output pins used for uploading OTM, BTM, DTM, and other messages to
the development tool. The development tool must sample MDO on the rising edge of MCKO. The width
of the MDO bus used is determined by the Nexus PCR[FPM] configuration.

Following a power-on reset, MDO[0] remains asserted until power-on reset is exited and the system clock
achieves lock.

208 Package: MDO[11:4] pins are not available due to pin limitations.

24.2.1.4 Message Start/End Out (MSEO[1:0])

MSEO[1:0] are output pins that indicates when a message on the MDO pins has started, when a variable
length packet has ended, or when the message has ended. The development tool must sample the MSEO
pins on the rising edge of MCKO.

24.2.1.5 Ready (RDY)

RDY is an output pin that indicates when a device is ready for the next access.

208 Package: The RDY signal is not available due to pin limitations.

TDO JTAG Test data output High Z / Pullup

TMS JTAG Test mode select input Pullup

1 Following a power-on reset, MDO[0] remains asserted until power-on reset is exited and the system clock
achieves lock.

Table 24-1. Signal Properties (continued)

Signal Name Port Function Reset State

Nexus Development Interface

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 24-7

24.2.1.6 JTAG Compliancy (JCOMP)

The JCOMP signal enables or disables the TAP controller. The TAP controller is enabled when JCOMP
asserts, otherwise the TAP controller remains in reset.

24.2.1.7 Test Data Output (TDO)

The TDO pin transmits serial output for instructions and data. TDO is tri-stateable and is actively driven
in the SHIFT-IR and SHIFT-DR controller states. TDO is updated on the falling edge of TCK and sampled
by the development tool on the rising edge of TCK.

24.2.1.8 Test Clock Input (TCK)

The TCK pin is used to synchronize the test logic and control register access through the JTAG port.

24.2.1.9 Test Data Input (TDI)

The TDI pin receives serial test instruction and data. TDI is sampled on the rising edge of TCK.

24.2.1.10 Test Mode Select (TMS)

The TMS pin is used to sequence the IEEE® 1149.1-2001 TAP controller state machine. TMS is sampled
on the rising edge of TCK.

24.3 Memory Map
The NDI block contains no memory mapped registers. Nexus registers are accessed by the development
tool via the JTAG port using a register index and a client select value. The client select is controlled by
loading the correct access instruction into the JTAG controller; see Table 24-4. OnCE registers are
accessed by loading the appropriate value in the RS[0:6] field of the OnCE command register (OCMD)
via the JTAG port.

Table 24-2 shows the NDI registers by Client Source ID and Index values.

Table 24-2. Nexus Development Interface (NDI) Registers

Client
Source ID

Index Register

e200z3 Control and Status Registers1

0b0000 2 e200z3 Development Control1 (NZ3C3_DC1)

0b0000 3 e200z3 Development Control2 (NZ3C3_DC2)

0b0000 4 e200z3 Development Status (NZ3C3_DS)

0b0000 6 e200z3 User Base Address (NZ3C3_UBA)

0b0000 7 Read/Write Access Control/Status (NZ3C3_RWCS)

0b0000 9 Read/Write Access Address (NZ3C3_RWA)

Nexus Development Interface

MPC5534 Microcontroller Reference Manual, Rev. 2

24-8 Freescale Semiconductor

0b0000 10 Read/Write Access Data (NZ3C3_RWD)

0b0000 11 e200z3 Watchpoint Trigger (NZ3C3_WT)

0b0000 13 e200z3 Data Trace Control (NZ3C3_DTC)

0b0000 14 e200z3 Data Trace Start Address 0 (NZ3C3_DTSA1)

0b0000 15 e200z3 Data Trace Start Address 1 (NZ3C3_DTSA2)

0b0000 18 e200z3 Data Trace End Address 0 (NZ3C3_DTEA1)

0b0000 19 e200z3 Data Trace End Address 1 (NZ3C3_DTEA2)

eTPU 1 Control/Status Registers

0b0010 0 Device ID (DID)

0b0010 2 eTPU1 Development Control (NDI_eTPU1_DC)

0b0010 4 eTPU1 Development Status (NSEDI_eTPU1_DS)

0b0010 6 eTPU1 User Base Address (NSEDI_UBA)

0b0000 7 Read/Write Access Control/Status (RWCS)

0b0000 9 Read/Write Access Address (RWA)

0b0000 10 Read/Write Access Data (RWD)

0b0010 11 eTPU1 Watchpoint Trigger (NDI_eTPU1_WT)

0b0010 13 eTPU1 Data Trace Control (NDI_eTPU1_DTC)

0b0010 22 eTPU1 Breakpoint/Watchpoint Control 1 (NSEDI_eTPU1_BWC1)

0b0010 23 eTPU1 Breakpoint/Watchpoint Control 2 (NSEDI_eTPU1_BWC2)

0b0010 24 eTPU1 Breakpoint/Watchpoint Control 3 (NSEDI_eTPU1_BWC3)

0b0010 30 eTPU1 Breakpoint/Watchpoint Address 1 (NSEDI_eTPU1_BWA1)

0b0010 31 eTPU1 Breakpoint/Watchpoint Address 2 (NSEDI_eTPU1_BWA2)

0b0010 38 eTPU1 Breakpoint/Watchpoint Data 1 (NSEDI_eTPU1_BWD1)

0b0010 39 eTPU1 Breakpoint/Watchpoint Data 1 (NSEDI_eTPU1_BWD2)

0b0010 64 eTPU1 Program Trace Channel Enable (NDI_eTPU1_PTCE)

0b0010 69 eTPU1 Microinstruction Debug Register (NSEDI_eTPU1_INST)

0b0010 70 eTPU1 Microprogram Counter Debug Register (NSEDI_eTPU1_MPC)

0b0010 71 eTPU1 Channel Flag Status Register (NSEDI_eTPU1_CFSR)

Table 24-2. Nexus Development Interface (NDI) Registers (continued)

Client
Source ID

Index Register

Nexus Development Interface

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 24-9

Table 24-3 shows the OnCE register addressing.

eTPU CDC Control/Status Registers

0b0100 13 eTPU CDC Data Trace Control (NSEDI_CDC_DTC)

eTPU1 / CDC Shared Control/Status Registers

0b0010 or
0b0011 or
0b0100

65 eTPU Data Trace Address Range 0 (eTPU_DTAR0)

0b0010 or
0b0011 or
0b0100

66 eTPU Data Trace Address Range 1 (eTPU_DTAR1)

0b0010 or
0b0011 or
0b0100

67 eTPU Data Trace Address Range 2 (eTPU_DTAR2)

0b0010 or
0b0011 or
0b0100

68 eTPU Data Trace Address Range 3 (eTPU_DTAR3)

1 These e200z3 registers are described in the e200z3 PowerPCTM Core Reference Manual.

Table 24-3. e200z3 OnCE Register Addressing

OCMD, RS[0:6] Register Selected

000 0000–000 0001 Invalid value

000 0010 JTAG DID (read-only)

000 0011–000 1111 Invalid value

001 0000 CPU Scan Register (CPUSCR)

001 0001 No Register Selected (Bypass)

001 0010 OnCE Control Register (OCR)

001 0011–001 1111 Invalid value

010 0000 Instruction Address Compare 1 (IAC1)

010 0001 Instruction Address Compare 2 (IAC2)

010 0010 Instruction Address Compare 3 (IAC3)

010 0011 Instruction Address Compare 4 (IAC4)

010 0100 Data Address Compare 1 (DAC1)

010 0101 Data Address Compare 2 (DAC2)

010 0110–010 1011 Invalid value

010 1100 Debug Counter Register (DBCNT)

Table 24-2. Nexus Development Interface (NDI) Registers (continued)

Client
Source ID

Index Register

Nexus Development Interface

MPC5534 Microcontroller Reference Manual, Rev. 2

24-10 Freescale Semiconductor

24.4 NDI Functional Description

24.4.1 Enabling Nexus Clients for TAP Access

After the NDI is out of the reset state, the loading of a specific instruction in the JTAG controller (JTAGC)
block is required to grant the NDI ownership of the TAP. Each Nexus client has its own JTAGC instruction
opcode for ownership of the TAP, granting that client the means to read/write its registers. The JTAGC
instruction opcode for each Nexus client is shown in Table 24-4. After the JTAGC opcode for a client has
been loaded, the client is enabled by loading its NEXUS-ENABLE instruction. The NEXUS-ENABLE
instruction opcode for each Nexus client is listed in Table 24-5. Opcodes for all other instructions
supported by Nexus clients can be found in the relevant sections of this chapter.

010 1101 Debug PCFIFO (PCFIFO) (read-only)

010 1110–010 1111 Invalid value

011 0000 Debug Status Register (DBSR)

011 0001 Debug Control Register 0 (DBCR0)

011 0010 Debug control register 1 (DBCR1)

011 0011 Debug control register 2 (DBCR2)

011 0100 Debug control register 3 (DBCR3)

011 0101–101 1111 Invalid value (do not access)

111 0000–111 1011 General purpose register selects [0:11]

111 1100 Nexus3-access

111 1101 LSRL select

111 1110 Enable_OnCE (and bypass)

111 1111 Bypass

Table 24-4. JTAG Client Select Instructions

JTAGC Instruction Opcode Description

ACCESS_AUX_TAP_NPC 10000 Enables access to the NPC TAP controller

ACCESS_AUX_TAP_ONCE 10001 Enables access to the e200z3 OnCE TAP controller

ACCESS_AUX_TAP_eTPU 10010 Enables access to the eTPU Nexus TAP controller

Table 24-3. e200z3 OnCE Register Addressing (continued)

OCMD, RS[0:6] Register Selected

Nexus Development Interface

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 24-11

24.4.2 Configuring the NDI for Nexus Messaging

The NDI is placed in disabled mode upon exit of power-on reset. If message transmission via the auxiliary
port is desired, a write to the port configuration register (PCR) located in the NPC is then required to enable
the NDI and select the mode of operation. Asserting MCKO_EN in the PCR places the NDI in enabled
mode and enables MCKO. The frequency of MCKO is selected by writing the MCKO_DIV field.
Asserting or negating the FPM bit selects full-port or reduced-port mode, respectively. When writing to
the PCR, the PCR lsb (least significant bit) must be written to a logic 0. Setting the lsb of the PCR enables
factory debug mode and prevents the transmission of Nexus messages.

Table 24-6 describes the NDI configuration options.

24.4.3 Programmable MCKO Frequency

MCKO is an output clock to the development tools used for the timing of MSEO and MDO pin functions.
MCKO is derived from the system clock, and its frequency is determined by the value of the MCKO_DIV
field in the port configuration register (PCR) located in the NPC. Possible operating frequencies include
one-half, one-quarter, and one-eighth system clock speed.

Table 24-7 shows the MCKO_DIV encodings. In this table, SYS_CLK represents the system clock
frequency. The default value selected if a reserved encoding is programmed is SYS_CLK divided by two.

Table 24-5. Nexus Client JTAG Instructions

Instruction Description Opcode

NPC JTAG Instruction Opcodes

NEXUS_ENABLE Opcode for NPC Nexus Enable instruction (4-bits) 0x0

BYPASS Opcode for the NPC BYPASS instruction (4-bits) 0xF

e200z3 OnCE JTAG Instruction Opcodes1

1 See the e200z3 Reference Manual for a complete list of available OnCE instructions.

NEXUS3_ACCESS Opcode for e200z3 OnCE Nexus Enable instruction (10-bits) 0x7C

BYPASS Opcode for the e200z3 OnCE BYPASS instruction (10-bits) 0x7F

Table 24-6. NDI Configuration Options

JCOMP
Asserted

MCKO_EN bit of the Port
Configuration Register

FPM bit of the Port
Configuration Register

Configuration

No X X Reset

Yes 0 X Disabled

Yes 1 1 Full-port mode

Yes 1 0 Reduced-port mode

Nexus Development Interface

MPC5534 Microcontroller Reference Manual, Rev. 2

24-12 Freescale Semiconductor

24.4.4 Nexus Messaging

Most of the messages transmitted by the NDI include a SRC field. This field is used to identify which
source generated the message. Table 24-8 shows the values used for the SRC field by the different clients
on the device. These 4-bit values are specific to the device. The same values are used for the client select
values written to the client select control register.

24.4.5 System Clock Locked Indication

Following a power-on reset, the lsb of the auxiliary output port pins (MDO[0]) can be monitored to provide
the lock status of the system clock. MDO[0] is driven to a logic one until the system clock achieves lock
after exiting power-on reset. After the system clock is locked, MDO[0] is negated and tools can begin
Nexus configuration. Loss of lock conditions that occur subsequent to the exit of power-on reset and the
initial lock of the system clock do not cause a Nexus reset, and therefore do not result in MDO[0] driven
high.

24.5 Nexus Port Controller (NPC)
The Nexus port controller (NPC) is that part of the NDI that controls access and arbitration of the device’s
internal Nexus modules. The NPC contains the port configuration register (PCR) and the device

Table 24-7. MCKO_DIV Values

MCKO_DIV[2:0] MCKO Frequency

0b000 SYS_CLK

0b001 SYS_CLK ÷ 2

0b010 Invalid value

0b011 SYS_CLK ÷ 4

0b100 Invalid value

0b101 Invalid value

0b110 Invalid value

0b111 SYS_CLK ÷ 8

Table 24-8. SRC Packet Encodings

SRC[3:0] Client

0b0000 e200z3

0b0010 eTPU1 (ENGINE1_SRC)

0b0100 eTPU CDC1 (CDC_SRC)

1 CDC is the eTPU Coherent Dual-Parameter Controller. See the eTPU
Reference Manual for more information.

0b0101–0b1111 Reserved

Nexus Development Interface

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 24-13

identification register (DID). The contents of the NPC DID are the same as the JTAGC device
identification register.

24.5.1 Overview

The device incorporates multiple modules that require development support. Each of these modules
implements a development interface based on the IEEE-ISTO 5001-2001 standard and must share the
input and output ports that interface with the development tool. The NPC controls the usage of these ports
in a manner that allows the individual modules to share the ports, while appearing to the development tool
as a single module.

24.5.2 Features

The NPC performs the following functions:

• Controls arbitration for ownership of the Nexus auxiliary output port

• Nexus device identification register and messaging

• Generates MCKO enable and frequency division control signals

• Controls sharing of EVTO

• Control of the device-wide debug mode

• Generates asynchronous reset signal for Nexus modules based on JCOMP input, censorship status,
and power-on reset status

• System clock locked status indication via MDO[0] during Nexus reset

• Provides Nexus support for censorship mode

24.6 Memory Map and Register Definition
This section provides a detailed description of the NPC registers accessible to the end user. Individual
bit-level descriptions and reset states of the registers are included.

24.6.1 Memory Map

Table 24-9 shows the NPC registers by index values. The registers are not memory-mapped and can only
be accessed via the TAP. The NPC does not implement the client select control register because the value
does not matter when accessing the registers. The bypass register (see Section 24.6.2.1, “Bypass
Register”) and instruction register (see Section 24.6.2.2, “Instruction Register”) have no index values.
These registers are not accessed in the same manner as Nexus client registers.

Table 24-9. NPC Memory Map

Index Register Name Register Description Bits

0 DID Device ID register 32

127 PCR Port configuration register 32

Nexus Development Interface

MPC5534 Microcontroller Reference Manual, Rev. 2

24-14 Freescale Semiconductor

24.6.2 Register Descriptions

This section consists of NPC register descriptions. Additional information regarding references to the TAP
controller state can be found in Section 24.4.3, “TAP Controller State Machine.”

24.6.2.1 Bypass Register

The bypass register is a single-bit shift register path selected for serial data transfer between TDI and TDO
when the BYPASS instruction or any unimplemented instructions are active. After entry into the
Capture-DR state, the single-bit shift register is set to a logic 0. Therefore, the first bit shifted out after
selecting the bypass register is always a logic 0.

24.6.2.2 Instruction Register

The NPC uses a 4-bit instruction register as shown in Figure 24-2. The instruction register is accessed via
the SELECT_IR_SCAN path of the tap controller state machine, and allows instructions to be loaded into
the module to enable the NPC for register access (NEXUS_ENABLE) or select the bypass register as the
shift path from TDI to TDO (BYPASS or unimplemented instructions).

Instructions are shifted in through TDI while the TAP controller is in the Shift-IR state, and latched on the
falling edge of TCK in the Update-IR state. The latched instruction value can only be changed in the
Update-IR and test-logic-reset TAP controller states. Synchronous entry into the test-logic-reset state
results in synchronous loading of the BYPASS instruction. Asynchronous entry into the test-logic-reset
state results in asynchronous loading of the BYPASS instruction. During the Capture-IR TAP controller
state, the instruction register is loaded with the value of the previously executed instruction, making this
value the register’s read value when the TAP controller is sequenced into the Shift-IR state.

3 2 1 0

R Previous Instruction Opcode

W Instruction Opcode

Reset: BYPASS Instruction Opcode (0xF)

Figure 24-2. 4-Bit Instruction Register

Nexus Development Interface

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 24-15

24.6.2.3 Nexus Device ID Register (DID)

The NPC device identification register, shown in Figure 24-3, allows the part revision number, design
center, part identification number, and manufacturer identity code of the part to be determined through the
auxiliary output port.

24.6.2.4 Port Configuration Register (PCR)

The PCR, shown in Figure 24-4, is used to select the NPC mode of operation, enable MCKO and select
the MCKO frequency, and enable or disable MCKO gating. This register must be configured as soon as
the NPC is enabled.

NOTE
The mode (MCKO_GT) or clock division (MCKO_DIV) bits must not be
modified after MCKO has been enabled. Changing the mode or clock
division while MCKO is enabled can produce unpredictable results.

Reg Index: 0 Access: User R/O

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R Part Revision Number Design Center Part Identification Number

W

Reset 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R Part Identification
Number (continued)

Manufacturer Identity Code 1

W

Reset 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 1

Figure 24-3. Nexus Device ID Register (DID)

Table 24-10. DID Register Field Descriptions

Field Description

31–28
PRN

Part revision number. Contains the revision number of the part. This field changes with each revision of
the device or module.

27–22
DC

Design center. Indicates the Freescale design center. This value is 0x0020.

21–12
PIN

Part identification number. Contains the part number of the device. The PIN for the MPC5534 is 0x0134.

11–1
MIC

Manufacturer identity code. Contains the reduced Joint Electron Device Engineering Council (JEDEC) ID
for Freescale, 0x000E.

0 Fixed per JTAG 1149.1 Always set to 1.

Nexus Development Interface

MPC5534 Microcontroller Reference Manual, Rev. 2

24-16 Freescale Semiconductor

Reg Index: 127 Access: R/W

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
FPM

MCKO
_GT

MCKO
_EN

MCKO_DIV
0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R PSTAT
_ENW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-4. Port Configuration Register (PCR)

Table 24-11. PCR Field Descriptions

Field Description

31
FPM

Full port mode. Determines if the auxiliary output port uses the full MDO port or a reduced MDO port to
transmit messages.
0 The subset of MDO[3:0] pins are used to transmit messages.
1 All MDO[11:0] pins are used to transmit messages.
Section 6.4.1.12.45, “Pad Configuration Register 130 (SIU_PCR130)” shows how GPIO is enabled or
disabled by the FPM setting.

30
MCKO_GT

MCKO clock gating control. Enables or disables MCKO clock gating. If clock gating is enabled, the MCKO
clock is gated when the NPC is in enabled mode but not actively transmitting messages on the auxiliary output
port. When clock gating is disabled, MCKO is allowed to run even if no auxiliary output port messages are
being transmitted.
0 MCKO gating is disabled.
1 MCKO gating is enabled.

29
MCKO_EN

MCKO enable. Enables the MCKO clock. When enabled, the frequency of MCKO is determined by the
MCKO_DIV field.
0 MCKO clock is driven to zero.
1 MCKO clock is enabled.

28–26
MCKO_DIV

[2:0]

MCKO division factor. Determines the frequency of MCKO relative to the system clock frequency when
MCKO_EN is asserted. The table below shows the meaning of MCKO_DIV values. In this table, SYS_CLK
represents the system clock frequency.

MCKO_DIV[2:0] MCKO Frequency

0 SYS_CLK

1 SYS_CLK ÷ 2

2 Invalid value

3 SYS_CLK ÷ 4

4 Invalid value

5 Invalid value

6 Invalid value

7 SYS_CLK ÷ 8

Nexus Development Interface

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 24-17

24.7 NPC Functional Description

24.7.1 NPC Reset Configuration

The NPC is placed in disabled mode upon exit of reset. If message transmission via the auxiliary port is
desired, a write to the PCR is then required to enable the NPC and select the mode of operation. Asserting
MCKO_EN places the NPC in enabled mode and enables MCKO. The frequency of MCKO is selected by
writing the MCKO_DIV field. Asserting or negating the FPM bit selects full-port or reduced-port mode,
respectively.

Table 24-12 describes the NPC reset configuration options.

24.7.2 Auxiliary Output Port

The auxiliary output port is shared by each of the Nexus modules on the device. The NPC communicates
with each of the individual modules and arbitrates for access to the port. Additional information about the
auxiliary port is found in Section 24.2, “External Signal Description.”

24.7.2.1 Output Message Protocol

The protocol for transmitting messages via the auxiliary port is accomplished with the MSEO functions.
The MSEO pins are used to signal the end of variable-length packets and the end of messages. They are
not required to indicate the end of fixed-length packets. MDO and MSEO are sampled on the rising edge
of MCKO.

25–1 Reserved

0
PSTAT_EN

Processor status mode enable. Enables processor status (PSTAT) mode. In PSTAT mode, all auxiliary output
port MDO pins are used to transmit processor status information, and Nexus messaging is unavailable.
0 PSTAT mode disabled
1 PSTAT mode enabled
Note: PSTAT mode is intended for factory processor debug only. The PSTAT_EN bit must be written to disable

PSTAT mode by the customer. No Nexus messages are transmitted under any circumstances when
PSTAT mode is enabled

Table 24-12. NPC Reset Configuration Options

JCOMP
Asserted?

PCR[MCKO_EN] PCR[FPM] Configuration

No X X Reset

Yes 0 X Disabled

Yes 1 1 Full-Port Mode

Yes 1 0 Reduced-Port Mode

Table 24-11. PCR Field Descriptions (continued)

Field Description

Nexus Development Interface

MPC5534 Microcontroller Reference Manual, Rev. 2

24-18 Freescale Semiconductor

Figure 24-5 illustrates the state diagram for MSEO transfers. All transitions not included in the figure are
reserved, and must not be used.

Figure 24-5. MSEO Transfers

24.7.2.2 Output Messages

In addition to sending out messages generated in other Nexus modules, the NPC can also output the device
ID message contained in the device ID register on the MDO pins. The device ID message can also be sent
out serially through TDO.

Table 24-13 describes the device ID message that the NPC can transmit on the auxiliary port. The TCODE
is the first packet transmitted.

Table 24-13. NPC Output Messages

Message Name
Min. Packet

Bits
Max Packet

Bits
Packet
Type

Packet Name Packet Description

Device ID Message
6 6 Fixed TCODE Value = 1

32 32 Fixed ID DID register contents

MSEO = 00

MSEO = 11

MSEO = 01

MSEO = 00

Normal
transfer

End
packet

Start
message

End
message

Idle

MSEO = 00MSEO = 01 MSEO = 11
MSEO = 01MSEO = 11

MSEO = 00MSEO = 10

MSEO = 11

MSEO = 01 MSEO = 00

MSEO = 10

MSEO = 01
MSEO = 11

MDO:
invalid

MDO:
invalid

MSEO = 10

Nexus Development Interface

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 24-19

Figure 24-6 shows the various message formats that the pin interface formatter has to encounter.

Figure 24-6. Message Field Sizes

The double edges in Figure 24-6 indicate the starts and ends of messages. Fields without shaded areas
between them are grouped into super-fields and can be transmitted together without end-of-packet
indications between them.

24.7.2.2.1 Rules of Messages

The rules of messages include the following:

• A variable-sized field within a message must end on a port boundary. (Port boundaries depend on
the number of MDO pins active with the current reset configuration.)

• A variable-sized field can start within a port boundary only when following a fixed-length field.

• Super-fields must end on a port boundary.

• When a variable-length field is sized such that it does not end on a port boundary, it is necessary
to extend and zero fill the remaining bits after the highest order bit so that it can end on a port
boundary.

• Multiple fixed-length packets can start and/or end on a single clock.

• When any packet follows a variable-length packet, it must start on a port boundary.

• The field containing the TCODE number is always transferred out first, followed by subsequent
fields of information.

• Within a field, the lowest significant bits are shifted out first. Figure 24-7 shows the transmission
sequence of a message that is made up of a TCODE followed by three fields.

Figure 24-7. Transmission Sequence of Messages

24.7.2.3 IEEE® 1149.1-2001 (JTAG) TAP

The NPC uses the IEEE® 1149.1-2001 TAP for accessing registers. Each of the individual Nexus modules
on the device implements a TAP controller for accessing its registers as well. TAP signals include TCK,
TDI, TMS, and TDO. Detailed information about the TAP controller state machine can be found in
Section 24.4.3, “TAP Controller State Machine.”

Message TCODE Field #1 Field #2 Field #3 Field #4 Field #5
Min.
Size1
Bits

1 Minimum information size. The actual number of bits transmitted depends on the number of MDO pins

Max.
Size2
Bits

2 Maximum information size. The actual number of bits transmitted depends on the number of MDO pins

Device ID Message 1 Fixed = 32 — — — — 38 38

FIELD #3

MSB LSB

123

FIELD #2 FIELD #1 TCODE

4

6 bits

Nexus Development Interface

MPC5534 Microcontroller Reference Manual, Rev. 2

24-20 Freescale Semiconductor

The IEEE® 1149.1-2001 specification can be ordered for further detail on electrical and pin protocol
compliance requirements.

The NPC implements a Nexus controller state machine that transitions based on the state of the IEEE®
1149.1-2001 state machine shown in Figure 24-5. The Nexus controller state machine is defined by the
IEEE-ISTO 5001-2003 standard. It is shown in Figure 24-10.

The instructions implemented by the NPC TAP controller are listed in Table 24-14. The value of the
NEXUS-ENABLE instruction is 0b0000. Each unimplemented instruction acts like the BYPASS
instruction. The size of the NPC instruction register is 4-bits.

Data is shifted between TDI and TDO starting with the least significant bit as illustrated in Figure 24-8.
This applies for the instruction register and all Nexus tool-mapped registers.

Figure 24-8. Shifting Data Into a Register

24.7.2.3.1 Enabling the NPC TAP Controller

Assertion of the power-on reset signal, entry into censored mode, or negating JCOMP resets the NPC TAP
controller. When not in power-on reset or censored mode, the NPC TAP controller is enabled by asserting
JCOMP and loading the ACCESS_AUX_TAP_NPC instruction in the JTAGC. Loading the
NEXUS-ENABLE instruction then grants access to NPC registers.

Table 24-14. Implemented Instructions

Instruction Name Private/Public Opcode Description

NEXUS-ENABLE Public 0x0
Activate Nexus controller state machine to read and
write NPC registers.

BYPASS Private 0xF
NPC BYPASS instruction. Also the value loaded into
the NPC IR upon exit of reset.

Selected register TDOTDI

msb lsb

Nexus Development Interface

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 24-21

Figure 24-9. IEEE 1149.1-2001 TAP Controller State Machine

TEST LOGIC
RESET

RUN-TEST/IDLE SELECT-DR-SCAN SELECT-IR-SCAN

CAPTURE-DR CAPTURE-IR

SHIFT-DR SHIFT-IR

EXIT1-DR EXIT1-IR

PAUSE-DR PAUSE-IR

EXIT2-DR EXIT2-IR

UPDATE-DR UPDATE-IR

1

0

111

0 0

0 0

1 1

0 0

1 1

1 1

0 0

0 0

1 1

1 1

0 0

1 1
0 0

0

NOTE: The value shown adjacent to each state transition in this figure represents the value of TMS
at the time of a rising edge of TCK.

Nexus Development Interface

MPC5534 Microcontroller Reference Manual, Rev. 2

24-22 Freescale Semiconductor

24.7.2.3.2 Retrieving Device IDCODE

The Nexus TAP controller does not implement the IDCODE instruction. However, the device
identification message can be output by the NPC through the auxiliary output port or shifted out serially
by accessing the NPC device ID register through the TAP. If the NPC is enabled, transmission of the device
identification message on the auxiliary output port MDO pins occurs immediately after a write to the PCR.
Transmission of the device identification message serially through TDO is achieved by performing a read
of the register contents as described in Section 24.7.2.3.4, “Selecting a Nexus Client Register.”

24.7.2.3.3 Loading NEXUS-ENABLE Instruction

Access to the NPC registers is enabled by loading the NPC NEXUS-ENABLE instruction when NPC has
ownership of the TAP. This instruction is shifted in via the SELECT-IR-SCAN path and loaded in the
UPDATE-IR state. At this point, the Nexus controller state machine, shown in Figure 24-10, transitions to
the REG_SELECT state. The Nexus controller has three states: idle, register select, and data access.
Table 24-15 illustrates the IEEE® 1149.1 sequence to load the NEXUS-ENABLE instruction.

Figure 24-10. NEXUS Controller State Machine

Table 24-15. Loading NEXUS-ENABLE Instruction

Clock TDI TMS IEEE® 1149.1 State Nexus State Description

0 — 0 RUN-TEST/IDLE IDLE IEEE 1149.1-2001 TAP controller in idle state

1 — 1 SELECT-DR-SCAN IDLE Transitional state

2 — 1 SELECT-IR-SCAN IDLE Transitional state

3 — 0 CAPTURE-IR IDLE Internal shifter loaded with current instruction

4 — 0 SHIFT-IR IDLE TDO becomes active, and the IEEE® 1149.1-2001
shifter is ready. Shift in all but the last bit of the
NEXUS_ENABLE instruction.5–7 0 0 3 TCKS in SHIFT-IR IDLE

8 0 1 EXIT1-IR IDLE Last bit of instruction shifted in

9 — 1 UPDATE-IR IDLE NEXUS-ENABLE loaded into instruction register

10 — 0 RUN-TEST/IDLE REG_SELECT Ready to be read/write Nexus registers

IDLE

NEXUS-ENABLE=1

REG_SELECT

UPDATE-DR=1

DATA_ACCESS

UPDATE-DR=1
NEXUS-ENABLE=1 &&

NEXUS-ENABLE=0

TEST-LOGIC-RESET=1

UPDATE-IR=1

Nexus Development Interface

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 24-23

24.7.2.3.4 Selecting a Nexus Client Register

When the NEXUS-ENABLE instruction is decoded by the TAP controller, the input port allows
development tool access to all Nexus registers. Each register has a 7-bit address index.

All register access is performed via the SELECT-DR-SCAN path of the IEEE® 1149.1–2001 TAP
controller state machine. The Nexus controller defaults to the REG_SELECT state when enabled.
Accessing a register requires two passes through the SELECT-DR-SCAN path: one pass to select the
register and the second pass to read/write the register.

The first pass through the SELECT-DR-SCAN path is used to enter an 8-bit Nexus command consisting
of a read/write control bit in the lsb followed by a 7-bit register address index, as illustrated in
Figure 24-11. The read/write control bit is set to 1 for writes and 0 for reads.

The second pass through the SELECT-DR-SCAN path is used to read or write the register data by shifting
in the data (lsb first) during the SHIFT-DR state. When reading a register, the register value is loaded into
the IEEE® 1149.1-2001 shifter during the CAPTURE-DR state. When writing a register, the value is
loaded from the IEEE® 1149.1-2001 shifter to the register during the UPDATE-DR state. When reading
a register, there is no requirement to shift out the entire register contents. Shifting can be terminated after
the required number of bits have been acquired.

Table 24-16 illustrates a sequence that writes a 32-bit value to a register.

MSB LSB

7-bit register index R/W

Figure 24-11. IEEE® 1149.1 Controller Command Input

Table 24-16. Write to a 32-Bit Nexus Client Register

Clock TMS IEEE 1149.1 State Nexus State Description

0 0 RUN-TEST/IDLE REG_SELECT IEEE 1149.1-2001 TAP controller in idle state

1 1 SELECT-DR-SCAN REG_SELECT First pass through SELECT-DR-SCAN path

2 0 CAPTURE-DR REG_SELECT Internal shifter loaded with current value of controller
command input.

3 0 SHIFT-DR REG_SELECT TDO becomes active, and write bit and 6 bits of
register index shifted in.

7 TCKs

11 1 EXIT1-DR REG_SELECT Last bit of register index shifted into TDI

12 1 UPDATE-DR REG_SELECT Controller decodes and selects register

13 1 SELECT-DR-SCAN DATA_ACCESS Second pass through SELECT-DR-SCAN path

14 0 CAPTURE-DR DATA_ACCESS Internal shifter loaded with current value of register

15 0 SHIFT-DR DATA_ACCESS TDO becomes active, and outputs current value of
register while new value is shifted in through TDI

31 TCKs

47 1 EXIT1-DR DATA_ACCESS Last bit of current value shifted out TDO. Last bit of
new value shifted in TDI.

Nexus Development Interface

MPC5534 Microcontroller Reference Manual, Rev. 2

24-24 Freescale Semiconductor

24.7.2.4 Nexus Auxiliary Port Sharing

Each of the Nexus modules on the MCU implements a request/grant scheme to arbitrate for control of the
Nexus auxiliary port when Nexus data is ready to be transmitted.

All modules arbitrating for the port are given fixed priority levels relative to each other. If multiple
modules have the same request level, this priority level is used as a tie-breaker. To avoid monopolization
of the port, the module given the highest priority level alternates following each grant. Immediately out of
reset the order of priority, from highest to lowest, is: NPC, NZ3C3, NSEDI. This arbitration mechanism is
controlled internally and is not programmable by tools or application software.

24.7.2.5 Nexus JTAG Port Sharing

Each of the individual Nexus modules on the device implements a TAP controller for accessing its
registers. When JCOMP is asserted, only the module whose ACCESS_AUX_TAP instruction is loaded
has control of the TAP (see Section 24.4.4, “JTAGC Instructions”). This allows the interface to all of these
individual TAP controllers to appear to be a single port from outside the device. After a Nexus module has
ownership of the TAP, that module acts like a single-bit shift register, or bypass register, if no register is
selected as the shift path.

24.7.2.6 MCKO

MCKO is an output clock to the development tools used for the timing of MSEO and MDO pin functions.
MCKO is derived from the system clock and its frequency is determined by the value of the
MCKO_DIV[2:0] field in the PCR. Possible operating frequencies include one-half, one-quarter, and
one-eighth system clock speed. MCKO is enabled by setting the MCKO_EN bit in the PCR.

The NPC also controls dynamic MCKO clock gating when in full- or reduced-port modes. The setting of
the MCKO_GT bit inside the PCR determines whether or not MCKO gating control is enabled. The
MCKO_GT bit resets to a logic 0. In this state gating of MCKO is disabled. To enable gating of MCKO,
the MCKO_GT bit in the PCR is written to a logic 1. When MCKO gating is enabled, MCKO is driven to
a logic 0 if the auxiliary port is enabled but not transmitting messages and there are no pending messages
from Nexus clients.

24.7.2.7 EVTO Sharing

The NPC controls sharing of the EVTO output between all Nexus clients that produce an EVTO signal.
EVTO is driven for one MCKO period whenever any module drives its EVTO. When there is no active
MCKO, such as in disabled mode, the NPC assumes an MCKO frequency of one-half system clock speed
when driving EVTO. EVTO sharing is active as long as the NPC is not in reset.

48 1 UPDATE-DR DATA_ACCESS Value written to register

49 0 RUN-TEST/IDLE REG_SELECT Controller returned to idle state. It could also return
to SELECT-DR-SCAN to write another register.

Table 24-16. Write to a 32-Bit Nexus Client Register (continued)

Clock TMS IEEE 1149.1 State Nexus State Description

Nexus Development Interface

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 24-25

24.7.2.8 Nexus Reset Control

The JCOMP input that is used as the primary reset signal for the NPC is also used by the NPC to generate
a single-bit reset signal for other Nexus modules. If JCOMP is negated, an internal reset signal is asserted,
indicating that all Nexus modules must be held in reset. This internal reset signal is also asserted during a
power-on reset, or if nex_disable is asserted (SIU_CCR[DISNEX]), indicating the device is in censored
mode. This single bit reset signal functions much like the IEEE® 1149.1-2001 defined TRST signal and
allows JCOMP reset information to be provided to the Nexus modules without each module having to
sense the JCOMP signal directly or monitor the status of censored mode.

24.8 NPC Initialization and Application Information

24.8.1 Accessing NPC Tool-Mapped Registers

To initialize the TAP for NPC register accesses, the following sequence is required:

1. Enable the NPC TAP controller. This is achieved by asserting JCOMP and loading the
ACCESS_AUX_TAP_NPC instruction in the JTAGC.

2. Load the TAP controller with the NEXUS-ENABLE instruction.

To write control data to NPC tool-mapped registers, the following sequence is required:

1. Write the 7-bit register index and set the write bit to select the register with a pass through the
SELECT-DR-SCAN path in the TAP controller state machine.

2. Write the register value with a second pass through the SELECT-DR-SCAN path. The prior value
of this register is shifted out during the write.

To read status and control data from NPC tool-mapped registers, the following sequence is required:

1. Write the 7-bit register index and clear the write bit to select register with a pass through
SELECT-DR-SCAN path in the TAP controller state machine.

2. Read the register value with a second pass through the SELECT-DR-SCAN path. Data shifted in
is ignored.

See the IEEE®-ISTO 5001-2003 standard for more detail.

24.9 Nexus Single eTPU Development Interface (NSEDI)

The enhanced timing processor unit (eTPU) has its own Nexus class 3 interface, the Nexus single eTPU
development interface (NSEDINDEDI). The single eTPU engine and a coherent parameter controller
(CDC) appear as two separate Nexus clients. See the Enhanced Time Processor Unit Reference Manual
for more information about the NSEDINDEDI module.

Nexus Development Interface

MPC5534 Microcontroller Reference Manual, Rev. 2

24-26 Freescale Semiconductor

24.10 e200z3 Class 3 Nexus Module (NZ3C3)
The NZ3C3 module provides real-time development capabilities for the device core in compliance with
the IEEE®-ISTO Nexus 5001-2003 standard. This module provides development support capabilities
without requiring the use of address and data pins for internal visibility.

24.10.1 Introduction

This section defines the auxiliary pin functions, transfer protocols and standard development features of
the NZ3C3 module. The development features supported are Program trace, data trace, watchpoint
messaging, ownership trace, and read/write access via the JTAG interface.

Reg Index: 0 Access: R/O

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R PRN DC PIN

W

Reset 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R PIN MIC 1

W

Reset 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 1

Figure 24-12. NSEDI Device ID Register (DID)

Table 24-17. NSEDI DID Register Field Descriptions

Field Description

31–28
PRN

Part revision number. Contains the revision number of the part. This field changes with each revision of the
device or module.

27–22
DC

Design center. Indicates the Freescale design center. This value is 0x20.

21–12
PIN

Part identification number. Contains the part number of the device. The PIN for the MPC5534 is 0x124.

11–1
MIC

Manufacturer identity code. Contains the reduced Joint Electron Device Engineering Council (JEDEC) ID
for Freescale, 0xE.

0 Fixed per JTAG 1149.1
1 Always set

Nexus Development Interface

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 24-27

NOTE
Throughout this section references are made to the auxiliary port and its
specific signals, such as MCKO, MSEO[1:0], MDO[11:0] and others. The
device NPC module arbitrates the access of the single auxiliary port. To
simplify the description of the function of the NZ3C3 module, the
interaction of the NPC is omitted and the configuration in this chapter
describes an NPC with a dedicated auxiliary port. The auxiliary port is fully
described in Section 24.2, “External Signal Description.”

24.10.2 Block Diagram

Figure 24-13. e200z3 Nexus3 Functional Block Diagram

Message
Queues

NPC
Control and

I/O Logic

Memory Control

Control/Status
Registers

Registers

DMA Registers

DMA
(R/W)

Arbitration

Data
Snoop

Instruction
Snoop n +1

MDO[n:0]

MSEO[0]

MSEO[1]

MCKO

EVTO

EVTI

RDY

TDI

TDO

TMS

TCLK

TRST

Breakpoint/
Watchpoint

Control

OnCE Debug

Nexus3 Module
Nexus1 Module (within core CPU)

C
or

e
C

P
U

 V
ir

tu
al

 B
us

S
ys

te
m

 B
us

Nexus Development Interface

MPC5534 Microcontroller Reference Manual, Rev. 2

24-28 Freescale Semiconductor

24.10.3 Overview

Table 24-18 contains a set of terms and definitions associated with the NZ3C3 module.

Table 24-18. Terms and Definitions

Term Description

IEEE®-ISTO 5001 Consortium and standard for real-time embedded system design. World wide
Web documentation at http://www.ieee-isto.org/Nexus5001

Auxiliary Port Refers to Nexus auxiliary port. Used as auxiliary port to the IEEE® 1149.1
JTAG interface.

Branch Trace Messaging (BTM) Visibility of addresses for taken branches and exceptions, and the number of
sequential instructions executed between each taken branch.

Client A functional block on an embedded processor which requires development
visibility and controllability. Examples are a central processing unit (CPU) or an
intelligent peripheral.

Data Read Message (DRM) External visibility of data reads to memory-mapped resources.

Data Write Message (DWM) External visibility of data writes to memory-mapped resources.

Data Trace Messaging (DTM) External visibility of how data flows through the embedded system. This can
include DRM and/or DWM.

JTAG Compliant Device complying to IEEE® 1149.1 JTAG standard

JTAG IR & DR Sequence JTAG instruction register (IR) scan to load an opcode value for selecting a
development register. The JTAG IR corresponds to the OnCE command
register (OCMD). The selected development register is then accessed via a
JTAG data register (DR) scan.

Nexus1 The e200z3 (OnCE) debug module. This module integrated with each e200z3
processor provides all static (core halted) debug functionality. This module is
compliant with Class1 of the IEEE®-ISTO 5001 standard.

Ownership Trace Message (OTM) Visibility of process/function that is currently executing.

Public Messages Messages on the auxiliary pins for accomplishing common visibility and
controllability requirements

Standard The phrase ‘according to the standard’ is used to indicate according to the
IEEE®-ISTO 5001 standard.

Transfer Code (TCODE) Message header that identifies the number and/or size of packets to be
transferred, and how to interpret each of the packets.

Watchpoint A data or instruction breakpoint which does not cause the processor to halt.
Instead, a pin is used to signal that the condition occurred. A watchpoint
message is also generated.

Nexus Development Interface

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 24-29

24.10.4 Features

The NZ3C3 module is compliant with Class 3 of the IEEE®-ISTO 5001-2003 standard. The following
features are implemented:

• Program trace via branch trace messaging (BTM). Branch trace messaging displays program flow
discontinuities (direct and indirect branches, exceptions, etc.), allowing the development tool to
interpolate what transpires between the discontinuities. Thus static code can be traced.

• Data trace via data write messaging (DWM) and data read messaging (DRM). This provides the
capability for the development tool to trace reads and/or writes to selected internal memory
resources.

• Ownership trace via ownership trace messaging (OTM). OTM facilitates ownership trace by
providing visibility of which process ID or operating system task is activated. An ownership trace
message is transmitted when a new process/task is activated, allowing the development tool to
trace ownership flow.

• Run-time access to embedded processor registers and memory map via the JTAG port. This allows
for enhanced download/upload capabilities.

• Watchpoint messaging via the auxiliary pins.

• Watchpoint trigger enable of program and/or data trace messaging.

• High-speed data input/output via the auxiliary port.

• Auxiliary interface for higher data input/output

— Configurable (minimum and maximum) message data out pins (nex_mdo[n:0])

— One or two message start/end out pins (nex_mseo_b[1:0])

— One read/write ready pin (nex_rdy_b) pin

— One watchpoint-event pin (nex_evto_b)

— One event-in pin (nex_evti_b)

— One MCKO (message clock out) pin

• Registers for program trace, data trace, ownership trace and watchpoint trigger.

• All features controllable and configurable via the JTAG port.

24.10.5 Enabling Nexus3 Operation

The Nexus module is enabled by loading a single instruction (ACCESS_AUX_TAP_ONCE, as shown in
Table 24-4) into the JTAGC instruction register (IR), and then loading the corresponding OnCE OCMD
register with the NEXUS3_ACCESS instruction (see Table 24-5). For the e200z3 Class 3 Nexus module,
the OCMD value is 0b00_0111_1100. After it is enabled, the module is ready to accept control input via
the JTAG pins. See Section 24.7, “NPC Functional Description” for more information.

The Nexus module is disabled when the JTAG state machine reaches the test-logic-reset state. This state
can be reached by asserting the JCOMP pin or cycling through the state machine using the TMS pin. The
Nexus module is also disabled if a power-on-reset (POR) event occurs. If the Nexus3 module is disabled,
no trace output is provided, and the module disables (drive inactive) auxiliary port output pins MDO[n:0],
MSEO[1:0], MCKO. Nexus registers are not available for reads or writes.

Nexus Development Interface

MPC5534 Microcontroller Reference Manual, Rev. 2

24-30 Freescale Semiconductor

24.10.6 TCODEs Supported by NZ3C3

The Nexus3 pins allow for flexible transfer operations via public messages. A TCODE defines the transfer
format, the number and/or size of the packets to be transferred, and the purpose of each packet. The
IEEE®-ISTO 5001-2003 standard defines a set of public messages. The NZ3C3 module supports the
public TCODEs seen in Table 24-19. Each message contains multiple packets transmitted in the order
shown in the table.

Table 24-19. Public TCODEs Supported by NZ3C3

Message Name

Packet Size
(bits) Packet

Name
Packet
Type

Packet Description

Min Max

Debug Status 6 6 TCODE Fixed TCODE number = 0 (0x00)

4 4 SRC Fixed Source processor identifier

8 8 STATUS Fixed Debug status register (DS[31:24])

Ownership Trace
Message

6 6 TCODE Fixed TCODE number = 2 (0x02)

4 4 SRC Fixed Source processor identifier

32 32 PROCESS Fixed Task/Process ID tag

Program Trace -
Direct Branch
Message1

6 6 TCODE Fixed TCODE number = 3 (0x03)

4 4 SRC Fixed Source processor identifier

1 8 I-CNT Variable Number of sequential instructions executed since last
taken branch

Program Trace -
Indirect Branch
Message1

6 6 TCODE Fixed TCODE number = 4 (0x04)

4 4 SRC Fixed Source processor identifier

1 8 I-CNT Variable Number of sequential instructions executed since last
taken branch

1 32 U-ADDR Variable Unique part of target address for taken
branches/exceptions

Data Trace -
Data Write Message

6 6 TCODE Fixed TCODE number = 5 (0x05)

4 4 SRC Fixed Source processor identifier

3 3 DSIZ Fixed Data size (see Table 24-23)

1 32 U-ADDR Variable Unique portion of the data write address

1 64 DATA Variable Data write values
(see Section 24.14.6, “Data Trace,” for details)

Nexus Development Interface

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 24-31

Data Trace -
Data Read Message

6 6 TCODE Fixed TCODE number = 6 (0x06)

4 4 SRC Fixed Source processor identifier

3 3 DSIZ Fixed Data size (see Table 24-23)

1 32 U-ADDR Variable Unique portion of the data read address

1 64 DATA Variable Data read values
(see Section 24.14.6, “Data Trace,” for details)

Error Message 6 6 TCODE Fixed TCODE number = 8 (0x08)

4 4 SRC Fixed Source processor identifier

5 5 ECODE Fixed Error code

Program Trace -
Direct Branch
Message w/ Sync1

6 6 TCODE Fixed TCODE number = 11 (0x0B)

4 4 SRC Fixed Source processor identifier

1 8 I-CNT Variable Number of sequential instructions executed since last
taken branch

1 32 F-ADDR Variable Full target address (leading zeros truncated)

Program Trace -
Indirect Branch
Message w/ Sync1

6 6 TCODE Fixed TCODE number = 12 (0x0C)

4 4 SRC Fixed Source processor identifier

1 8 I-CNT Variable Number of sequential instructions executed since last
taken branch

1 32 F-ADDR Variable Full target address (leading zeros truncated)

Data Trace -
Data Write Message
w/ Sync

6 6 TCODE Fixed TCODE number = 13 (0x0D)

4 4 SRC Fixed Source processor identifier

3 3 DSZ Fixed Data size (see Table 24-23)

1 32 F-ADDR Variable Full access address (leading zeros truncated)

1 64 DATA Variable Data write values
(see Section 24.14.6, “Data Trace,” for details)

Data Trace -
Data Read Message
w/ Sync

6 6 TCODE Fixed TCODE number = 14 (0x0E)

4 4 SRC Fixed Source processor identifier

3 3 DSZ Fixed Data size (see Table 24-23)

1 32 F-ADDR Variable Full access address (leading zeros truncated)

1 64 DATA Variable Data read values
(see Section 24.14.6, “Data Trace,” for details)

Table 24-19. Public TCODEs Supported by NZ3C3 (continued)

Message Name

Packet Size
(bits) Packet

Name
Packet
Type

Packet Description

Min Max

Nexus Development Interface

MPC5534 Microcontroller Reference Manual, Rev. 2

24-32 Freescale Semiconductor

Watchpoint
Message

6 6 TCODE Fixed TCODE number = 15 (0x0F)

4 4 SRC Fixed Source processor identifier

4 4 WPHIT Fixed Number indicating watchpoint sources

Resource Full
Message

6 6 TCODE Fixed TCODE number = 27 (0x1B)

4 4 SRC Fixed Source processor identifier

4 4 RCODE Fixed Resource code indicates which resource is the cause of
this message (See RCODE values in Table 24-22)

1 32 RDATA Variable Branch / predicate instruction history
(see Section 24.13.1, “Branch Trace Messaging (BTM)”)

Program Trace -
Indirect Branch
History Message

6 6 TCODE Fixed TCODE number = 28 (0x1C) (see footnote 1 below)

4 4 SRC Fixed Source processor identifier

1 8 I-CNT Variable Number of sequential instructions executed since last
taken branch

1 32 U-ADDR Variable Unique part of target address for taken
branches/exceptions

1 32 HIST Variable Branch / predicate instruction history
(see Section 24.13.1, “Branch Trace Messaging (BTM)”)

Program Trace -
Indirect Branch
History Message w/
Sync

6 6 TCODE Fixed TCODE number = 29 (0x1D) (see footnote 1 below)

4 4 SRC Fixed Source processor identifier

1 8 I-CNT Variable Number of sequential instructions executed since last
taken branch

1 32 F-ADDR Variable Full target address (leading zero (0) truncated)

1 32 HIST Variable Branch / predicate instruction history
(see Section 24.13.1, “Branch Trace Messaging (BTM)”)

Program Trace -
Program Correlation
Message

6 6 TCODE Fixed TCODE number = 33 (0x21)

4 4 SRC Fixed Source processor identifier

4 4 EVCODE Fixed Event correlated w/ program flow (see Table 24-22)

1 8 I-CNT Variable Number of sequential instructions executed since last
taken branch

1 32 HIST Variable Branch / predicate instruction history
(see Section 24.13.1, “Branch Trace Messaging (BTM)”)

1 You can select between the two types of program trace. The advantages for each are discussed in Section 24.13.1, “Branch
Trace Messaging (BTM). If the branch history method is selected, the shaded TCODES above are not messaged out.

Table 24-19. Public TCODEs Supported by NZ3C3 (continued)

Message Name

Packet Size
(bits) Packet

Name
Packet
Type

Packet Description

Min Max

Nexus Development Interface

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 24-33

Table 24-20 shows the error code encodings used when reporting an error via the Nexus3 Error Message.

Table 24-21 shows the encodings used for resource codes for certain messages.

Table 24-22 shows the event code encodings used for certain messages.

Table 24-20. Error Code Encoding (TCODE = 8)

Error Code
(ECODE)

Description

00000 Ownership trace overrun

00001 Program trace overrun

00010 Data trace overrun

00011 Read/write access error

00101 Invalid access opcode (Nexus register unimplemented)

00110 Watchpoint overrun

00111 (Program trace or data trace) and ownership trace overrun

01000 (Program trace or data trace or ownership trace) and watchpoint overrun

01001–10111 Invalid value

11000 BTM lost due to collision w/ higher priority message

11001–11111 Invalid value

Table 24-21. RCODE values (TCODE = 27)

Resource Code
(RCODE)

Description
Resource Data

(RDATA)

0000 Program Trace Instruction Counter overflow (reached 255 and was reset) 0xFF

0001 Program Trace, Branch and Predicate Instruction History. This type of
packet is terminated by a stop bit set to 1 after the last history bit.

Branch History. This type of
packet is terminated by a stop bit
set to a 1 after the last history bit.

Table 24-22. Event Code Encoding (TCODE = 33)

Event Code Description

0000 Entry into Debug Mode

0001 Entry into Low Power Mode (CPU only)1

1 The device enters Low Power Mode when the Nexus stall mode is enabled (NZ3C3_DC1[OVC]=0b011) and a
trace message is in danger of over-flowing the Nexus queue.

0010–0011 Invalid value. Reserved for future functionality

0100 Disabling Program Trace

0101–1101 Invalid value. Reserved for future functionality

1110 Entry into a VLE page from a non-VLE page

1111 Entry into a non-VLE page from a VLE page

Nexus Development Interface

MPC5534 Microcontroller Reference Manual, Rev. 2

24-34 Freescale Semiconductor

Table 24-23 shows the data trace size encodings used for certain messages.

NOTE
Program trace can be implemented using either branch history/predicate
instruction messages, or traditional direct and indirect branch messages.
You can select between the two types of Program Trace. The advantages for
each are discussed in Section 24.13.1, “Branch Trace Messaging (BTM). If
the Branch History method is selected, the shaded TCODES are not
messaged out.

24.11 NZ3C3 Memory Map and Register Definition
This section describes the NZ3C3 programmer’s model. NZ3C3 registers are accessed using the
JTAG/OnCE port in compliance with IEEE® 1149.1. See Section 24.11.11, “ NZ3C3 Register Access via
JTAG / OnCE” for details on NZ3C3 register access.

NOTE
NZ3C3 registers and output signals are numbered using bit 0 as the least
significant bit. This bit ordering is consistent with the ordering defined by
the IEEE®-ISTO 5001 standard.

Table 24-24 details the register map for the NZ3C3 module.

Table 24-23. Data Trace Size Encodings (TCODE = 5, 6, 13, 14)

DTM Size
Encoding

Transfer Size

000 Byte

001 Halfword (two bytes)

010 Word (four bytes)

011 Doubleword (eight bytes)

100 String (three bytes)

101–111 Invalid value

Table 24-24. NZ3C3 Memory Map

 Access Opcode Register Name Register Description Read Address Write Address

0x0001 CSC Client select control 1 0x0002 —

See NPC PCR Port configuration register 1 — —

0x0002 DC1 Development control 1 0x0004 0x0005

0x0003 DC2 Development control 2 0x0006 0x0007

0x0004 DS Development status 0x0008 —

0x0007 RWCS Read/write access control/status 0x000E 0x000F

0x0009 RWA Read/write access address 0x0012 0x0013

0x000A RWD Read/write access data 0x0014 0x0015

Nexus Development Interface

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 24-35

24.11.1 Port Configuration Register (PCR)

The Port Configuration Register (PCR) controls the basic port functions for all Nexus modules in a
multi-Nexus environment. This includes clock control and auxiliary port width. All bits in this register are
writable only once after system reset.

Figure 24-14. Port Configuration Register

0x000B WT Watchpoint trigger 0x0016 0x0017

0x000D DTC Data trace control 0x001A 0x001B

0x000E DTSA1 Data trace start address 1 0x001C 0x001D

0x000F DTSA2 Data trace start address 2 0x001E 0x001F

0x0012 DTEA1 Data trace end address 1 0x0024 0x0025

0x0013 DTEA2 Data trace end address 2 0x0026 0x0027

0x0014–0x003F — Reserved 0x0028–0x007E 0x0029–0x007F

1 The CSC and PCR registers are shown in this table as part of the Nexus programmer’s model. They are only
present at the top level Nexus3 controller (NPC), not in the NZ3C3 module. The device’s CSC register is readable
through Nexus3, but the PCR is shown for reference only.

O
P

C

0

M
C

K
_E

N

M
C

K
_D

IV

0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Nexus Reg# - PCR_INDEX; R/W; Reset - 0x0

Table 24-25. Port Configuration Register Fields

PCR[31] OPC OPC — Output Port Mode Control
0 = Reduced Port Mode configuration (minimum # nex_mdo[n:0] pins)
1 = Full Port Mode configuration (max# nex_mdo[n:0] pins defined by

SOC)

PCR[30] — Invalid value. Reserved for future functionality

PCR[29] MCK_EN MCK_EN — MCKO Clock enable
0 = nex_mcko is disabled
1 = nex_mcko is enabled

PCR[28:26] MCK_DIV MCK_DIV — MCKO Clock Divide Ratio (read the NOTE after this table)
000 = nex_mcko is 1x processor clock frequency.
001 = nex_mcko is 1/2x processor clock frequency.
010 = Reserved (defaults to 1/2x processor clock frequency.)
011 = nex_mcko is 1/4x processor clock frequency.
100–110 = Reserved (defaults to 1/2x processor clock frequency.)
111 = nex_mcko is 1/8x processor clock frequency.

PCR[25:0] — Invalid value. Reserved for future functionality

Table 24-24. NZ3C3 Memory Map (continued)

 Access Opcode Register Name Register Description Read Address Write Address

Nexus Development Interface

MPC5534 Microcontroller Reference Manual, Rev. 2

24-36 Freescale Semiconductor

NOTE
The CSC and PCR registers are in separate system module for a
multi-Nexus environment. If the e200z3 Nexus3 module is the only Nexus
module, the CSC and PCR registers are not implemented, and the e200z3
Nexus3 development control register 1 (DC1) set the Nexus port
functionality.

24.11.2 Development Control Registers 1 and 2 (DC1, DC2)

The development control registers are used to control the basic development features of the NZ3C3
module. Development control register 1 is shown in Figure 24-15 and its fields are described in
Table 24-26.

Nexus Reg: 0x0002 Access: R/W

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R OPC MCK_DIV
EOC

0
PTM WEN

0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
OVC EIC TM

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-15. Development Control Register 1 (DC1)

Table 24-26. DC1 Field Descriptions

Field Description

31
OPC1

Output port mode control.
0 Reduced-port mode configuration (four MDO pins)
1 Full-port mode configuration (12 MDO pins)

30–29
MCK_DIV

[1:0]1

MCKO clock divide ratio (see note below).
00 MCKO is 1x processor clock frequency.
01 MCKO is 1/2x processor clock frequency.
10 MCKO is 1/4x processor clock frequency.
11 MCKO is 1/8x processor clock frequency.

28–27
EOC[1:0]

EVTO control.
00 EVTO upon occurrence of watchpoints (configured in DC2)
01 EVTO upon entry into debug mode
10 EVTO upon time-stamping event
11 Invalid value

26 Reserved

25
PTM

Program trace method.
0 Program trace uses traditional branch messages
1 Program trace uses branch history messages

Nexus Development Interface

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 24-37

Development control register 2 is shown in Figure 24-16 and its fields are described in Table 24-27.

24
WEN

Watchpoint trace enable.
0 Watchpoint Messaging disabled
1 Watchpoint Messaging enabled

23–8 Reserved

7–5
OVC[2:0]

Overrun control.
000 Generate overrun messages
001–010 Invalid value
011 Delay processor for BTM / DTM / OTM overruns
1XX Invalid value

4–3
EIC[1:0]

EVTI control.
00 EVTI is used for synchronization (program trace/ data trace)
01 EVTI is used for debug request
1X Invalid value

2–0
TM[2:0]

Trace mode. Any or all of the TM bits can be set, enabling one or more traces.
000 No trace
1XX Program trace enabled
X1X Data trace enabled
XX1 Ownership trace enabled

1 The output port mode control bit (OPC) and MCKO divide bits (MCK_DIV) are shown for clarity. These functions are
controlled globally by the NPC port control register (PCR). These bits are writable in the PCR but have no effect.

Nexus Reg: 0x0003 Access: R/W

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
EWC

0 0

W

Reset 0

Figure 24-16. Development Control Register 2 (DC2)

Table 24-27. DC2 Field Descriptions

Field Description

31–24
EWC[7:0]

EVTO watchpoint configuration. Any or all of the bits in EWC can be set to configure the EVTO watchpoint.
00000000No Watchpoints trigger EVTO
1XXXXXXXWatchpoint #0 (IAC1 from Nexus1) triggers EVTO
X1XXXXXXWatchpoint #1 (IAC2 from Nexus1) triggers EVTO
XX1XXXXXWatchpoint #2 (IAC3 from Nexus1) triggers EVTO
XXX1XXXXWatchpoint #3 (IAC4 from Nexus1) triggers EVTO
XXXX1XXXWatchpoint #4 (DAC1 from Nexus1) triggers EVTO
XXXXX1XXWatchpoint #5 (DAC2 from Nexus1) triggers EVTO
XXXXXX1XWatchpoint #6 (DCNT1 from Nexus1) triggers EVTO
XXXXXXX1Watchpoint #7 (DCNT2 from Nexus1) triggers EVTO

23–0 Reserved

Table 24-26. DC1 Field Descriptions (continued)

Field Description

Nexus Development Interface

MPC5534 Microcontroller Reference Manual, Rev. 2

24-38 Freescale Semiconductor

NOTE
The EOC bits in DC1 must be programmed to trigger EVTO on watchpoint
occurrence for the EWC bits to have any effect.

24.11.3 Development Status Register (DS)

The development status register is used to report system debug status. When debug mode is entered or
exited, or an e200z3-defined low power mode is entered, a debug status message is transmitted with
DS[31:24]. The external tool can read this register at any time.

24.11.4 Read/Write Access Control and Status (RWCS)

The read write access control/status register provides control for read/write access. Read/write access
provides DMA-like access to memory-mapped resources on the system bus either while the processor is
halted, or during runtime. The RWCS register also provides read/write access status information as shown
in Table 24-30.

Nexus Reg: 0x0004 Access: R/O

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R DBG 0 0 0 LPC CHK 0

W

Reset 0

Figure 24-17. Development Status Register (DS)

Table 24-28. DS Field Descriptions

Field Description

31–28
DBG

Bit 31 is the e200z3 CPU debug mode transition status. Bits 31–28 are sent as the debug status message.
0 CPU not in debug mode
1 CPU in debug mode

27–26
LPC[1:0]

e200z3 CPU low power mode status.
00 Normal (run) mode
01 CPU in halted state
10 CPU in stopped state
11 Invalid value

25
CHK

e200z3 CPU checkstop status.
0 CPU not in checkstop state
1 CPU in checkstop state

24–0 Reserved

Nexus Development Interface

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 24-39

Table 24-29 describes the fields and functions in the read/write control and status (RWCS) register:

Nexus Reg: 0x0007 Access: R/W

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
AC RW SZ MAP PR BST

0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
CNT ERR DV

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-18. Read/Write Access Control and Status Register (RWCS)

Table 24-29. RWCS Field Description

Field Description

31
AC

Access control.
0 End access
1 Start access

30
RW

Read/write select.
0 Read access
1 Write access

29–27
SZ[2:0]

Word size.
000 8-bit (byte)
001 6-bit (halfword)
010 32-bit (word)
011 64-bit (doubleword - only in burst mode)
100–111 Invalid value (default to word)

26–24
MAP[2:0]

MAP select.
000 Primary memory map
001–111 Invalid value

23–22
PR[1:0]

Read/write access priority.
00 Lowest access priority
01 Invalid value (default to lowest priority)
10 Invalid value (default to lowest priority)
11 Highest access priority

21
BST

Burst control.
0 Module accesses are single bus cycle at a time.
1 Module accesses are performed as burst operation.

20–16 Reserved

15–2
CNT[13:0]

Access control count. Number of accesses of word size SZ

1
ERR

Read/write access error. See Table 24-30.

0
DV

Read/write access data valid. See Table 24-30.

Nexus Development Interface

MPC5534 Microcontroller Reference Manual, Rev. 2

24-40 Freescale Semiconductor

Table 24-30 details the status bit encodings.

24.11.5 Read/Write Access Address (RWA)

The read/write access address register provides the system bus address to be accessed when initiating a
read or a write access.

24.11.6 Read/Write Access Data (RWD)

The read/write access data register provides the data to/from system bus memory-mapped locations when
initiating a read or a write access.

24.11.7 Watchpoint Trigger Register (WT)

The watchpoint trigger register allows the watchpoints defined within the e200z3 Nexus1 logic to trigger
actions. These watchpoints can control program and/or data trace enable and disable. The WT bits can be
used to produce an address related ‘window’ for triggering trace messages.

Table 24-30. Read/Write Access Status Bit Encoding

Read Action Write Action ERR DV

Read access has not completed Write access completed without error 0 0

Read access error has occurred Write access error has occurred 1 0

Read access completed without error Write access has not completed 0 1

Not allowed Not allowed 1 1

Nexus Reg: 0x0009 Access: R/W

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Read/Write Address

W

Reset 0

Figure 24-19. Read/Write Access Address Register (RWA)

Nexus Reg: 0x000A Access: R/W

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Read/Write Data

W

Reset 0

Figure 24-20. Read/Write Access Data Register (RWD)

Nexus Reg: 0x000B Access: R/W

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
PTS PTE DTS DTE

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0

Figure 24-21. Watchpoint Trigger Register (WT)

Nexus Development Interface

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 24-41

Table 24-31 details the watchpoint trigger register fields.

NOTE
The WT bits control program and data trace only if the TM bits in the
development control register 1 (DC1) have not been set to enable program
and data trace, respectively.

Table 24-31. WT Field Descriptions

Field Description

31–29
PTS[2:0]

Program trace start control.
000 Trigger disabled
001 Use watchpoint #0 (IAC1 from Nexus1)
010 Use watchpoint #1 (IAC2 from Nexus1)
011 Use watchpoint #2 (IAC3 from Nexus1)
100 Use watchpoint #3 (IAC4 from Nexus1)
101 Use watchpoint #4 (DAC1 from Nexus1)
110 Use watchpoint #5 (DAC2 from Nexus1)
111 Use watchpoint #6 or #7 (DCNT1 or DCNT2 from Nexus1)

28–26
PTE[2:0]

Program trace end control.
000 Trigger disabled
001 Use watchpoint #0 (IAC1 from Nexus1)
010 Use watchpoint #1 (IAC2 from Nexus1)
011 Use watchpoint #2 (IAC3 from Nexus1)
100 Use watchpoint #3 (IAC4 from Nexus1)
101 Use watchpoint #4 (DAC1 from Nexus1)
110 Use watchpoint #5 (DAC2 from Nexus1)
111 Use watchpoint #6 or #7 (DCNT1 or DCNT2 from Nexus1)

25–23
DTS[2:0]

Data trace start control.
000 Trigger disabled
001 Use watchpoint #0 (IAC1 from Nexus1)
010 Use watchpoint #1 (IAC2 from Nexus1)
011 Use watchpoint #2 (IAC3 from Nexus1)
100 Use watchpoint #3 (IAC4 from Nexus1)
101 Use watchpoint #4 (DAC1 from Nexus1)
110 Use watchpoint #5 (DAC2 from Nexus1)
111 Use watchpoint #6 or #7 (DCNT1 or DCNT2 from Nexus1)

22–20
DTE[2:0]

Data trace end control.
000 Trigger disabled
001 Use watchpoint #0 (IAC1 from Nexus1)
010 Use watchpoint #1 (IAC2 from Nexus1)
011 Use watchpoint #2 (IAC3 from Nexus1)
100 Use watchpoint #3 (IAC4 from Nexus1)
101 Use watchpoint #4 (DAC1 from Nexus1)
110 Use watchpoint #5 (DAC2 from Nexus1)
111 Use watchpoint #6 or #7 (DCNT1 or DCNT2 from Nexus1)

19–0 Reserved

Nexus Development Interface

MPC5534 Microcontroller Reference Manual, Rev. 2

24-42 Freescale Semiconductor

24.11.8 Data Trace Control Register (DTC)

The data trace control register controls whether DTM messages are restricted to reads, writes, or both for
a user programmable address range. There are two data trace channels controlled by the DTC for the
Nexus3 module. Each channel can also be programmed to trace data accesses or instruction accesses.

Table 24-32 details the data trace control register fields.

Nexus Reg: 0x000D Access: R/W

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
RWT1 RWT2

0 0 0 0 0 0 0 0 0 0 0 0
RC1 RC2

0 0
DI1 DI2

0 0

W

Reset 0

Figure 24-22. Data Trace Control Register (DTC)

Table 24-32. DTC Field Description

Field Description

31–30
RWT1[1:0]

Read/write trace 1.
00 No trace enabled
X1 Enable data read trace
1X Enable data write trace

29–28
RWT2[1:0]

Read/write trace 2.
00 No trace enabled
X1 Enable data read trace
1X Enable data write trace

27–8 Reserved

7
RC1

Range control 1.
0 Condition trace on address within range
1 Condition trace on address outside of range

6
RC2

Range control 2
0 Condition trace on address within range
1 Condition trace on address outside of range

5–4 Reserved

3
DI1

Data access/instruction access trace 1.
0 Condition trace on data accesses
1 Condition trace on instruction accesses

2
DI2

Data access/instruction access trace 2
0 Condition trace on data accesses
1 Condition trace on instruction accesses

1–0 Reserved

Nexus Development Interface

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 24-43

24.11.9 Data Trace Start Address Registers 1 and 2 (DTSAn)

The data trace start address registers define the start addresses for each trace channel.

24.11.10 Data Trace End Address Registers 1 and 2 (DTEAn)

The data trace end address registers define the end addresses for each trace channel.

Table 24-33 illustrates the range that is selected for data trace for various cases of DTSA being less than,
greater than, or equal to DTEA.

Nexus Reg: 0x000E Access: R/W

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Data Trace Start Address

W

Reset 0

Figure 24-23. Data Trace Start Address Register 1 (DTSA1)

Nexus Reg: 0x000F Access: R/W

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Data Trace Start Address

W

Reset 0

Figure 24-24. Data Trace Start Address Register 2 (DTSA2)

Nexus Reg: 0x0012 Access: R/W

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Data Trace End Address

W

Reset 0

Figure 24-25. Data Trace End Address Register 1 (DTEA1)

Nexus Reg: 0x0013 Access: R/W

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Data Trace End Address

W

Reset 0

Figure 24-26. Data Trace End Address Register 2 (DTEA2)

Table 24-33. Data Trace—Address Range Options

Programmed Values Range Control Bit Value Range Selected

DTSA < DTEA 0 DTSA –> <– DTEA

DTSA < DTEA 1 <– DTSA DTEA –>

Nexus Development Interface

MPC5534 Microcontroller Reference Manual, Rev. 2

24-44 Freescale Semiconductor

NOTE
DTSA must be less than DTEA to guarantee correct data write/read traces.
Data trace ranges are exclusive of the DTSA and DTEA addresses.

24.11.11 NZ3C3 Register Access via JTAG / OnCE

Access to Nexus3 register resources is enabled by loading a single instruction
(ACCESS_AUX_TAP_ONCE) into the JTAGC instruction register (IR), and then loading the
corresponding OnCE OCMD register with the NEXUS3_ACCESS instruction (see Table 24-5). For the
NZ3C3 module, the OCMD value is 0b00_0111_1100.

After the ACCESS_AUX_TAP_ONCE instruction has been loaded, the JTAG/OnCE port allows
tool/target communications with all Nexus3 registers according to the register map in Table 24-24.

Reading/writing of a NZ3C3 register then requires two (2) passes through the data-scan (DR) path of the
JTAG state machine (see 24.14.10).

1. The first pass through the DR selects the NZ3C3 register to be accessed by providing an index (see
Table 24-24), and the direction (read/write). This is achieved by loading an 8-bit value into the
JTAG data register (DR). This register has the following format:

2. The second pass through the DR then shifts the data in or out of the JTAG port, lsb first.

a) During a read access, data is latched from the selected Nexus register when the JTAG state
machine passes through the capture-DR state.

b) During a write access, data is latched into the selected Nexus register when the JTAG state
machine passes through the update-DR state.

DTSA > DTEA — Invalid range—no trace

DTSA = DTEA — Invalid range—no trace

Nexus Register Index: Selected from values in Table 24-24

Read/Write (R/W): 0 Read
1 Write

Table 24-33. Data Trace—Address Range Options (continued)

Programmed Values Range Control Bit Value Range Selected

Nexus register index

(7-bits) (1-bit)

R/W

RESET Value: 0x00

Nexus Development Interface

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 24-45

24.12 Ownership Trace
This section details the ownership trace features of the NZ3C3 module.

Ownership trace provides a macroscopic view, such as task flow reconstruction, when debugging software
written in a high level (or object-oriented) language. It offers the highest level of abstraction for tracking
operating system software execution. This is especially useful when the developer is not interested in
debugging at lower levels.

24.12.1 Ownership Trace Messaging (OTM)

Ownership trace information is messaged via the auxiliary port using an ownership trace message (OTM).
The e200z3 processor contains a Power Architecture Book E defined process ID register within the CPU.

The process ID register is updated by the operating system software to provide task/process ID
information. The contents of this register are replicated on the pins of the processor and connected to
Nexus. The process ID register value can be accessed using the mfspr/mtspr instructions. Please see the
e200z3 PowerPCTM Core Reference Manualfor more details on the process ID register.

The only condition that causes an ownership trace message occurs when the OTR register is updated or
process ID register by the e200z3 processor, the data is latched within Nexus, and is messaged out via the
auxiliary port, allowing development tools to trace ownership flow.

Ownership trace information is messaged out in the following format:

Figure 24-27. Ownership Trace Message Format

24.12.2 OTM Error Messages

An error message occurs when a new message cannot be queued due to the message queue being full. The
FIFO discards incoming messages until the queue the queue is completely empty. After it empties, an error
message is queued. The error encoding indicate the message types denied service to the queue while the
FIFO was emptying.

If an OTM message only attempts to enter the queue while the queue is emptying, the error message
incorporates the OTM error encoding (00000) only. If OTM and either BTM or DTM messages attempt to
enter the queue, the error message incorporates the OTM and (program or data) trace error encoding
(00111). If a watchpoint also attempts to enter the queue while the FIFO is emptying, then the error
message incorporates error encoding (01000).

NOTE
The OVC bits within the DC1 register can be set to delay the CPU to
alleviate (but not eliminate) potential overrun situations.

PROCESS

msb lsb

12

SRC TCODE (000010)

3

6 bits4 bits32 bits

Fixed length = 42 bits

Nexus Development Interface

MPC5534 Microcontroller Reference Manual, Rev. 2

24-46 Freescale Semiconductor

Error information is messaged out in the following format (see Table 24-20):

Figure 24-28. Error Message Format

24.12.3 OTM Flow

Ownership trace messages are generated when the operating system writes to the e200z3 process ID
register or the memory mapped ownership trace register.

The following flow describes the OTM process:

1. The process ID register is a system control register. It is internal to the e200z3 processor and can
be accessed by using PPC instructions mtspr and mfspr. The contents of this register are replicated
on the pins of the processor and connected to Nexus.

2. OTR/process ID register reads do not cause ownership trace messages to be transmitted by the
NZ3C3 module.

3. If the periodic OTM message counter expires (after 255 queued messages without an OTM), an
OTM is sent using the latched data from the previous OTM or process ID register write.

24.13 Program Trace
This section details the program trace mechanism supported by NZ3C3 for the e200z6 processor. Program
trace is implemented via branch trace messaging (BTM) as per the Class 3 IEEE®-ISTO 5001-2003
standard definition. Branch trace messaging for e200z3 processors is accomplished by snooping the
e200z3 virtual address bus (between the CPU and MMU), attribute signals, and CPU status.

24.13.1 Branch Trace Messaging (BTM)

Traditional branch trace messaging facilitates program trace by providing the following types of
information:

• Messages generated for direct branches that were taken indicate the number of sequential
instructions executed since the last branch or exception. Branches not taken (direct or indirect) are
not counted as sequential instructions.

• Messages generated for indirect branches and exceptions that were taken indicate:

— Number of sequential instructions executed since the last branch that was taken

— Exception with the unique portion of the branch target address or exception vector address

• History field in the branch and predicate instructions that can generate the following messages for
program trace:

ECODE (00000 / 00111 / 01000)

msb lsb

12

SRC TCODE (001000)

3

6 bits4 bits5 bits

Fixed length = 15 bits

Nexus Development Interface

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 24-47

— Number of sequential instructions executed since the last indirect branch was taken, as well as
the unique portion of the indirect branch address

— Number of sequential instructions executed since the last exception was processed, as well as
the unique portion of the exception vector address

— Number of sequential instructions executed since the last predicate instruction was taken

— History field in the branch and predicate instruction unique to the branch target address or
exception vector address. Each bit in the history field represents a direct branch or predicated
instruction where a value of one (1) indicates taken, and a value of zero (0) indicates not taken.
Certain instructions (evsel) generate a pair of predicate bits which are both reported as
consecutive bits in the history field.

24.13.1.1 e200z3 Indirect Branch Message Instructions
(Power Architecture Book E)

Table 24-34 shows the types of instructions and events which cause indirect branch messages or branch
history messages to be encoded.

24.13.1.2 e200z3 Direct Branch Message Instructions
(Power Architecture Book E)

Table 24-35 shows the instruction types that cause direct branch messages, or toggle a bit in the instruction
history buffer in a resource full message or branch history message before it is sent out.

24.13.1.3 BTM Using Branch History Messages

Traditional BTM messaging can accurately track the number of sequential instructions between branches,
but cannot accurately indicate which instructions were conditionally executed, and which were not.

Branch history messaging solves this problem by providing a predicated instruction history field in each
indirect branch message. Each bit in the history represents a predicated instruction or direct branch. A
value of one (1) indicates the conditional instruction was executed or the direct branch was taken. A value
of zero (0) indicates the conditional instruction was not executed or the direct branch was not taken.

Table 24-34. Indirect Branch Message Sources

Source of Indirect Branch Message Instructions

Taken branch relative to a register value bcctr, bcctrl, bclr, bclrl

System call / trap exceptions taken sc, tw, twi

Return from interrupts / exceptions rfi, rfci, rfdi

Table 24-35. Direct Branch Message Sources

Source of Direct Branch Message Instructions

Taken direct branch instructions b, ba, bl, bla, bc, bca, bcl, bcla

Instruction synchronize isync

Nexus Development Interface

MPC5534 Microcontroller Reference Manual, Rev. 2

24-48 Freescale Semiconductor

Certain instructions (evsel) generate a pair of predicate bits which are both reported as consecutive bits in
the history field.

Branch history messages solve predicated instruction tracking and save bandwidth since only indirect
branches cause messages to be queued.

24.13.1.4 BTM Using Traditional Program Trace Messages

Based on the PTM bit in the DC register (DC[PTM]), program tracing can use:

• Branch history messages (DC[PTM] = 1); or

• Traditional direct and indirect branch messages (DC[PTM] = 0)

Branch history saves bandwidth and keeps consistency between methods of program trace, yet can lose
temporal order between BTM messages and other types of messages. Since direct branches are not
messaged, but are instead included in the history field of the indirect branch history message, other types
of messages can enter the FIFO between branch history messages. The development tool cannot determine
the order of “events” that occurred for direct branches by the order in which messages are sent out.

Traditional BTM messages maintain their temporal ordering because each event that queues a message to
the FIFO is processed and sent in the order it was generated, and the message order is maintained when it
is transmitted.

24.13.2 BTM Message Formats

The e200z3 Nexus3 module supports three types of traditional BTM messages—direct, indirect, and
synchronization messages. It supports two types of branch history BTM messages—indirect branch
history, and indirect branch history with synchronization messages. Debug status messages and error
messages are also supported.

24.13.2.1 Indirect Branch Messages (History)

Indirect branches include all taken branches whose destination is determined at run time, interrupts and
exceptions. If DC[PTM] is set, indirect branch information is messaged out in the following format:

Figure 24-29. Indirect Branch Message (History) Format

HIST

msb lsb

234

U-ADDR I-CNT SRC

5

4 bits

1

TCODE (011100)

1–8 bits1–32 bits1–32 bits 6 bits

Max length = 82 bits; Min length = 13 bits

Nexus Development Interface

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 24-49

24.13.2.2 Indirect Branch Messages (Traditional)

If DC[PTM] is cleared, indirect branch information is messaged out in the following format:

Figure 24-30. Indirect Branch Message Format

24.13.2.3 Direct Branch Messages (Traditional)

Direct branches (conditional or unconditional) are all taken branches whose destination is fixed in the
instruction opcode. Direct branch information is messaged out in the following format:

Figure 24-31. Direct Branch Message Format

NOTE
When DC[PTM] is set, direct branch messages are not transmitted. Instead,
each direct branch or predicated instruction toggles a bit in the history
buffer.

24.13.2.4 Resource Full Messages

The resource full message is used in conjunction with the branch history messages. The resource full
message is generated when the internal branch/predicate history buffer is full, or if the BTM Instruction
sequence counter (I-CNT) overflows. If synchronization is needed at the time this message is generated,
the synchronization is delayed until the next branch trace message that is not a resource full message.

The current value of the history buffer is transmitted as part of the resource full message. This information
can be concatenated by the tool with the branch/predicate history information from subsequent messages
to obtain the complete branch history for a message. The internal history value is reset by this message,
and the I-CNT value is reset as a result of a bit being added to the history buffer.

Figure 24-32. Resource Full Message Format

msb lsb

234

U-ADDR I-CNT SRC

4 bits

1

TCODE (000100)

1–8 bits1–32 bits 6 bits

Max length = 50 bits; Min length = 12 bits

I-CNT

msb lsb

12

SRC TCODE (000011)

3

6 bits4 bits1–8 bits

Max length = 18 bits; Min length = 11 bits

TCODE (011011)RCODE

(6 bits) (4 bits)

Src. Proc.

(4 bits)

Max length = 46 bits; Min length = 15 bits

(1–32 bits)

RDATA

Nexus Development Interface

MPC5534 Microcontroller Reference Manual, Rev. 2

24-50 Freescale Semiconductor

24.13.2.5 Debug Status Messages

NOTE
Debug Status Messages (DSMs) are enabled if the Nexus module is enabled.

Debug status messages report low power mode and debug status. Entering/exiting debug mode as well as
entering a low power mode triggers a debug status message.

Debug status information is sent out in the following format:

Figure 24-33. Debug Status Message Format

24.13.2.6 Program Correlation Messages

Program correlation messages are used to correlate events to the program flow that are not necessarily
associated with the instruction stream. To maintain accurate instruction tracing information when entering
debug mode or a CPU low power mode (where tracing can be disabled), this message is sent upon entry
into one of these two modes and includes the instruction count and branch history. Program correlation is
messaged out in the following format:

Figure 24-34. Program Correlation Message Format

24.13.2.7 BTM Overflow Error Messages

An error message occurs when a new message cannot be queued because the message queue is full. The
FIFO discards incoming messages until the queue is completely empty. After it is empty, an error message
is queued. The error encoding indicates which message types were denied queueing while the FIFO was
emptying.

If only a program trace message attempts to enter the queue while it is being emptied, the error message
incorporates the program trace only error encoding (00001). If both OTM and program trace messages
attempt to enter the queue, the error message incorporates the OTM and program trace error encoding
(00111). If a watchpoint also attempts to be queued while the FIFO is being emptied, then the error
message incorporates error encoding (01000).

STATUS [31:24]

msb lsb

12

SRC TCODE (000000)

3

6 bits4 bits8 bits

Fixed length = 18 bits

HIST

msb lsb

234

I-CNT EVCODE SRC

5

4 bits

1

TCODE (100001)

4 bits1–8 bits1–32 bits 6 bits

Max length = 54 bits; Min length = 16 bits

Nexus Development Interface

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 24-51

NOTE
The OVC bits within the DC1 register can be set to delay the CPU to
alleviate (but not eliminate) potential overrun situations.

 Error information is messaged out in the following format:

Figure 24-35. Error Message Format

24.13.3 Program Trace Synchronization Messages

A program trace direct/indirect branch with sync message is messaged via the auxiliary port
(provided program trace is enabled) for the following conditions (see Table 24-36):

• Initial program trace message upon the first direct/indirect branch after exit from system reset or
whenever program trace is enabled

• Upon direct/indirect branch after returning from a CPU low power state

• Upon direct/indirect branch after returning from debug mode

• Upon direct/indirect branch after occurrence of queue overrun (can be caused by any trace
message), provided program trace is enabled

• Upon direct/indirect branch after the periodic program trace counter has expired indicating 255
without-sync program trace messages have occurred since the last with-sync message occurred

• Upon direct/indirect branch after assertion of the event in (EVTI) pin if the EIC bits within the DC1
register have enabled this feature

• Upon direct/indirect branch after the sequential instruction counter has expired indicating 255
instructions have occurred between branches

• Upon direct/indirect branch after a BTM message was lost due to an attempted access to a secure
memory location.

• Upon direct/indirect branch after a BTM message was lost due to a collision entering the FIFO
between the BTM message and either a watchpoint message or an ownership trace message

If the NZ3C3 module is enabled at reset, a EVTI assertion initiates a program trace direct/indirect branch
with sync message (if program trace is enabled) upon the first direct/indirect branch. The format for
program trace direct/indirect branch with sync messages is as follows:

Figure 24-36. Direct/Indirect Branch with Sync Message Format

ECODE (00001 / 00111 / 01000)

msb lsb

12

SRC TCODE (001000)

3

6 bits4 bits5 bits

Fixed length = 15 bits

msb lsb

234

F-ADDR I-CNT SRC

4 bits

1

TCODE (001011 or 001100)

1–8 bits1–32 bits 6 bits

Max length = 50 bits; Min length = 12 bits

Nexus Development Interface

MPC5534 Microcontroller Reference Manual, Rev. 2

24-52 Freescale Semiconductor

The formats for program trace direct/indirect branch with sync. messages and indirect branch history with
sync. messages are as follows:

Figure 24-37. Indirect Branch History with Sync. Message Format

Exception conditions that result in program trace synchronization are summarized in Table 24-36.

Table 24-36. Program Trace Exception Summary

Exception Condition Exception Handling

System Reset Negation At the negation of JTAG reset (JCOMP), queue pointers, counters, state machines, and
registers within the NZ3C3 module are reset. Upon the first branch out of system reset
(if program trace is enabled), the first program trace message is a direct/indirect branch
with sync. message.

Program Trace Enabled The first program trace message (after program trace has been enabled) is a
synchronization message.

Exit from Low Power/Debug Upon exiting from the low power or debug modes, the next direct/indirect branch is
converted to a direct/indirect branch with sync. message.

Queue Overrun An error message occurs when a new message cannot be queued due to the message
queue being full. The FIFO discards messages until the queue is completely empty. After
it is empty, an error message is queued. The error encoding indicates the message types
denied queueing while the FIFO was emptying. The next BTM message in the queue is
a direct/indirect branch with sync. message.

Periodic Program Trace Sync. A forced synchronization occurs periodically after 255 program trace messages have
been queued. A direct/indirect branch with sync. message is queued. The periodic
program trace message counter then resets.

Event In If the Nexus module is enabled, an EVTI assertion initiates a direct/indirect branch with
sync. message upon the next direct/indirect branch (if program trace is enabled and the
EIC bits of the DC1 register have enabled this feature).

Sequential Instruction Count
Overflow

When the sequential instruction counter reaches its maximum count (up to 255
sequential instructions can be executed), a forced synchronization occurs. The
sequential counter then resets. A program trace direct/indirect branch with sync.message
is queued upon execution of the next branch.

Attempted Access to Secure
Memory

For devices which implement security, any attempt to branch to secure memory locations
temporarily disables program trace and cause the corresponding BTM to be lost. The
following direct/indirect branch queues a direct/indirect branch with sync. message. The
count value within this message can be inaccurate since re-enabling program trace does
not guarantee alignment on an instruction boundary.

HIST

msb lsb

234

F-ADDR I-CNT SRC

5

4 bits

1

TCODE (011101)

1–8 bits1–32 bits1–32 bits 6 bits

Max length = 82 bits; Min length = 13 bits

Nexus Development Interface

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 24-53

24.14 BTM Operation

24.14.1 Enabling Program Trace

Both types of branch trace messaging can be enabled in one of two ways:

• Setting the TM field of the DC1 register to enable program trace (DC1[TM])

• Using the PTS field of the WT register to enable program trace on watchpoint hits (e200z3
watchpoints are configured within the CPU)

24.14.2 Relative Addressing

The relative address feature is compliant with the IEEE®-ISTO 5001-2003 standard recommendations,
and is designed to reduce the number of bits transmitted for addresses of indirect branch messages.

The address transmitted is relative to the target address of the instruction which triggered the previous
indirect branch (or sync) message. It is generated by XOR’ing the new address with the previous address,
and then using only the results up to the most significant 1 in the result. To recreate this address, an XOR
of the (most-significant 0-padded) message address with the previously decoded address gives the current
address.

Previous address (A1) =0x0003FC01, New address (A2) = 0x0003F365

Figure 24-38. Relative Address Generation and Re-creation

Collision Priority All messages have the following priority: WPM -> OTM -> BTM -> DTM. A BTM message
which attempts to enter the queue at the same time as a watchpoint message or
ownership trace message is lost. An error message is sent indicating the BTM was lost.
The following direct/indirect branch queues a direct/indirect branch with sync. message.
The count value within this message reflects the number of sequential instructions
executed after the last successful BTM message was generated. This count includes the
branch which did not generate a message due to the collision.

Table 24-36. Program Trace Exception Summary (continued)

Exception Condition Exception Handling

Message Generation:

A1 = 0000 0000 0000 0011 1111 1100 0000 0001
A2 = 0000 0000 0000 0011 1111 0011 0110 0101

A1 A2 = 0000 0000 0000 0000 0000 1111 0110 0100

Address Message (M1) = 1111 0110 0100

Address Re-creation:

A1 M1 = A2
A1 = 0000 0000 0000 0011 1111 1100 0000 0001
M1 = 0000 0000 0000 0000 0000 1111 0110 0100

A2 = 0000 0000 0000 0011 1111 0011 0110 0101

Nexus Development Interface

MPC5534 Microcontroller Reference Manual, Rev. 2

24-54 Freescale Semiconductor

24.14.3 Branch and Predicate Instruction History (HIST)

If DC[PTM] is set, BTM messaging uses the branch history format. The branch history (HIST) packet in
these messages provides a history of direct branch execution used for reconstructing the program flow.
This packet is implemented as a left-shifting shift register. The register is always pre-loaded with a value
of one (1). This bit acts as a stop bit so that the development tools can determine which bit is the end of
the history information. The pre-loaded bit itself is not part of the history, but is transmitted with the
packet.

A value of one (1) is shifted into the history buffer on a taken branch (condition or unconditional) and on
any instruction whose predicate condition executed as true. A value of zero (0) is shifted into the history
buffer on any instruction whose predicate condition executed as false as well as on branches not taken.
This includes indirect as well as direct branches were not taken. For the evsel instruction, two bits are
shifted in, corresponding to the low element (shifted in first) and the high element (shifted in second)
conditions.

24.14.4 Sequential Instruction Count (I-CNT)

The I-CNT packet, is present in all BTM messages. For traditional branch messages, I-CNT represents the
number of sequential instructions, or non-taken branches in between direct/indirect branch messages.

For branch history messages, I-CNT represents the number of instructions executed since the last
taken/non-taken direct branch, last taken indirect branch or exception. Not taken indirect branches are
considered sequential instructions and cause the instruction count to increment. I-CNT also represents the
number of instructions executed since the last predicate instruction.

The sequential instruction counter overflows when its value reaches 255. The next BTM message is
converted to a synchronization type message.

24.14.5 Program Trace Queueing

NZ3C3 implements a message queue. Messages that enter the queue are transmitted via the auxiliary pins
in the order in which they are queued.

NOTE
If multiple trace messages must be queued at the same time, Watchpoint
Messages have the highest priority (WPM −> OTM −> BTM −> DTM).

Nexus Development Interface

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 24-55

24.14.5.1 Program Trace Timing Diagrams

Figure 24-39. Program Trace (MDO = 12)—Indirect Branch Message (Traditional)

Figure 24-40. Program Trace (MDO = 2)—Indirect Branch Message (History)

Figure 24-41. Program Trace—Direct Branch (Traditional) and Error Messages

MCKO

MSEO[1:0]

TCODE = 4
Source Processor = 0b0000
Number of Sequence Instructions = 128
Relative Address = 0xA5

01 1100

MDO[11:0] 0000 0010 0000 0000 1010 01010000 0000 0100

TCODE = 28

MCKO

MSEO

Source Processor = 0b0000
Number of Sequential Instructions = 0
Relative Address = 0xA5
Branch History = 0b1010_0101 (with Stop)

MDO[1:0] 11 01 00 00 00 01 01 10 10 01 01 10 1000 00

DBM:

MCKO

MSEO_B

TCODE = 3
Source Processor = 0b0000
Number of Sequential Instructions = 3

MDO[1:0] 00 00 00 00 11 00 00 10 00 00 00 01 00 00

Error:
TCODE = 8
Source Processor = 0b0000
Error Code = 1 (Queue Overrun – BTM Only)

ErrorDirect Branch

11

Nexus Development Interface

MPC5534 Microcontroller Reference Manual, Rev. 2

24-56 Freescale Semiconductor

Figure 24-42. Program Trace—Indirect Branch with Sync. Message

24.14.6 Data Trace

This section deals with the data trace mechanism supported by the NZ3C3 module. Data trace is
implemented via data write messaging (DWM) and data read messaging (DRM), as per the IEEE®-ISTO
5001-2003 standard.

24.14.6.1 Data Trace Messaging (DTM)

Data trace messaging for e200z3 is accomplished by snooping the e200z3 virtual data bus (between the
CPU and MMU), and storing the information for qualifying accesses (based on enabled features and
matching target addresses). The NZ3C3 module traces all data access that meet the selected range and
attributes.

NOTE
Data trace is only performed on the e200z3 virtual data bus. This allows for
data visibility for the incorporated data cache. Only e200z3 CPU initiated
accesses are traced.

Data trace messaging can be enabled in one of two ways:

• Setting the TM field of the DC1 register to enable data trace (DC1[TM]).

• Using WT[DTS] to enable data trace on watchpoint hits (e200z3 watchpoints are configured within
the Nexus1 module)

24.14.6.2 DTM Message Formats

The Nexus3 module supports five types of DTM messages: data write, data read, data write
synchronization, data read synchronization and error messages.

24.14.6.2.1 Data Write Messages

The data write message contains the data write value and the address of the write access, relative to the
previous data trace message. Data write message information is messaged out in the following format:

TCODE = 12

MCKO

MSEO_B

Source Processor = 0b0000
Number of Sequential Instructions = 3
Full Target Address = 0xDEAD_FACE

MDO[1:0] 00 11 00 00 00 11 10 11 00 11 10 10 11 11 01 11 10 10 10 11 01 11 00

Nexus Development Interface

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 24-57

Figure 24-43. Data Write Message Format

24.14.6.2.2 Data Read Messages

The data read message contains the data read value and the address of the read access, relative to the
previous data trace message. Data read message information is messaged out in the following format:

Figure 24-44. Data Read Message Format

NOTE
For the e200z3 based CPU, the doubleword encoding (data size = 0b000)
indicates a doubleword access and sends out as a single data trace message
with a single 64-bit data value.

24.14.6.2.3 DTM Overflow Error Messages

An error message occurs when the next message is denied service because the message queue is full. The
FIFO discards all incoming messages until the queue is completely empty. After it is empty, an error
message is queued that indicates the message types denied into the queue while the FIFO is emptying.

If a data trace message only attempts to enter the queue while it is emptying, the error message incorporates
the data trace only error encoding (00010). If both OTM and data trace messages attempt to enter the
queue, the error message incorporates the OTM and data trace error encoding (00111). If a watchpoint also
attempts to be queued while the FIFO is being emptied, then the error message incorporates error encoding
(01000).

NOTE
The OVC bits within the DC1 register can be set to delay the CPU to
alleviate (but not eliminate) potential overrun situations.

DATA

msb lsb

234

U-ADDR DSZ SRC

5

4 bits

1

TCODE (000101)

3 bits1–32 bits1–64 bits 6 bits

Max length = 109 bits; Min length = 15 bits

DATA

msb lsb

234

U-ADDR DSZ SRC

5

4 bits

1

TCODE (000110)

3 bits1–32 bits1–64 bits 6 bits

Max length = 109 bits; Min length = 15 bits

Nexus Development Interface

MPC5534 Microcontroller Reference Manual, Rev. 2

24-58 Freescale Semiconductor

Error information is messaged out in the following format:

Figure 24-45. Error Message Format

24.14.6.2.4 Data Trace Synchronization Messages

A data trace write/read with sync. message is messaged via the auxiliary port (provided data trace is
enabled) for the following conditions (see Table 24-37):

• Initial data trace message after exit from system reset or whenever data trace is enabled

• Upon exiting debug mode

• After occurrence of queue overrun (can be caused by any trace message), provided data trace is
enabled

• After the periodic data trace counter has expired indicating 255 without-sync data trace messages
have occurred since the last with-sync message occurred

• Upon assertion of the event in (EVTI) pin, the first data trace message is a synchronization message
if the EIC bits of the DC1 register have enabled this feature

• Upon data trace write/read after the previous DTM message was lost due to an attempted access to
a secure memory location

• Upon data trace write/read after the previous DTM message was lost due to a collision entering the
FIFO between the DTM message and any of the following: watchpoint message, ownership trace
message, or branch trace message

Data trace synchronization messages provide the full address (without leading zeros) and insure that
development tools fully synchronize with data trace regularly. Synchronization messages provide a
reference address for subsequent data messages, in which only the unique portion of the data trace address
is transmitted. The format for data trace write/read with sync. messages is as follows:

Figure 24-46. Data Write/Read with Sync. Message Format

DATA

msb lsb

234

U-ADDR DSZ SRC

5

4 bits

1

TCODE (000110)

3 bits1–32 bits1–64 bits 6 bits

Max length = 109 bits; Min length = 15 bits

DATA

msb lsb

234

F-ADDR DSZ SRC

5

4 bits

1

TCODE (001101 or 001110)

3 bits1–32 bits1–64 bits 6 bits

Max length = 109 bits; Min length = 15 bits

Nexus Development Interface

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 24-59

Exception conditions that result in data trace synchronization are summarized in Table 24-37.

24.14.6.3 DTM Operation

24.14.6.3.1 DTM Queueing

NZ3C3 implements a message queue for DTM messages. Messages that enter the queue are transmitted
via the auxiliary pins in the order in which they are queued.

NOTE
If multiple trace messages must be queued at the same time, watchpoint
messages have the highest priority (WPM −> OTM −> BTM −> DTM).

24.14.6.3.2 Relative Addressing

The relative address feature is compliant with the IEEE®-ISTO 5001-2003 standard recommendations,
and is designed to reduce the number of bits transmitted for addresses of data trace messages. See
Section 24.14.2, “ Relative Addressing for details.

Table 24-37. Data Trace Exception Summary

Exception Condition Exception Handling

System Reset Negation At the negation of JTAG reset (JCOMP), queue pointers, counters, state machines,
and registers within the NZ3C3 module are reset. If data trace is enabled, the first
data trace message is a data write/read with sync. message.

Data Trace Enabled The first data trace message (after data trace has been enabled) is a
synchronization message.

Exit from Low Power/Debug Upon exiting from low power or debug modes, the next data trace message is
converted to a data write/read with sync. message.

Queue Overrun An error message occurs when a new message cannot be queued due to a full
message queue. The FIFO discards messages until it has completely emptied the
queue. After the queue is empty, an error message is queued that indicates the
message types denied queuing while the FIFO was emptying. The next DTM
message in the queue is a data write/read with sync. message.

Periodic Data Trace Sync. A forced synchronization occurs periodically after 255 data trace messages have
been queued. A data write/read with sync. message is queued. The periodic data
trace message counter then resets.

Event In If the Nexus module is enabled, a EVTI assertion initiates a data trace write/read
with sync. message upon the next data write/read (if data trace is enabled and the
EIC bits of the DC1 register have enabled this feature).

Attempted Access to Secure
Memory

For devices which implement security, any attempted read or write to secure
memory locations temporarily disables data trace and loses the DTM. A
subsequent read/write queues a data trace read/write with sync. message.

Collision Priority All messages have the following priority: WPM −> OTM −> BTM −> DTM. A DTM
message which attempts to enter the queue at the same time as a watchpoint
message or ownership trace message or branch trace message can be lost. A
subsequent read/write queues a data trace read/write with sync. message.

Nexus Development Interface

MPC5534 Microcontroller Reference Manual, Rev. 2

24-60 Freescale Semiconductor

24.14.6.3.3 Data Trace Windowing

Data write/read messages are enabled via the RWT1(2) field in the data trace control register (DTC) for
each DTM channel. Data trace windowing is achieved via the address range defined by the DTEA and
DTSA registers and by the RC1(2) field in the DTC. All e200z3 initiated read/write accesses which fall
inside or outside these address ranges, as programmed, are candidates to be traced.

24.14.6.3.4 Data Access/Instruction Access Data Tracing

The Nexus3 module is capable of tracing both instruction access data or data access data. Each trace
window can be configured for either type of data trace by setting the DI1(2) field within the data trace
control register for each DTM channel.

24.14.6.3.5 e200z3 Bus Cycle Special Cases

NOTE
For misaligned accesses (crossing 64-bit boundary), the access is broken
into two accesses. If both accesses are within the data trace range, two
DTMs are sent: one with a size encoding indicating the size of the original
access (a word), and one with a size encoding for the portion which crossed
the boundary (3 bytes).

NOTE
An STM to the cache’s store buffer within the data trace range initiates a
DTM message. If the corresponding memory access causes an error, a
checkstop condition occurs. The debug/development tool must use this
indication to invalidate the previous DTM.

Table 24-38. e200z3 Bus Cycle Cases

Special Case Action

e200z3 bus cycle aborted Cycle ignored

e200z3 bus cycle with data error (TEA) Data Trace Message discarded

e200z3 bus cycle completed without error Cycle captured & transmitted

e200z3 bus cycle initiated by NZ3C3 Cycle ignored

e200z3 bus cycle is an instruction fetch Cycle ignored

e200z3 bus cycle accesses misaligned data (across 64-bit
boundary)—both 1st and 2nd transactions within data trace
range

1st and 2nd cycle captured, and 2 DTM’s
transmitted (see Note)

e200z3 bus cycle accesses misaligned data (across 64-bit
boundary)—1st transaction within data trace range; 2nd
transaction out of data trace range

1st cycle captured and transmitted; 2nd cycle
ignored

e200z3 bus cycle accesses misaligned data (across 64-bit
boundary)—1st transaction out of data trace range; 2nd
transaction within data trace range

1st cycle ignored; 2nd cycle capture and
transmitted

Nexus Development Interface

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 24-61

24.14.6.4 Data Trace Timing Diagrams (Eight MDO Configuration)

Figure 24-47. Data Trace—Data Write Message

Figure 24-48. Data Trace—Data Read with Sync Message

Figure 24-49. Error Message (Data Trace only encoded)

24.14.7 Watchpoint Support

This section details the watchpoint features of the NZ3C3 module.

24.14.7.1 Overview

The NZ3C3 module provides watchpoint messaging via the auxiliary pins, as defined by the IEEE®-ISTO
5001-2003 standard.

NZ3C3 is not compliant with Class4 breakpoint/watchpoint requirements defined in the standard. The
breakpoint/watchpoint control register is not implemented.

MCKO

MSEO_B[1:0]

TCODE = 5
Source Processor = 0b0000
Data Size = 010 (halfword)
Relative Address = 0xA5

00

MDO[7:0]

11 00 01 00 11

00000101 10101000 00010100 11101111 10111110

Write Data = 0xBEEF

00001110 11000000 01011001 11010001 00101000 00000000 01011100

MCKO

MSEO_B[1:0]

TCODE = 14
Source Processor = 0b0000
Data Size = 000 (Byte)
Full Access Address = 0x0146_8ACE

00

MDO[7:0]

11

Write Data = 0x5C

01 11

MCKO

MSEO_B[1:0]

TCODE = 8
Source Processor = 0b0000
Error Code = 2 (Queue Overrun – DTM Only)

00

MDO[7:0]

11 11 xx

00001000 00001000 xxxxxxxx

Nexus Development Interface

MPC5534 Microcontroller Reference Manual, Rev. 2

24-62 Freescale Semiconductor

24.14.7.2 Watchpoint Messaging

Enabling watchpoint messaging is done by setting the watchpoint enable bit in the DC1 register. Setting
the individual watchpoint sources is supported through the e200z3 Nexus1 module. The e200z3 Nexus1
module is capable of setting multiple address and/or data watchpoints. Please see the e200z3 Core
Reference Manual for more information on watchpoint initialization.

When these watchpoints occur, a watchpoint event signal from the Nexus1 module causes a message to be
sent to the queue to be messaged out. This message includes the watchpoint number indicating which
watchpoint caused the message.

The occurrence of any of the e200z3 defined watchpoints can be programmed to assert the event out EVTO
pin for one period of the output clock (MCKO).

Watchpoint information is messaged out in the following format:

Figure 24-50. Watchpoint Message Format.

24.14.7.3 Watchpoint Error Message

An error message occurs when a new message cannot be queued due to the message queue being full. The
FIFO discards messages until it has completely emptied the queue. After it is emptied, an error message is
queued. The error encoding indicates the types of messages that attempted to be queued while the FIFO
was being emptied.

If only a watchpoint message attempts to enter the queue while it is being emptied, the error message
incorporates the watchpoint only error encoding (00110). If an OTM and/or program trace and/or data
trace message also attempts to enter the queue while it is being emptied, the error message incorporates
error encoding (01000).

Table 24-39. Watchpoint Source Encoding

Watchpoint Source
(8 bits)

Watchpoint Description

00000001 e200z3 Watchpoint #0 (IAC1 from Nexus1)

00000010 e200z3 Watchpoint #1 (IAC2 from Nexus1)

00000100 e200z3 Watchpoint #2 (IAC3 from Nexus1)

00001000 e200z3 Watchpoint #3 (IAC4 from Nexus1)

00010000 e200z3 Watchpoint #4 (DAC1 from Nexus1)

00100000 e200z3 Watchpoint #5 (DAC2 from Nexus1)

01000000 e200z3 Watchpoint #6 (DCNT1 from Nexus1)

10000000 e200z3 Watchpoint #7 (DCNT2 from Nexus1)

WPHIT

msb lsb

12

SRC TCODE (001111)

3

6 bits4 bits4 bits

Fixed length = 14 bits

Nexus Development Interface

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 24-63

NOTE
The OVC bits within the DC1 register can be set to delay the CPU to
alleviate (but not eliminate) potential overrun situations.

Error information is messaged out in the following format (see Table 24-20):

Figure 24-51. Error Message Format

24.14.7.4 Watchpoint Timing Diagram (Two MDO and One MSEO Configuration)

Figure 24-52. Watchpoint Message and Watchpoint Error Message

24.14.8 NZ3C3 Read/Write Access to Memory-Mapped Resources

The read/write access feature allows access to memory-mapped resources via the JTAG/OnCE port. The
read/write mechanism supports single as well as block reads and writes to e200z3 system bus resources.

The NZ3C3 module is capable of accessing resources on the e200z3 system bus, with multiple
configurable priority levels. Memory-mapped registers and other non-cached memory can be accessed via
the standard memory map settings.

All accesses are setup and initiated by the read/write access control/status register (RWCS), as well as the
read/write access address (RWA) and read/write access data registers (RWD).

Using the read/write access registers (RWCS/RWA/RWD), memory-mapped e200z3 system bus resources
can be accessed through NZ3C3. The following subsections describe the steps which are required to access
memory-mapped resources.

NOTE
Read/write access can only access memory mapped resources when system
reset is de-asserted.

Misaligned accesses are NOT supported in the e200z3 Nexus3 module.

ECODE (00110 / 01000)

msb lsb

12

SRC TCODE (001000)

3

6 bits4 bits5 bits

Fixed length = 15 bits

WPM:

MCKO

MSEO

TCODE = 15
Source Processor = 0b00
Watchpoint Number = 2

MDO[1:0] 11 00 00 10 00 00 00 10 00 00 10 01 00

Error:
TCODE = 8
Source Processor = 0b00
Error Code = 6 (Queue Overrun – WPM Only)

ErrorWatchpoint

11

Nexus Development Interface

MPC5534 Microcontroller Reference Manual, Rev. 2

24-64 Freescale Semiconductor

24.14.8.1 Single Write Access

1. Initialize the read/write access address register (RWA) through the access method outlined in
Section 24.11.11, “ NZ3C3 Register Access via JTAG / OnCE” using the Nexus register index
of 0x9 (see Table 24-24). Configure the write address to 0xnnnnnnnn (write address).

2. Initialize the read/write access control/status register (RWCS) through the access method outlined
in Section 24.11.11, “ NZ3C3 Register Access via JTAG / OnCE,” using the Nexus Register Index
of 0x7 (see Table 24-24). Configure the bits as follows:

– Access Control RWCS[AC] –> 0b1 (to indicate start access)

– Map Select RWCS[MAP] –> 0b000 (primary memory map)

– Access Priority RWCS[PR] –> 0b00 (lowest priority)

– Read/Write RWCS[RW] –> 0b1 (write access)

– Word Size RWCS[SZ] –> 0b0xx (32-bit, 16-bit, 8-bit)

– Access Count RWCS[CNT] –> 0x0000 or 0x0001 (single access)

NOTE
Access count RWCS[CNT] of 0x0000 or 0x0001 performs a single access.

3. Initialize the read/write access data register (RWD) through the access method outlined in
Section 24.11.11, “ NZ3C3 Register Access via JTAG / OnCE,” using the Nexus register index of
0xA (see Table 24-24). Configure the write data to 0xnnnnnnnn (write data).

4. The NZ3C3 module then arbitrates for the system bus and transfer the data value from the data
buffer RWD register to the memory mapped address in the read/write access address register
(RWA). When the access has completed without error (ERR=1’b0), NZ3C3 asserts the RDY pin
and clears the DV bit in the RWCS register. This indicates that the device is ready for the next
access.

NOTE
Only the RDY pin as well as the DV and ERR bits within the RWCS provide
read/write access status to the external development tool.

24.14.8.2 Block Write Access (Non-Burst Mode)

1. For a non-burst block write access, follow Steps 1, 2, and 3 outlined in Section 24.14.8.1, “Single
Write Access to initialize the registers,” but using a value greater than one (0x1) for the
RWCS[CNT] field.

2. The NZ3C3 module then arbitrates for the system bus and transfer the first data value from the
RWD register to the memory mapped address in the read/write access address register (RWA).
When the transfer has completed without error (ERR = 0), the address from the RWA register is
incremented to the next word size (specified in the SZ field) and the number from the CNT field is
decremented. Nexus then asserts the RDY pin. This indicates it is ready for the next access.

3. Repeat step 3 in Section 24.14.8.1, “Single Write Access” until the internal CNT value is zero (0).
When this occurs, the DV bit within the RWCS is cleared to indicate the end of the block write
access.

Nexus Development Interface

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 24-65

24.14.8.3 Block Write Access (Burst Mode)

1. For a burst block write access, follow Steps 1 and 2 outlined in Section 24.14.8.1, “Single Write
Access” to initialize the registers, using a value of four (doublewords) for the CNT field and a
RWCS[SZ] field indicating 64-bit access.

2. Initialize the burst data buffer (read/write access data register) through the access method outlined
in Section 24.11.11, “ NZ3C3 Register Access via JTAG / OnCE,” using the Nexus register Index
of 0xA (see Table 24-24).

3. Repeat step 2 until all doubleword values are written to the buffer.

NOTE
The data values must be shifted in 32-bits at a time lsb first (that is,
doubleword write = two word writes to the RWD).

4. The Nexus module then arbitrates for the system bus and transfer the burst data values from the
data buffer to the system bus beginning from the memory mapped address in the read/write access
address register (RWA). For each access within the burst, the address from the RWA register is
incremented to the next doubleword size (specified in the SZ field) modulo the length of the burst,
and the number from the CNT field is decremented.

5. When the entire burst transfer has completed without error (ERR = 0), NZ3C3 then asserts the
RDY pin, and the DV bit within the RWCS is cleared to indicate the end of the block write access.

NOTE
The actual RWA value as well as the CNT field within the RWCS are not
changed when executing a block write access (burst or non-burst). The
original values can be read by the external development tool at any time.

24.14.8.4 Single Read Access

1. Initialize the read/write access address register (RWA) through the access method outlined in
Section 24.11.11, “ NZ3C3 Register Access via JTAG / OnCE,” using the Nexus register index of
0x9 (see Table 24-24). Configure as follows:

– Read Address –> 0xnnnnnnnn (read address)

2. Initialize the read/write access control/status register (RWCS) through the access method outlined
in Section 24.11.11, “ NZ3C3 Register Access via JTAG / OnCE,” using the Nexus register index
of 0x7 (see Table 24-24). Configure the bits as follows:

– Access Control RWCS[AC]–> 0b1 (to indicate start access)

– Map Select RWCS[MAP] –> 0b000 (primary memory map)

– Access Priority RWCS[PR] –> 0b00 (lowest priority)

– Read/Write RWCS[RW] –> 0b0 (read access)

– Word Size RWCS[SZ] –> 0b0xx (32-bit, 16-bit, 8-bit)

– Access Count RWCS[CNT]–> 0x0000 or 0x0001 (single access)

NOTE
Access Count (CNT) of 0x0000 or 0x0001 performs a single access.

Nexus Development Interface

MPC5534 Microcontroller Reference Manual, Rev. 2

24-66 Freescale Semiconductor

3. The NZ3C3 module then arbitrates for the system bus and the read data is transferred from the
system bus to the RWD register. When the transfer is completed without error (ERR = 0), Nexus
asserts the RDY pin and sets the DV bit in the RWCS register. This indicates that the device is
ready for the next access.

4. The data can then be read from the read/write access data register (RWD) through the access
method outlined in Section 24.11.11, “ NZ3C3 Register Access via JTAG / OnCE,” using the
Nexus register index of 0xA (see Table 24-24).

NOTE
Only the RDY pin as well as the DV and ERR bits within the RWCS provide
Read/Write Access status to the external development tool.

24.14.8.5 Block Read Access (Non-Burst Mode)

1. For a non-burst block read access, follow Steps 1 and 2 outlined in Section 24.14.8.4, “Single Read
Access” to initialize the registers, but using a value greater than one (0x1) for the CNT field in the
RWCS register.

2. The NZ3C3 module then arbitrates for the system bus and the read data is transferred from the
system bus to the RWD register. When the transfer has completed without error (ERR=0b0), the
address from the RWA register is incremented to the next word size (specified in the SZ field) and
the number from the CNT field is decremented. Nexus then asserts the RDY pin. This indicates
that the device is ready for the next access.

3. The data can then be read from the read/write access data register (RWD) through the access
method outlined in Section 24.11.11, “ NZ3C3 Register Access via JTAG / OnCE,” using the
Nexus register index of 0xA (see Table 24-24).

4. Repeat steps 3 and 4 in Section 24.14.8.4, “Single Read Access” until the CNT value is zero (0).
When this occurs, the DV bit within the RWCS is set to indicate the end of the block read access.

24.14.8.6 Block Read Access (Burst Mode)

1. For a burst block read access, follow Steps 1 and 2 outlined in Section 24.14.8.4, “Single Read
Access” to initialize the registers, using a value of four (doublewords) for the CNT field and an
RWCS[SZ] field indicating 64-bit access.

2. The NZ3C3 module then arbitrates for the system bus and the burst read data is transferred from
the system bus to the data buffer (RWD register). For each access within the burst, the address from
the RWA register is incremented to the next doubleword (specified in the SZ field) and the number
from the CNT field is decremented.

3. When the entire burst transfer has completed without error (ERR = 0), Nexus then asserts the RDY
pin and the DV bit within the RWCS is set to indicate the end of the block read access.

4. The data can then be read from the burst data buffer (read/write access data register) through the
access method outlined in Section 24.11.11, “ NZ3C3 Register Access via JTAG / OnCE,” using
the Nexus register index of 0xA (see Table 24-24).

5. Repeat step 3 until all doubleword values are read from the buffer.

Nexus Development Interface

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 24-67

NOTE
The data values must be shifted out 32-bits at a time lsb first (that is,
doubleword read = two word reads from the RWD).

NOTE
The actual RWA value as well as the CNT field within the RWCS are not
changed when executing a block read access (burst or non-burst). The
original values can be read by the external development tool at any time.

24.14.8.7 Error Handling

The NZ3C3 module handles various error conditions as follows:

24.14.8.7.1 System Bus Read/Write Error

All address and data errors that occur on read/write accesses to the e200z3 system bus returns a transfer
error. If this occurs:

1. The access is terminated without re-trying (AC bit is cleared).

2. The ERR bit in the RWCS register is set.

3. The error message is sent (TCODE = 8) indicating read/write error.

24.14.8.7.2 Access Termination

The following cases are defined for sequences of the read/write protocol that differ from those described
in the above sections:

1. If the AC bit in the RWCS register is set to start read/write accesses and invalid values are loaded
into the RWD and/or RWA, then a system bus access error can occur. This is handled as described
above.

2. If a block access is in progress (all cycles not completed), and the RWCS register is written, then
the original block access is terminated at the boundary of the nearest completed access.

a) If the RWCS is written with the AC bit set, the next read/write access begins and the RWD can
be written to/ read from.

b) If the RWCS is written with the AC bit cleared, the read/write access is terminated at the nearest
completed access. This method can be used to break (early terminate) block accesses.

24.14.8.8 Read/Write Access Error Message

The read/write access error message is sent out when an system bus access error (read or write) occurs.

Error information is messaged out in the following format:

Figure 24-53. Error Message Format

ECODE (00011)

msb lsb

12

SRC TCODE (001000)

3

6 bits4 bits5 bits

Fixed length = 15 bits

Nexus Development Interface

MPC5534 Microcontroller Reference Manual, Rev. 2

24-68 Freescale Semiconductor

24.14.9 Examples

The following are examples of program trace and data trace messages.

Table 24-40 illustrates an example indirect branch message with an eight MDO and two MSEO
configuration.

T0 and S0 are the least significant bits where:

• Tx = TCODE number (fixed)

• Sx = Source processor (fixed)

• Ix = Number of instructions (variable)

• Ax = Unique portion of the address (variable)

Table 24-41 illustrates an example of direct branch message with 12 MDO and two MSEO.

T0 and I0 are the least significant bits where:

• Tx = TCODE number (fixed)

• Sx = Source processor (fixed)

• Ix = Number of instructions (variable)

Table 24-42 an example data write message with 12 MDO and two MSEO configuration.

T0, A0, D0 are the least significant bits (LSB) where:

• Tx = TCODE number (fixed)

• Sx = Source processor (fixed)

Table 24-40. Indirect Branch Message Example (12 MDO and Two MSEO)

Clock
MDO[11:0]

MSEO[1:0] State
11 10 9 8 7 6 5 4 3 2 1 0

0 X X X X X X X X X X X X 1 1 Idle (or end of last message)

1 I1 I0 S3 S2 S1 S0 T5 T4 T3 T2 T1 T0 0 0 Start Message

2 0 0 0 0 0 0 0 0 I5 I4 I3 I2 0 1 End Packet

3 0 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 1 1 End Packet/End Message

4 X X S3 S2 S1 S0 T5 T4 T3 T2 T1 T0 0 0 Start of Next Message

Table 24-41. Direct Branch Message Example (12 MDO and Two MSEO)

Clock
MDO[11:0]

MSEO[1:0] State
11 10 9 8 7 6 5 4 3 2 1 0

0 X X X X X X X X X X X X 1 1 Idle (or end of last message)

1 I1 I0 S3 S2 S1 S0 T5 T4 T3 T2 T1 T0 0 0 Start Message

2 0 0 0 0 0 0 0 0 0 0 I3 I2 1 1 End Packet and End Message

3 X X X X S1 S0 T5 T4 T3 T2 T1 T0 0 0 Start of Next Message

Nexus Development Interface

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor 24-69

• Zx = Data size (fixed)

• Ax = Unique portion of the address (variable)

• Dx = Write data (variable: 8-, 16- or 32-bit)

24.14.10 IEEE® 1149.1 (JTAG) RD/WR Sequences

This section contains example JTAG/OnCE sequences used to access resources.

24.14.10.1 JTAG Sequence for Accessing Internal Nexus Registers

Table 24-42. Direct Write Message Example (12 MDO and Two MSEO)

Clock
MDO[11:0]

MSEO[1:0] State
11 10 9 8 7 6 5 4 3 2 1 0

0 X X X X X X X X X X X X 1 1 Idle (or end of last message)

1 Z1 Z0 S3 S2 S1 S0 T5 T4 T3 T2 T1 T0 0 0 Start Message

2 0 0 0 0 0 0 0 A3 A2 A1 A0 Z2 0 1 End Packet

3 X X X X D7 D6 D5 D4 D3 D2 D1 D0 1 1 End Packet/End Message

Table 24-43. Accessing Internal Nexus3 Registers via JTAG/OnCE

Step # TMS Pin Description

1 1 IDLE −> SELECT-DR_SCAN

2 0 SELECT-DR_SCAN −> CAPTURE-DR (Nexus command register value loaded in shifter)

3 0 CAPTURE-DR −> SHIFT-DR

4 0 (7) TCK clocks issued to shift in direction (read/write) bit and first 6 bits of Nexus reg. addr.

5 1 SHIFT-DR −> EXIT1-DR (7th bit of Nexus reg. shifted in)

6 1 EXIT1-DR −> UPDATE-DR (Nexus shifter is transferred to Nexus command register)

7 1 UPDATE-DR −> SELECT-DR_SCAN

8 0 SELECT-DR_SCAN −> CAPTURE-DR (Register value is transferred to Nexus shifter)

9 0 CAPTURE-DR −> SHIFT-DR

10 0 (31) TCK clocks issued to transfer register value to TDO pin while shifting in TDI value

11 1 SHIFT-DR −> EXIT1-DR (msb of value is shifted in/out of shifter)

12 1 EXIT1-DR −> UPDATE -DR (if access is write, shifter is transferred to register)

13 0 UPDATE-DR−> RUN-TEST/IDLE (transfer complete - Nexus controller to reg. select state)

Nexus Development Interface

MPC5534 Microcontroller Reference Manual, Rev. 2

24-70 Freescale Semiconductor

24.14.10.2 JTAG Sequence for Read Access of Memory-Mapped Resources

24.14.10.3 JTAG Sequence for Write Access of Memory-Mapped Resources

Table 24-44. Accessing Memory-Mapped Resources (Reads)

Step # TCLK clocks Description

1 13 Nexus Command = write to read/write access address register (RWA)

2 37 Write RWA (initialize starting read address—data input on TDI)

3 13 Nexus Command = write to read/write control/status register (RWCS)

4 37 Write RWCS (initialize read access mode and CNT value—data input on TDI)

5 — Wait for falling edge of RDY pin

6 13 Nexus Command = read the read/write access data register (RWD)

7 37 Read RWD (data output on TDO)

8 — If CNT > 0, go back to Step #5

Table 24-45. Accessing Memory-Mapped Resources (Writes)

Step # TCLK clocks Description

1 13 Nexus Command = write to read/write access control/status register (RWCS)

2 37 Write RWCS (initialize write access mode and CNT value—data input on TDI)

3 13 Nexus Command = write to read/write address register (RWA)

4 37 Write RWA (initialize starting write address—data input on TDI)

5 13 Nexus Command = read the read/write access data register (RWD)

6 37 Write RWD (data output on TDO)

7 — Wait for falling edge of RDY pin

8 — If CNT > 0, go back to Step #5

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor A-1

Appendix A
MPC5534 Register Map

A.1 MPC5534 Register Map
The following table lists the base address for each module’s register addresses.

Table A-1. Module Base Addresses

Module Base Address Page

Chapter 5, “Peripheral Bridge” 0xC3F0_0000 Page A-2

Chapter 11, “Frequency Modulated Phase Locked Loop and
System Clocks (FMPLL)”

0xC3F8_0000 Page A-2

Chapter 12, “External Bus Interface (EBI)”1

1 The External Bus Interface is not available on the 208 package.

0xC3F8_4000 Page A-2

Chapter 13, “Flash Memory” 0xC3F8_8000 Page A-3

Chapter 6, “System Integration Unit (SIU)” 0xC3F9_0000 Page A-3

Chapter 16, “Enhanced Modular Input/Output Subsystem
(eMIOS)”

0xC3FA_0000 Page A-21

Chapter 17, “Enhanced Time Processing Unit (eTPU)” 0xC3FC_0000 Page A-22

Chapter 5, “Peripheral Bridge” 0xFFF0_0000 Page A-27

Chapter 7, “Crossbar Switch (XBAR)” 0xFFF0_4000 Page A-27

Chapter 8, “Error Correction Status Module (ECSM)” 0xFFF4_0000 Page A-28

Chapter 9, “Enhanced Direct Memory Access (eDMA)” 0xFFF4_4000 Page A-28

Chapter 10, “Interrupt Controller (INTC)” 0xFFF4_8000 Page A-31

Chapter 18, “Enhanced Queued Analog-to-Digital Converter
(eQADC)”

0xFFF8_0000 Page A-38

Chapter 19, “Deserial Serial Peripheral Interface (DSPI)” 0xFFF9_4000 (DSPI B)
0xFFF9_8000 (DSPI C)
0xFFF9_C000 (DSPI D)

Page A-42

Chapter 20, “Enhanced Serial Communication Interface (eSCI)” 0xFFFB_0000 (A)
0xFFFB_4000 (B)

Page A-43

Chapter 21, “FlexCAN2 Controller Area Network” 0xFFFC_0000 (FlexCAN A)
0xFFFC_8000 (FlexCAN C)

Page A-44

Boot Assist Module (BAM) 0xFFFF_C000 Page A-46

MPC5534 Register Map

MPC5534 Microcontroller Reference Manual, Rev. 2

A-2 Freescale Semiconductor

This table lists the registers in each module.

• Signal names shown in red are not available on the 208 package.

• Signal names shown in blue are primary functions that are not designed into this device.

Table A-2. MPC5534 Detailed Register Map

Register Description Register Name
Used
Size

Address

Chapter 5, “Peripheral Bridge” 0xC3F0_0000

Peripheral bridge A master privilege control register PBRIDGEA_MPCR 32-bit Base + 0x0000

Reserved — — (Base + 0x0004)–0xC3F7_FFFF

Chapter 11, “Frequency Modulated Phase Locked Loop and System Clocks
(FMPLL)”

0xC3F8_0000

Synthesizer control register FMPLL_SYNCR 32-bit Base + 0x0000

Synthesizer status register FMPLL_SYNSR 32-bit Base + 0x0004

Reserved — — (Base + 0x0008)–0xC3F8_3FFF

Chapter 12, “External Bus Interface (EBI)” 0xC3F8_4000

Module configuration register EBI_MCR 32-bit Base + 0x0000

Reserved — — Base + 0x0004

Transfer error status register EBI_TESR 32-bit Base + 0x0008

Bus monitor control register EBI_BMCR 32-bit Base + 0x000C

Base register bank 0 EBI_BR0 32-bit Base + 0x0010

Option register bank 0 EBI_OR0 32-bit Base + 0x0014

Base register bank 1 EBI_BR1 32-bit Base + 0x0018

Option register bank 1 EBI_OR1 32-bit Base + 0x001C

Base register bank 2 EBI_BR2 32-bit Base + 0x0020

Option register bank 2 EBI_OR2 32-bit Base + 0x0024

Base register bank 3 EBI_BR3 32-bit Base + 0x0028

Option register bank 3 EBI_OR3 32-bit Base + 0x002C

Reserved — — Base + (0x0030–0x003C)

EBI Calibration Base Register Bank 0 EBI_CAL_BR0 32-bit Base + 0x0040

EBI Calibration Option Register Bank 0 EBI_CAL_OR0 32-bit Base + 0x0044

EBI Calibration Base Register Bank 1 EBI_CAL_BR1 32-bit Base + 0x0048

EBI Calibration Option Register Bank 1 EBI_CAL_OR1 32-bit Base + 0x004C

EBI Calibration Base Register Bank 2 EBI_CAL_BR2 32-bit Base + 0x0050

EBI Calibration Option Register Bank 2 EBI_CAL_OR2 32-bit Base + 0x0054

EBI Calibration Base Register Bank 3 EBI_CAL_BR3 32-bit Base + 0x0058

MPC5534 Register Map

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor A-3

EBI Calibration Option Register Bank 3 EBI_CAL_OR3 32-bit Base + 0x005C

Chapter 13, “Flash Memory” 0xC3F8_8000

Module configuration register FLASH_MCR 32-bit Base + 0x0000

Low/mid address space block locking register FLASH_LMLR 32-bit Base + 0x0004

High address space block locking register FLASH_HLR 32-bit Base + 0x0008

Secondary low/mid address space block locking
register

FLASH_SLMLR 32-bit Base + 0x000C

Low/mid address block select register FLASH_LMSR 32-bit Base + 0x0010

High address space block select register FLASH_HSR 32-bit Base + 0x0014

Address register FLASH_AR 32-bit Base + 0x0018

Bus interface unit control register FLASH_BIUCR 32-bit Base + 0x001C

Bus interface unit access protection register FLASH_BIUAPR 32-bit Base + 0x0020

Flash bus interface unit control register 2 FLASH_BIUCR2 32-bit Base + 0x0024

Reserved — — (Base + 0x0028)–0xC3F8_FFFF

Chapter 6, “System Integration Unit (SIU)” 0xC3F9_0000

MCU ID Register SIU_MIDR Base + 0x0004

Reserved — — Base + (0x0008–0x000B)

Reset status register SIU_RSR Base + 0x000C

System reset control register SIU_SRCR Base + 0x0010

External interrupt status register SIU_EISR Base + 0x0014

DMA/Interrupt request enable register SIU_DIRER Base + 0x0018

DMA/Interrupt request status register SIU_DIRSR Base + 0x001C

Overrun status register SIU_OSR Base + 0x0020

Overrun request enable register SIU_ORER Base + 0x0024

IRQ rising-edge event enable register SIU_IREER Base + 0x0028

IRQ falling-edge event enable register SIU_IFEER Base + 0x002C

IRQ digital filter register SIU_IDFR Base + 0x0030

Reserved — — Base + (0x0034–0x003F)

Pad configuration register 0 (CS[0]) SIU_PCR0 16-bits Base + 0x0040

Pad configuration register 1 (CS[1]) SIU_PCR1 16-bits Base + 0x0042

Pad configuration register 2 (CS[2]) SIU_PCR2 16-bits Base + 0x0044

Pad configuration register 3 (CS[3]) SIU_PCR3 16-bits Base + 0x0046

Table A-2. MPC5534 Detailed Register Map (continued)

Register Description Register Name
Used
Size

Address

MPC5534 Register Map

MPC5534 Microcontroller Reference Manual, Rev. 2

A-4 Freescale Semiconductor

Pad configuration register 8 (ADDR[12]) SIU_PCR8 16-bits Base + 0x0050

Pad configuration register 9 (ADDR[13]) SIU_PCR9 16-bits Base + 0x0052

Pad configuration register 10 (ADDR[14]) SIU_PCR10 16-bits Base + 0x0054

Pad configuration register 11 (ADDR[15]) SIU_PCR11 16-bits Base + 0x0056

Pad configuration register 12 (ADDR[16]) SIU_PCR12 16-bits Base + 0x0058

Pad configuration register 13 (ADDR[17]) SIU_PCR13 16-bits Base + 0x005A

Pad configuration register 14 (ADDR[18]) SIU_PCR14 16-bits Base + 0x005C

Pad configuration register 15 (ADDR[19]) SIU_PCR15 16-bits Base + 0x005E

Pad configuration register 16 (ADDR[20]) SIU_PCR16 16-bits Base + 0x0060

Pad configuration register 17 (ADDR[21]) SIU_PCR17 16-bits Base + 0x0062

Pad configuration register 18 (ADDR[22]) SIU_PCR18 16-bits Base + 0x0064

Pad configuration register 19 (ADDR[23]) SIU_PCR19 16-bits Base + 0x0066

Pad configuration register 20 (ADDR[24]) SIU_PCR20 16-bits Base + 0x0068

Pad configuration register 21 (ADDR[25]) SIU_PCR21 16-bits Base + 0x006A

Pad configuration register 22 (ADDR[26]) SIU_PCR22 16-bits Base + 0x006C

Pad configuration register 23 (ADDR[27]) SIU_PCR23 16-bits Base + 0x006E

Pad configuration register 24 (ADDR[28]) SIU_PCR24 16-bits Base + 0x0070

Pad configuration register 25 (ADDR[29]) SIU_PCR25 16-bits Base + 0x0072

Pad configuration register 26 (ADDR[30]) SIU_PCR26 16-bits Base + 0x0074

Pad configuration register 27 (ADDR[31]) SIU_PCR27 16-bits Base + 0x0076

Pad configuration register 28 (DATA[0]) SIU_PCR28 16-bits Base + 0x0078

Pad configuration register 29 (DATA[1]) SIU_PCR29 16-bits Base + 0x007A

Pad configuration register 30 (DATA[2]) SIU_PCR30 16-bits Base + 0x007C

Pad configuration register 31 (DATA[3]) SIU_PCR31 16-bits Base + 0x007E

Pad configuration register 32 (DATA[4]) SIU_PCR32 16-bits Base + 0x0080

Pad configuration register 33 (DATA[5]) SIU_PCR33 16-bits Base + 0x0082

Pad configuration register 34 (DATA[6]) SIU_PCR34 16-bits Base + 0x0084

Pad configuration register 35 (DATA[7]) SIU_PCR35 16-bits Base + 0x0086

Pad configuration register 36 (DATA[8]) SIU_PCR36 16-bits Base + 0x0088

Pad configuration register 37 (DATA[9]) SIU_PCR37 16-bits Base + 0x008A

Pad configuration register 38 (DATA[10]) SIU_PCR38 16-bits Base + 0x008C

Pad configuration register 39 (DATA[11]) SIU_PCR39 16-bits Base + 0x008E

Table A-2. MPC5534 Detailed Register Map (continued)

Register Description Register Name
Used
Size

Address

MPC5534 Register Map

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor A-5

Pad configuration register 40 (DATA[12]) SIU_PCR40 16-bits Base + 0x0090

Pad configuration register 41 (DATA[13]) SIU_PCR41 16-bits Base + 0x0092

Pad configuration register 42 (DATA[14]) SIU_PCR42 16-bits Base + 0x0094

Pad configuration register 43 (DATA[15]) SIU_PCR43 16-bits Base + 0x0096

Pad configuration register 62 (RD_WR) SIU_PCR62 16-bits Base + 0x00BC

Pad configuration register 63 (BDIP) SIU_PCR63 16-bits Base + 0x00BE

Pad configuration register 64 (WE/BE[0]) SIU_PCR64 16-bits Base + 0x00C0

Pad configuration register 65 (WE/BE[1]) SIU_PCR65 16-bits Base + 0x00C2

Pad configuration register 68 (OE) SIU_PCR68 16-bits Base + 0x00C8

Pad configuration register 69 (TS) SIU_PCR69 16-bits Base + 0x00CA

Pad configuration register 70 (TA) SIU_PCR70 16-bits Base + 0x00CC

Reserved — — Base + (0x00D0–0x00D4)

Pad configuration register 75 (MDO[4]) SIU_PCR75 16-bits Base + 0x00D6

Pad configuration register 76 (MDO[5]) SIU_PCR76 16-bits Base + 0x00D8

Pad configuration register 77 (MDO[6]) SIU_PCR77 16-bits Base + 0x00DA

Pad configuration register 78 (MDO[7]) SIU_PCR78 16-bits Base + 0x00DC

Pad configuration register 79 (MDO[8]) SIU_PCR79 16-bits Base + 0x00DE

Pad configuration register 80 (MDO[9]) SIU_PCR80 16-bits Base + 0x00E0

Pad configuration register 81 (MDO[10]) SIU_PCR81 16-bits Base + 0x00E2

Pad configuration register 82 (MDO[11]) SIU_PCR82 16-bits Base + 0x00E4

Pad configuration register 83 (CNTXA) SIU_PCR83 16-bits Base + 0x00E6

Pad configuration register 84 (CNRXA) SIU_PCR84 16-bits Base + 0x00E8

Pad configuration register 85 (CNTXB) SIU_PCR85 16-bits Base + 0x00EA

Pad configuration register 86 (CNRXB) SIU_PCR86 16-bits Base + 0x00EC

Pad configuration register 87 (CNTXC) SIU_PCR87 16-bits Base + 0x00EE

Pad configuration register 88 (CNRXC) SIU_PCR88 16-bits Base + 0x00F0

Pad configuration register 89 (TXDA) SIU_PCR89 16-bits Base + 0x00F2

Pad configuration register 90 (RXDA) SIU_PCR90 16-bits Base + 0x00F4

Pad configuration register 91 (TXDB) SIU_PCR91 16-bits Base + 0x00F6

Pad configuration register 92 (RXDB) SIU_PCR92 16-bits Base + 0x00F8

Pad configuration register 93 (SCKA) SIU_PCR93 16-bits Base + 0x00FA

Pad configuration register 94 (SINA) SIU_PCR94 16-bits Base + 0x00FC

Table A-2. MPC5534 Detailed Register Map (continued)

Register Description Register Name
Used
Size

Address

MPC5534 Register Map

MPC5534 Microcontroller Reference Manual, Rev. 2

A-6 Freescale Semiconductor

Pad configuration register 95 (SOUTA) SIU_PCR95 16-bits Base + 0x00FE

Pad configuration register 96 (PCSA[0]) SIU_PCR96 16-bits Base + 0x0100

Pad configuration register 97 (PCSA[1]) SIU_PCR97 16-bits Base + 0x0102

Pad configuration register 98 (PCSA[2]) SIU_PCR98 16-bits Base + 0x0104

Pad configuration register 99 (PCSA[3]) SIU_PCR99 16-bits Base + 0x0106

Pad configuration register 100 (PCSA[4]) SIU_PCR100 16-bits Base + 0x0108

Pad configuration register 101 (PCSA[5]) SIU_PCR101 16-bits Base + 0x010A

Pad configuration register 102 (SCKB) SIU_PCR102 16-bits Base + 0x010C

Pad configuration register 103 (SINB) SIU_PCR103 16-bits Base + 0x010E

Pad configuration register 104 (SOUTB) SIU_PCR104 16-bits Base + 0x0110

Pad configuration register 105 (PCSB[0]) SIU_PCR105 16-bits Base + 0x0112

Pad configuration register 106 (PCSB[1]) SIU_PCR106 16-bits Base + 0x0114

Pad configuration register 107 (PCSB[2]) SIU_PCR107 16-bits Base + 0x0116

Pad configuration register 108 (PCSB[3]) SIU_PCR108 16-bits Base + 0x0118

Pad configuration register 109 (PCSB[4]) SIU_PCR109 16-bits Base + 0x011A

Pad configuration register 110 (PCSB[5]) SIU_PCR110 16-bits Base + 0x011C

Reserved — — Base + (0x011E–0x0120)

Pad configuration register 113 (TCRCLKA) SIU_PCR113 16-bits Base + 0x0122

Pad configuration register 114 (ETPUA[0]) SIU_PCR114 16-bits Base + 0x0124

Pad configuration register 115 (ETPUA[1]) SIU_PCR115 16-bits Base + 0x0126

Pad configuration register 116 (ETPUA[2]) SIU_PCR116 16-bits Base + 0x0128

Pad configuration register 117 (ETPUA[3]) SIU_PCR117 16-bits Base + 0x012A

Pad configuration register 118 (ETPUA[4]) SIU_PCR118 16-bits Base + 0x012C

Pad configuration register 119 (ETPUA[5]) SIU_PCR119 16-bits Base + 0x012E

Pad configuration register 120 (ETPUA[6]) SIU_PCR120 16-bits Base + 0x0130

Pad configuration register 121 (ETPUA[7]) SIU_PCR121 16-bits Base + 0x0132

Pad configuration register 122 (ETPUA[8]) SIU_PCR122 16-bits Base + 0x0134

Pad configuration register 123 (ETPUA[9]) SIU_PCR123 16-bits Base + 0x0136

Pad configuration register 124 (ETPUA[10]) SIU_PCR124 16-bits Base + 0x0138

Pad configuration register 125 (ETPUA[11]) SIU_PCR125 16-bits Base + 0x013A

Pad configuration register 126 (ETPUA[12]) SIU_PCR126 16-bits Base + 0x013C

Pad configuration register 127 (ETPUA[13]) SIU_PCR127 16-bits Base + 0x013E

Table A-2. MPC5534 Detailed Register Map (continued)

Register Description Register Name
Used
Size

Address

MPC5534 Register Map

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor A-7

Pad configuration register 128 (ETPUA[14]) SIU_PCR128 16-bits Base + 0x0140

Pad configuration register 129 (ETPUA[15]) SIU_PCR129 16-bits Base + 0x0142

Pad configuration register 130 (ETPUA[16]) SIU_PCR130 16-bits Base + 0x0144

Pad configuration register 131 (ETPUA[17]) SIU_PCR131 16-bits Base + 0x0146

Pad configuration register 132 (ETPUA[18]) SIU_PCR132 16-bits Base + 0x0148

Pad configuration register 133 (ETPUA[19]) SIU_PCR133 16-bits Base + 0x014A

Pad configuration register 134 (ETPUA[20]) SIU_PCR134 16-bits Base + 0x014C

Pad configuration register 142 (ETPUA[28]) SIU_PCR142 16-bits Base + 0x015C

Pad configuration register 143 (ETPUA[29]) SIU_PCR143 16-bits Base + 0x015E

Pad configuration register 144 (ETPUA[30]) SIU_PCR144 16-bits Base + 0x0160

Pad configuration register 145 (ETPUA[31]) SIU_PCR145 16-bits Base + 0x0162

Reserved — — Base + (0x0164–0x01A4)

Pad configuration register 179 (EMIOS[0]) SIU_PCR179 16-bits Base + 0x01A6

Pad configuration register 180 (EMIOS[1]) SIU_PCR180 16-bits Base + 0x01A8

Pad configuration register 181 (EMIOS[2]) SIU_PCR181 16-bits Base + 0x01AA

Pad configuration register 182 (EMIOS[3]) SIU_PCR182 16-bits Base + 0x01AC

Pad configuration register 183 (EMIOS[4]) SIU_PCR183 16-bits Base + 0x01AE

Pad configuration register 184 (EMIOS[5]) SIU_PCR184 16-bits Base + 0x01B0

Pad configuration register 185 (EMIOS[6]) SIU_PCR185 16-bits Base + 0x01B2

Pad configuration register 186 (EMIOS[7]) SIU_PCR186 16-bits Base + 0x01B4

Pad configuration register 187 (EMIOS[8]) SIU_PCR187 16-bits Base + 0x01B6

Pad configuration register 188 (EMIOS[9]) SIU_PCR188 16-bits Base + 0x01B8

Pad configuration register 189 (EMIOS[10]) SIU_PCR189 16-bits Base + 0x01BA

Pad configuration register 190 (EMIOS[11]) SIU_PCR190 16-bits Base + 0x01BC

Pad configuration register 191 (EMIOS[12]) SIU_PCR191 16-bits Base + 0x01BE

Pad configuration register 192 (EMIOS[13]) SIU_PCR192 16-bits Base + 0x01C0

Pad configuration register 193 (EMIOS[14]) SIU_PCR193 16-bits Base + 0x01C2

Pad configuration register 194 (EMIOS[15]) SIU_PCR194 16-bits Base + 0x01C4

Pad configuration register 195 (EMIOS[16]) SIU_PCR195 16-bits Base + 0x01C6

Pad configuration register 196 (EMIOS[17]) SIU_PCR196 16-bits Base + 0x01C8

Pad configuration register 197 (EMIOS[18]) SIU_PCR197 16-bits Base + 0x01CA

Pad configuration register 198 (EMIOS[19]) SIU_PCR198 16-bits Base + 0x01CC

Table A-2. MPC5534 Detailed Register Map (continued)

Register Description Register Name
Used
Size

Address

MPC5534 Register Map

MPC5534 Microcontroller Reference Manual, Rev. 2

A-8 Freescale Semiconductor

Pad configuration register 199 (EMIOS[20]) SIU_PCR199 16-bits Base + 0x01CE

Pad configuration register 200 (EMIOS[21]) SIU_PCR200 16-bits Base + 0x01D0

Pad configuration register 201 (EMIOS[22]) SIU_PCR201 16-bits Base + 0x01D2

Pad configuration register 202 (EMIOS[23]) SIU_PCR202 16-bits Base + 0x01D4

Pad configuration register 203 (GPIO[203]) SIU_PCR203 16-bits Base + 0x01D6

Pad configuration register 204 (GPIO[204]) SIU_PCR204 16-bits Base + 0x01D8

Reserved — — Base + 0x01DA

Pad configuration register 206 (GPIO[206]) SIU_PCR206 16-bits Base + 0x01DC

Pad configuration register 207 (GPIO[207]) SIU_PCR207 16-bits Base + 0x01DE

Pad configuration register 208 (PLLCFG[0]) SIU_PCR208 16-bits Base + 0x01E0

Pad configuration register 209 (PLLCFG[1]) SIU_PCR209 16-bits Base + 0x01E2

Pad configuration register 210 (RSTCFG) SIU_PCR210 16-bits Base + 0x01E4

Pad configuration register 211 (BOOTCFG[0]) SIU_PCR211 16-bits Base + 0x01E6

Pad configuration register 212 (BOOTCFG[1]) SIU_PCR212 16-bits Base + 0x01E8

Pad configuration register 213 (WKPCFG) SIU_PCR213 16-bits Base + 0x01EA

Pad configuration register 214 (ENGCLK) SIU_PCR214 16-bits Base + 0x01EC

Pad configuration register 215 (AN[12]) SIU_PCR215 16-bits Base + 0x01EE

Pad configuration register 216 (AN[13]) SIU_PCR216 16-bits Base + 0x01F0

Pad configuration register 217 (AN[14]) SIU_PCR217 16-bits Base + 0x01F2

Pad configuration register 218 (AN[15]) SIU_PCR218 16-bits Base + 0x01F4

Pad configuration register 219 (MCKO) SIU_PCR219 16-bits Base + 0x01F6

Pad configuration register 220 (MDO[0]) SIU_PCR220 16-bits Base + 0x01F8

Pad configuration register 221 (MDO[1]) SIU_PCR221 16-bits Base + 0x01FA

Pad configuration register 222 (MDO[2]) SIU_PCR222 16-bits Base + 0x01FC

Pad configuration register 223 (MDO[3]) SIU_PCR223 16-bits Base + 0x01FE

Pad configuration register 224 (MSEO[0]) SIU_PCR224 16-bits Base + 0x0200

Pad configuration register 225 (MSEO[1]) SIU_PCR225 16-bits Base + 0x0202

Pad configuration register 226 (RDY) SIU_PCR226 16-bits Base + 0x0204

Pad configuration register 227 (EVTO) SIU_PCR227 16-bits Base + 0x0206

Pad configuration register 228 (TDO) SIU_PCR228 16-bits Base + 0x0208

Pad configuration register 229 (CLKOUT) SIU_PCR229 16-bits Base + 0x020A

Pad configuration register 230 (RSTOUT) SIU_PCR230 16-bits Base + 0x020C

Table A-2. MPC5534 Detailed Register Map (continued)

Register Description Register Name
Used
Size

Address

MPC5534 Register Map

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor A-9

Pad Configuration Register 336 (CAL_CS[0]) SIU_PCR336 16-bits Base + 0x02E0

Pad Configuration Register 338 (CAL_CS[2]) SIU_PCR338 16-bits Base + 0x02E4

Pad Configuration Register 339 (CAL_CS[3]) SIU_PCR339 16-bits Base + 0x02E6

Pad Configuration Register 340
(CAL_ADDR[12:30])

SIU_PCR340 16-bits Base + 0x02E8

Pad Configuration Register 341 (CAL_DATA[0:15]) SIU_PCR341 16-bits Base + 0x02EA

Pad Configuration Register 342 (CAL_RD_WR,
CAL_WE/BE[0:1], CAL_OE, and CAL_TS)

SIU_PCR342 16-bits Base + 0x02EC

Reserved — — Base + (0x02F0–0x05FF)

GPIO data output register 0 (GPIO[0]) SIU_GPDO0 8-bits Base + 0x0600

GPIO data output register 1 (GPIO[1]) SIU_GPDO1 8-bits Base + 0x0601

GPIO data output register 2 (GPIO[2]) SIU_GPDO2 8-bits Base + 0x0602

GPIO data output register 3 (GPIO[3]) SIU_GPDO3 8-bits Base + 0x0603

Reserved — — Base + (0x0604–0x0607)

GPIO data output register 8 (GPIO[8]) SIU_GPDO8 8-bits Base + 0x0608

GPIO data output register 9 (GPIO[9]) SIU_GPDO9 8-bits Base + 0x0609

GPIO data output register 10 (GPIO[10]) SIU_GPDO10 8-bits Base + 0x060A

GPIO data output register 11 (GPIO[11]) SIU_GPDO11 8-bits Base + 0x060B

GPIO data output register 12 (GPIO[12]) SIU_GPDO12 8-bits Base + 0x060C

GPIO data output register 13 (GPIO[13]) SIU_GPDO13 8-bits Base + 0x060D

GPIO data output register 14 (GPIO[14]) SIU_GPDO14 8-bits Base + 0x060E

GPIO data output register 15 (GPIO[15]) SIU_GPDO15 8-bits Base + 0x060F

GPIO data output register 16 (GPIO[16]) SIU_GPDO16 8-bits Base + 0x0610

GPIO data output register 17 (GPIO[17]) SIU_GPDO17 8-bits Base + 0x0611

GPIO data output register 18 (GPIO[18]) SIU_GPDO18 8-bits Base + 0x0612

GPIO data output register 19 (GPIO[19]) SIU_GPDO19 8-bits Base + 0x0613

GPIO data output register 20 (GPIO[20]) SIU_GPDO20 8-bits Base + 0x0614

GPIO data output register 21 (GPIO[21]) SIU_GPDO21 8-bits Base + 0x0615

GPIO data output register 22 (GPIO[22]) SIU_GPDO22 8-bits Base + 0x0616

GPIO data output register 23 (GPIO[23]) SIU_GPDO23 8-bits Base + 0x0617

GPIO data output register 24 (GPIO[24]) SIU_GPDO24 8-bits Base + 0x0618

GPIO data output register 25 (GPIO[25]) SIU_GPDO25 8-bits Base + 0x0619

GPIO data output register 26 (GPIO[26]) SIU_GPDO26 8-bits Base + 0x061A

Table A-2. MPC5534 Detailed Register Map (continued)

Register Description Register Name
Used
Size

Address

MPC5534 Register Map

MPC5534 Microcontroller Reference Manual, Rev. 2

A-10 Freescale Semiconductor

GPIO data output register 27 (GPIO[27]) SIU_GPDO27 8-bits Base + 0x061B

GPIO data output register 28 (GPIO[28]) SIU_GPDO28 8-bits Base + 0x061C

GPIO data output register 29 (GPIO[29]) SIU_GPDO29 8-bits Base + 0x061D

GPIO data output register 30 (GPIO[30]) SIU_GPDO30 8-bits Base + 0x061E

GPIO data output register 31 (GPIO[31]) SIU_GPDO31 8-bits Base + 0x061F

GPIO data output register 32 (GPIO[32]) SIU_GPDO32 8-bits Base + 0x0620

GPIO data output register 33 (GPIO[33]) SIU_GPDO33 8-bits Base + 0x0621

GPIO data output register 34 (GPIO[34]) SIU_GPDO34 8-bits Base + 0x0622

GPIO data output register 35 (GPIO[35]) SIU_GPDO35 8-bits Base + 0x0623

GPIO data output register 36 (GPIO[36]) SIU_GPDO36 8-bits Base + 0x0624

GPIO data output register 37 (GPIO[37]) SIU_GPDO37 8-bits Base + 0x0625

GPIO data output register 38 (GPIO[38]) SIU_GPDO38 8-bits Base + 0x0626

GPIO data output register 39 (GPIO[39]) SIU_GPDO39 8-bits Base + 0x0627

GPIO data output register 40 (GPIO[40]) SIU_GPDO40 8-bits Base + 0x0628

GPIO data output register 41 (GPIO[41]) SIU_GPDO41 8-bits Base + 0x0629

GPIO data output register 42 (GPIO[42]) SIU_GPDO42 8-bits Base + 0x062A

GPIO data output register 43 (GPIO[43]) SIU_GPDO43 8-bits Base + 0x062B

Reserved — — Base + (0x062C–0x063D)

GPIO data output register 62 (GPIO[62]) SIU_GPDO62 8-bits Base + 0x063E

GPIO data output register 63 (GPIO[63]) SIU_GPDO63 8-bits Base + 0x063F

GPIO data output register 64 (GPIO[64]) SIU_GPDO64 8-bits Base + 0x0640

GPIO data output register 65 (GPIO[65]) SIU_GPDO65 8-bits Base + 0x0641

Reserved — — Base + (0x0642–0x0643)

GPIO data output register 68 (GPIO[68]) SIU_GPDO68 8-bits Base + 0x0644

GPIO data output register 69 (GPIO[69]) SIU_GPDO69 8-bits Base + 0x0645

GPIO data output register 70 (GPIO[70]) SIU_GPDO70 8-bits Base + 0x0646

Reserved — — Base + (0x0647–0x0649)

GPIO data output register 74 (GPIO[74]) SIU_GPDO74 8-bits Base + 0x064A

GPIO data output register 75 (GPIO[75]) SIU_GPDO75 8-bits Base + 0x064B

GPIO data output register 76 (GPIO[76]) SIU_GPDO76 8-bits Base + 0x064C

GPIO data output register 77 (GPIO[77]) SIU_GPDO77 8-bits Base + 0x064D

GPIO data output register 78 (GPIO[78]) SIU_GPDO78 8-bits Base + 0x064E

Table A-2. MPC5534 Detailed Register Map (continued)

Register Description Register Name
Used
Size

Address

MPC5534 Register Map

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor A-11

GPIO data output register 79 (GPIO[79]) SIU_GPDO79 8-bits Base + 0x064F

GPIO data output register 80 (GPIO[80]) SIU_GPDO80 8-bits Base + 0x0650

GPIO data output register 81 (GPIO[81]) SIU_GPDO81 8-bits Base + 0x0651

GPIO data output register 82 (GPIO[82]) SIU_GPDO82 8-bits Base + 0x0652

GPIO data output register 83 (GPIO[83]) SIU_GPDO83 8-bits Base + 0x0653

GPIO data output register 84 (GPIO[84]) SIU_GPDO84 8-bits Base + 0x0654

GPIO data output register 85 (GPIO[85]) SIU_GPDO85 8-bits Base + 0x0655

GPIO data output register 86 (GPIO[86]) SIU_GPDO86 8-bits Base + 0x0656

GPIO data output register 87 (GPIO[87]) SIU_GPDO87 8-bits Base + 0x0657

GPIO data output register 88 (GPIO[88]) SIU_GPDO88 8-bits Base + 0x0658

GPIO data output register 89 (GPIO[89]) SIU_GPDO89 8-bits Base + 0x0659

GPIO data output register 90 (GPIO[90]) SIU_GPDO90 8-bits Base + 0x065A

GPIO data output register 91 (GPIO[91]) SIU_GPDO91 8-bits Base + 0x065B

GPIO data output register 92 (GPIO[92]) SIU_GPDO92 8-bits Base + 0x065C

GPIO data output register 93 (GPIO[93]) SIU_GPDO93 8-bits Base + 0x065D

GPIO data output register 94 (GPIO[94]) SIU_GPDO94 8-bits Base + 0x065E

GPIO data output register 95 (GPIO[95]) SIU_GPDO95 8-bits Base + 0x065F

GPIO data output register 96 (GPIO[96]) SIU_GPDO96 8-bits Base + 0x0660

GPIO data output register 97 (GPIO[97]) SIU_GPDO97 8-bits Base + 0x0661

GPIO data output register 98 (GPIO[98]) SIU_GPDO98 8-bits Base + 0x0662

GPIO data output register 99 (GPIO[99]) SIU_GPDO99 8-bits Base + 0x0663

GPIO data output register 100 (GPIO[100]) SIU_GPDO100 8-bits Base + 0x0664

GPIO data output register 101 (GPIO[101]) SIU_GPDO101 8-bits Base + 0x0665

GPIO data output register 102 (GPIO[102]) SIU_GPDO102 8-bits Base + 0x0666

GPIO data output register 103 (GPIO[103]) SIU_GPDO103 8-bits Base + 0x0667

GPIO data output register 104 (GPIO[104]) SIU_GPDO104 8-bits Base + 0x0668

GPIO data output register 105 (GPIO[105]) SIU_GPDO105 8-bits Base + 0x0669

GPIO data output register 106 (GPIO[106]) SIU_GPDO106 8-bits Base + 0x066A

GPIO data output register 107 (GPIO[107]) SIU_GPDO107 8-bits Base + 0x066B

GPIO data output register 108 (GPIO[108]) SIU_GPDO108 8-bits Base + 0x066C

GPIO data output register 109 (GPIO[109]) SIU_GPDO109 8-bits Base + 0x066D

GPIO data output register 110 (GPIO[110]) SIU_GPDO110 8-bits Base + 0x066E

Table A-2. MPC5534 Detailed Register Map (continued)

Register Description Register Name
Used
Size

Address

MPC5534 Register Map

MPC5534 Microcontroller Reference Manual, Rev. 2

A-12 Freescale Semiconductor

Reserved — — Base + (0x066F–0x0670)

GPIO data output register 113 (GPIO[113]) SIU_GPDO113 8-bits Base + 0x0671

GPIO data output register 114 (GPIO[114]) SIU_GPDO114 8-bits Base + 0x0672

GPIO data output register 115 (GPIO[115]) SIU_GPDO115 8-bits Base + 0x0673

GPIO data output register 116 (GPIO[116]) SIU_GPDO116 8-bits Base + 0x0674

GPIO data output register 117 (GPIO[117]) SIU_GPDO117 8-bits Base + 0x0675

GPIO data output register 118 (GPIO[118]) SIU_GPDO118 8-bits Base + 0x0676

GPIO data output register 119 (GPIO[119]) SIU_GPDO119 8-bits Base + 0x0677

GPIO data output register 120 (GPIO[120]) SIU_GPDO120 8-bits Base + 0x0678

GPIO data output register 121 (GPIO[121]) SIU_GPDO121 8-bits Base + 0x0679

GPIO data output register 122 (GPIO[122]) SIU_GPDO122 8-bits Base + 0x067A

GPIO data output register 123 (GPIO[123]) SIU_GPDO123 8-bits Base + 0x067B

GPIO data output register 124 (GPIO[124]) SIU_GPDO124 8-bits Base + 0x067C

GPIO data output register 125 (GPIO[125]) SIU_GPDO125 8-bits Base + 0x067D

GPIO data output register 126 (GPIO[126]) SIU_GPDO126 8-bits Base + 0x067E

GPIO data output register 127 (GPIO[127]) SIU_GPDO127 8-bits Base + 0x067F

GPIO data output register 128 (GPIO[128]) SIU_GPDO128 8-bits Base + 0x0680

GPIO data output register 129 (GPIO[129]) SIU_GPDO129 8-bits Base + 0x0681

GPIO data output register 130 (GPIO[130]) SIU_GPDO130 8-bits Base + 0x0682

GPIO data output register 131 (GPIO[131]) SIU_GPDO131 8-bits Base + 0x0683

GPIO data output register 132 (GPIO[132]) SIU_GPDO132 8-bits Base + 0x0684

GPIO data output register 133 (GPIO[133]) SIU_GPDO133 8-bits Base + 0x0685

GPIO data output register 134 (GPIO[134]) SIU_GPDO134 8-bits Base + 0x0686

GPIO data output register 135 (GPIO[135]) SIU_GPDO135 8-bits Base + 0x0687

GPIO data output register 136 (GPIO[136]) SIU_GPDO136 8-bits Base + 0x0688

GPIO data output register 137 (GPIO[137]) SIU_GPDO137 8-bits Base + 0x0689

GPIO data output register 138 (GPIO[138]) SIU_GPDO138 8-bits Base + 0x068A

GPIO data output register 139 (GPIO[139]) SIU_GPDO139 8-bits Base + 0x068B

GPIO data output register 140 (GPIO[140]) SIU_GPDO140 8-bits Base + 0x068C

GPIO data output register 141 (GPIO[141]) SIU_GPDO141 8-bits Base + 0x068D

GPIO data output register 142 (GPIO[142]) SIU_GPDO142 8-bits Base + 0x068E

GPIO data output register 143 (GPIO[143]) SIU_GPDO143 8-bits Base + 0x068F

Table A-2. MPC5534 Detailed Register Map (continued)

Register Description Register Name
Used
Size

Address

MPC5534 Register Map

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor A-13

GPIO data output register 144 (GPIO[144]) SIU_GPDO144 8-bits Base + 0x0690

GPIO data output register 145 (GPIO[145]) SIU_GPDO145 8-bits Base + 0x0691

GPIO data output register 146 (GPIO[146]) SIU_GPDO146 8-bits Base + 0x0692

GPIO data output register 147 (GPIO[147]) SIU_GPDO147 8-bits Base + 0x0693

GPIO data output register 148 (GPIO[148]) SIU_GPDO148 8-bits Base + 0x0694

GPIO data output register 149 (GPIO[149]) SIU_GPDO149 8-bits Base + 0x0695

GPIO data output register 150 (GPIO[150]) SIU_GPDO150 8-bits Base + 0x0696

GPIO data output register 151 (GPIO[151]) SIU_GPDO151 8-bits Base + 0x0697

GPIO data output register 152 (GPIO[152]) SIU_GPDO152 8-bits Base + 0x0698

GPIO data output register 153 (GPIO[153]) SIU_GPDO153 8-bits Base + 0x0699

GPIO data output register 154 (GPIO[154]) SIU_GPDO154 8-bits Base + 0x069A

GPIO data output register 155 (GPIO[155]) SIU_GPDO155 8-bits Base + 0x069B

GPIO data output register 156 (GPIO[156]) SIU_GPDO156 8-bits Base + 0x069C

GPIO data output register 157 (GPIO[157]) SIU_GPDO157 8-bits Base + 0x069D

GPIO data output register 158 (GPIO[158]) SIU_GPDO158 8-bits Base + 0x069E

GPIO data output register 159 (GPIO[159]) SIU_GPDO159 8-bits Base + 0x069F

GPIO data output register 160 (GPIO[160]) SIU_GPDO160 8-bits Base + 0x06A0

GPIO data output register 161 (GPIO[161]) SIU_GPDO161 8-bits Base + 0x06A1

GPIO data output register 162 (GPIO[162]) SIU_GPDO162 8-bits Base + 0x06A2

GPIO data output register 163 (GPIO[163]) SIU_GPDO163 8-bits Base + 0x06A3

GPIO data output register 164 (GPIO[164]) SIU_GPDO164 8-bits Base + 0x06A4

GPIO data output register 165 (GPIO[165]) SIU_GPDO165 8-bits Base + 0x06A5

GPIO data output register 166 (GPIO[166]) SIU_GPDO166 8-bits Base + 0x06A6

GPIO data output register 167 (GPIO[167]) SIU_GPDO167 8-bits Base + 0x06A7

GPIO data output register 168 (GPIO[168]) SIU_GPDO168 8-bits Base + 0x06A8

GPIO data output register 169 (GPIO[169]) SIU_GPDO169 8-bits Base + 0x06A9

GPIO data output register 170 (GPIO[170]) SIU_GPDO170 8-bits Base + 0x06AA

GPIO data output register 171 (GPIO[171]) SIU_GPDO171 8-bits Base + 0x06AB

GPIO data output register 172 (GPIO[172]) SIU_GPDO172 8-bits Base + 0x06AC

GPIO data output register 173 (GPIO[173]) SIU_GPDO173 8-bits Base + 0x06AD

GPIO data output register 174 (GPIO[174]) SIU_GPDO174 8-bits Base + 0x06AE

GPIO data output register 175 (GPIO[175]) SIU_GPDO175 8-bits Base + 0x06AF

Table A-2. MPC5534 Detailed Register Map (continued)

Register Description Register Name
Used
Size

Address

MPC5534 Register Map

MPC5534 Microcontroller Reference Manual, Rev. 2

A-14 Freescale Semiconductor

GPIO data output register 176 (GPIO[176]) SIU_GPDO176 8-bits Base + 0x06B0

GPIO data output register 177 (GPIO[177]) SIU_GPDO177 8-bits Base + 0x06B1

GPIO data output register 178 (GPIO[178]) SIU_GPDO178 8-bits Base + 0x06B2

GPIO data output register 179 (GPIO[179]) SIU_GPDO179 8-bits Base + 0x06B3

GPIO data output register 180 (GPIO[180]) SIU_GPDO180 8-bits Base + 0x06B4

GPIO data output register 181 (GPIO[181]) SIU_GPDO181 8-bits Base + 0x06B5

GPIO data output register 182 (GPIO[182]) SIU_GPDO182 8-bits Base + 0x06B6

GPIO data output register 183 (GPIO[183]) SIU_GPDO183 8-bits Base + 0x06B7

GPIO data output register 184 (GPIO[184]) SIU_GPDO184 8-bits Base + 0x06B8

GPIO data output register 185 (GPIO[185]) SIU_GPDO185 8-bits Base + 0x06B9

GPIO data output register 186 (GPIO[186]) SIU_GPDO186 8-bits Base + 0x06BA

GPIO data output register 187 (GPIO[187]) SIU_GPDO187 8-bits Base + 0x06BB

GPIO data output register 188 (GPIO[188]) SIU_GPDO188 8-bits Base + 0x06BC

GPIO data output register 189 (GPIO[189]) SIU_GPDO189 8-bits Base + 0x06BD

GPIO data output register 190 (GPIO[190]) SIU_GPDO190 8-bits Base + 0x06BE

GPIO data output register 191 (GPIO[191]) SIU_GPDO191 8-bits Base + 0x06BF

GPIO data output register 192 (GPIO[192]) SIU_GPDO192 8-bits Base + 0x06C0

GPIO data output register 193 (GPIO[193]) SIU_GPDO193 8-bits Base + 0x06C1

GPIO data output register 194 (GPIO[194]) SIU_GPDO194 8-bits Base + 0x06C2

GPIO data output register 195 (GPIO[195]) SIU_GPDO195 8-bits Base + 0x06C3

GPIO data output register 196 (GPIO[196]) SIU_GPDO196 8-bits Base + 0x06C4

GPIO data output register 197 (GPIO[197]) SIU_GPDO197 8-bits Base + 0x06C5

GPIO data output register 198 (GPIO[198]) SIU_GPDO198 8-bits Base + 0x06C6

GPIO data output register 199 (GPIO[199]) SIU_GPDO199 8-bits Base + 0x06C7

GPIO data output register 200 (GPIO[200]) SIU_GPDO200 8-bits Base + 0x06C8

GPIO data output register 201 (GPIO[201]) SIU_GPDO201 8-bits Base + 0x06C9

GPIO data output register 202 (GPIO[202]) SIU_GPDO202 8-bits Base + 0x06CA

GPIO data output register 203 (GPIO[203]) SIU_GPDO203 8-bits Base + 0x06CB

GPIO data output register 204 (GPIO[204]) SIU_GPDO204 8-bits Base + 0x06CC

Reserved — — Base + 0x06CD

GPIO data output register 206 (GPIO[206]) SIU_GPDO206 8-bits Base + 0x06CE

GPIO data output register 207 (GPIO[207]) SIU_GPDO207 8-bits Base + 0x06CF

Table A-2. MPC5534 Detailed Register Map (continued)

Register Description Register Name
Used
Size

Address

MPC5534 Register Map

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor A-15

GPIO data output register 208 (GPIO[208]) SIU_GPDO208 8-bits Base + 0x06D0

GPIO data output register 209 (GPIO[209]) SIU_GPDO209 8-bits Base + 0x06D1

GPIO data output register 210 (GPIO[210]) SIU_GPDO210 8-bits Base + 0x06D2

GPIO data output register 211 (GPIO[211]) SIU_GPDO211 8-bits Base + 0x06D3

GPIO data output register 212 (GPIO[212]) SIU_GPDO212 8-bits Base + 0x06D4

GPIO data output register 213 (GPIO[213]) SIU_GPDO213 8-bits Base + 0x06D5

Reserved — — Base + (0x06D8–0x07FF)

GPIO data input register 0 (GPIO[0]) SIU_GPDI0 8-bits Base + 0x0800

GPIO data input register 1 (GPIO[1]) SIU_GPDI1 8-bits Base + 0x0801

GPIO data input register 2 (GPIO[2]) SIU_GPDI2 8-bits Base + 0x0802

GPIO data input register 3 (GPIO[3]) SIU_GPDI3 8-bits Base + 0x0803

GPIO data input register 4 (GPIO[4]) SIU_GPDI4 8-bits Base + 0x0804

GPIO data input register 5 (GPIO[5]) SIU_GPDI5 8-bits Base + 0x0805

GPIO data input register 6 (GPIO[6]) SIU_GPDI6 8-bits Base + 0x0806

GPIO data input register 7 (GPIO[7]) SIU_GPDI7 8-bits Base + 0x0807

GPIO data input register 8 (GPIO[8]) SIU_GPDI8 8-bits Base + 0x0808

GPIO data input register 9 (GPIO[9]) SIU_GPDI9 8-bits Base + 0x0809

GPIO data input register 10 (GPIO[10]) SIU_GPDI10 8-bits Base + 0x080A

GPIO data input register 11 (GPIO[11]) SIU_GPDI11 8-bits Base + 0x080B

GPIO data input register 12 (GPIO[12]) SIU_GPDI12 8-bits Base + 0x080C

GPIO data input register 13 (GPIO[13]) SIU_GPDI13 8-bits Base + 0x080D

GPIO data input register 14 (GPIO[14]) SIU_GPDI14 8-bits Base + 0x080E

GPIO data input register 15 (GPIO[15]) SIU_GPDI15 8-bits Base + 0x080F

GPIO data input register 16 (GPIO[16]) SIU_GPDI16 8-bits Base + 0x0810

GPIO data input register 17 (GPIO[17]) SIU_GPDI17 8-bits Base + 0x0811

GPIO data input register 18 (GPIO[18]) SIU_GPDI18 8-bits Base + 0x0812

GPIO data input register 19 (GPIO[19]) SIU_GPDI19 8-bits Base + 0x0813

GPIO data input register 20 (GPIO[20]) SIU_GPDI20 8-bits Base + 0x0814

GPIO data input register 21 (GPIO[21]) SIU_GPDI21 8-bits Base + 0x0815

GPIO data input register 22 (GPIO[22]) SIU_GPDI22 8-bits Base + 0x0816

GPIO data input register 23 (GPIO[23]) SIU_GPDI23 8-bits Base + 0x0817

GPIO data input register 24 (GPIO[24]) SIU_GPDI24 8-bits Base + 0x0818

Table A-2. MPC5534 Detailed Register Map (continued)

Register Description Register Name
Used
Size

Address

MPC5534 Register Map

MPC5534 Microcontroller Reference Manual, Rev. 2

A-16 Freescale Semiconductor

GPIO data input register 25 (GPIO[25]) SIU_GPDI25 8-bits Base + 0x0819

GPIO data input register 26 (GPIO[26]) SIU_GPDI26 8-bits Base + 0x081A

GPIO data input register 27 (GPIO[27]) SIU_GPDI27 8-bits Base + 0x081B

GPIO data input register 28 (GPIO[28]) SIU_GPDI28 8-bits Base + 0x081C

GPIO data input register 29 (GPIO[29]) SIU_GPDI29 8-bits Base + 0x081D

GPIO data input register 30 (GPIO[30]) SIU_GPDI30 8-bits Base + 0x081E

GPIO data input register 31 (GPIO[31]) SIU_GPDI31 8-bits Base + 0x081F

GPIO data input register 32 (GPIO[32]) SIU_GPDI32 8-bits Base + 0x0820

GPIO data input register 33 (GPIO[33]) SIU_GPDI33 8-bits Base + 0x0821

GPIO data input register 34 (GPIO[34]) SIU_GPDI34 8-bits Base + 0x0822

GPIO data input register 35 (GPIO[35]) SIU_GPDI35 8-bits Base + 0x0823

GPIO data input register 36 (GPIO[36]) SIU_GPDI36 8-bits Base + 0x0824

GPIO data input register 37 (GPIO[37]) SIU_GPDI37 8-bits Base + 0x0825

GPIO data input register 38 (GPIO[38]) SIU_GPDI38 8-bits Base + 0x0826

GPIO data input register 39 (GPIO[39]) SIU_GPDI39 8-bits Base + 0x0827

GPIO data input register 40 (GPIO[40]) SIU_GPDI40 8-bits Base + 0x0828

GPIO data input register 41 (GPIO[41]) SIU_GPDI41 8-bits Base + 0x0829

GPIO data input register 42 (GPIO[42]) SIU_GPDI42 8-bits Base + 0x082A

GPIO data input register 43 (GPIO[43]) SIU_GPDI43 8-bits Base + 0x082B

Reserved — — Base + (0x082C–0x083D)

GPIO data input register 62 (GPIO[62]) SIU_GPDI62 8-bits Base + 0x083E

GPIO data input register 63 (GPIO[63]) SIU_GPDI63 8-bits Base + 0x083F

GPIO data input register 64 (GPIO[64]) SIU_GPDI64 8-bits Base + 0x0840

GPIO data input register 65 (GPIO[65]) SIU_GPDI65 8-bits Base + 0x0841

Reserved — — Base + (0x0842–0x0843)

GPIO data input register 68 (GPIO[68]) SIU_GPDI68 8-bits Base + 0x0844

GPIO data input register 69 (GPIO[69]) SIU_GPDI69 8-bits Base + 0x0845

GPIO data input register 70 (GPIO[70]) SIU_GPDI70 8-bits Base + 0x0846

Reserved — — Base + (0x0847–0x0849)

GPIO data input register 74 (GPIO[74]) SIU_GPDI74 8-bits Base + 0x084A

GPIO data input register 75 (GPIO[75]) SIU_GPDI75 8-bits Base + 0x084B

GPIO data input register 76 (GPIO[76]) SIU_GPDI76 8-bits Base + 0x084C

Table A-2. MPC5534 Detailed Register Map (continued)

Register Description Register Name
Used
Size

Address

MPC5534 Register Map

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor A-17

GPIO data input register 77 (GPIO[77]) SIU_GPDI77 8-bits Base + 0x084D

GPIO data input register 78 (GPIO[78]) SIU_GPDI78 8-bits Base + 0x084E

GPIO data input register 79 (GPIO[79]) SIU_GPDI79 8-bits Base + 0x084F

GPIO data input register 80 (GPIO[80]) SIU_GPDI80 8-bits Base + 0x0850

GPIO data input register 81 (GPIO[81]) SIU_GPDI81 8-bits Base + 0x0851

GPIO data input register 82 (GPIO[82]) SIU_GPDI82 8-bits Base + 0x0852

GPIO data input register 83 (GPIO[83]) SIU_GPDI83 8-bits Base + 0x0853

GPIO data input register 84 (GPIO[84]) SIU_GPDI84 8-bits Base + 0x0854

GPIO data input register 85 (GPIO[85]) SIU_GPDI85 8-bits Base + 0x0855

GPIO data input register 86 (GPIO[86]) SIU_GPDI86 8-bits Base + 0x0856

GPIO data input register 87 (GPIO[87]) SIU_GPDI87 8-bits Base + 0x0857

GPIO data input register 88 (GPIO[88]) SIU_GPDI88 8-bits Base + 0x0858

GPIO data input register 89 (GPIO[89]) SIU_GPDI89 8-bits Base + 0x0859

GPIO data input register 90 (GPIO[90]) SIU_GPDI90 8-bits Base + 0x085A

GPIO data input register 91 (GPIO[91]) SIU_GPDI91 8-bits Base + 0x085B

GPIO data input register 92 (GPIO[92]) SIU_GPDI92 8-bits Base + 0x085C

GPIO data input register 93 (GPIO[93]) SIU_GPDI93 8-bits Base + 0x085D

GPIO data input register 94 (GPIO[94]) SIU_GPDI94 8-bits Base + 0x085E

GPIO data input register 95 (GPIO[95]) SIU_GPDI95 8-bits Base + 0x085F

GPIO data input register 96 (GPIO[96]) SIU_GPDI96 8-bits Base + 0x0860

GPIO data input register 97 (GPIO[97]) SIU_GPDI97 8-bits Base + 0x0861

GPIO data input register 98 (GPIO[98]) SIU_GPDI98 8-bits Base + 0x0862

GPIO data input register 99 (GPIO[99]) SIU_GPDI99 8-bits Base + 0x0863

GPIO data input register 100 (GPIO[100]) SIU_GPDI100 8-bits Base + 0x0864

GPIO data input register 101 (GPIO[101]) SIU_GPDI101 8-bits Base + 0x0865

GPIO data input register 102 (GPIO[102]) SIU_GPDI102 8-bits Base + 0x0866

GPIO data input register 103 (GPIO[103]) SIU_GPDI103 8-bits Base + 0x0867

GPIO data input register 104 (GPIO[104]) SIU_GPDI104 8-bits Base + 0x0868

GPIO data input register 105 (GPIO[105]) SIU_GPDI105 8-bits Base + 0x0869

GPIO data input register 106 (GPIO[106]) SIU_GPDI106 8-bits Base + 0x086A

GPIO data input register 107 (GPIO[107]) SIU_GPDI107 8-bits Base + 0x086B

GPIO data input register 108 (GPIO[108]) SIU_GPDI108 8-bits Base + 0x086C

Table A-2. MPC5534 Detailed Register Map (continued)

Register Description Register Name
Used
Size

Address

MPC5534 Register Map

MPC5534 Microcontroller Reference Manual, Rev. 2

A-18 Freescale Semiconductor

GPIO data input register 109 (GPIO[109]) SIU_GPDI109 8-bits Base + 0x086D

GPIO data input register 110 (GPIO[110]) SIU_GPDI110 8-bits Base + 0x086E

Reserved — — Base + (0x066F–0x0670)

GPIO data input register 113 (GPIO[113]) SIU_GPDI113 8-bits Base + 0x0871

GPIO data input register 114 (GPIO[114]) SIU_GPDI114 8-bits Base + 0x0872

GPIO data input register 115 (GPIO[115]) SIU_GPDI115 8-bits Base + 0x0873

GPIO data input register 116 (GPIO[116]) SIU_GPDI116 8-bits Base + 0x0874

GPIO data input register 117 (GPIO[117]) SIU_GPDI117 8-bits Base + 0x0875

GPIO data input register 118 (GPIO[118]) SIU_GPDI118 8-bits Base + 0x0876

GPIO data input register 119 (GPIO[119]) SIU_GPDI119 8-bits Base + 0x0877

GPIO data input register 120 (GPIO[120]) SIU_GPDI120 8-bits Base + 0x0878

GPIO data input register 121 (GPIO[121]) SIU_GPDI121 8-bits Base + 0x0879

GPIO data input register 122 (GPIO[122]) SIU_GPDI122 8-bits Base + 0x087A

GPIO data input register 123 (GPIO[123]) SIU_GPDI123 8-bits Base + 0x087B

GPIO data input register 124 (GPIO[124]) SIU_GPDI124 8-bits Base + 0x087C

GPIO data input register 125 (GPIO[125]) SIU_GPDI125 8-bits Base + 0x087D

GPIO data input register 126 (GPIO[126]) SIU_GPDI126 8-bits Base + 0x087E

GPIO data input register 127 (GPIO[127]) SIU_GPDI127 8-bits Base + 0x087F

GPIO data input register 128 (GPIO[128]) SIU_GPDI128 8-bits Base + 0x0880

GPIO data input register 129 (GPIO[129]) SIU_GPDI129 8-bits Base + 0x0881

GPIO data input register 130 (GPIO[130]) SIU_GPDI130 8-bits Base + 0x0882

GPIO data input register 131 (GPIO[131]) SIU_GPDI131 8-bits Base + 0x0883

GPIO data input register 132 (GPIO[132]) SIU_GPDI132 8-bits Base + 0x0884

GPIO data input register 133 (GPIO[133]) SIU_GPDI133 8-bits Base + 0x0885

GPIO data input register 134 (GPIO[134]) SIU_GPDI134 8-bits Base + 0x0886

GPIO data input register 135 (GPIO[135]) SIU_GPDI135 8-bits Base + 0x0887

GPIO data input register 136 (GPIO[136]) SIU_GPDI136 8-bits Base + 0x0888

GPIO data input register 137 (GPIO[137]) SIU_GPDI137 8-bits Base + 0x0889

GPIO data input register 138 (GPIO[138]) SIU_GPDI138 8-bits Base + 0x088A

GPIO data input register 139 (GPIO[139]) SIU_GPDI139 8-bits Base + 0x088B

GPIO data input register 140 (GPIO[140]) SIU_GPDI140 8-bits Base + 0x088C

GPIO data input register 141 (GPIO[141]) SIU_GPDI141 8-bits Base + 0x088D

Table A-2. MPC5534 Detailed Register Map (continued)

Register Description Register Name
Used
Size

Address

MPC5534 Register Map

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor A-19

GPIO data input register 142 (GPIO[142]) SIU_GPDI142 8-bits Base + 0x088E

GPIO data input register 143 (GPIO[143]) SIU_GPDI143 8-bits Base + 0x088F

GPIO data input register 144 (GPIO[144]) SIU_GPDI144 8-bits Base + 0x0890

GPIO data input register 145 (GPIO[145]) SIU_GPDI145 8-bits Base + 0x0891

GPIO data input register 146 (GPIO[146]) SIU_GPDI146 8-bits Base + 0x0892

GPIO data input register 147 (GPIO[147]) SIU_GPDI147 8-bits Base + 0x0893

GPIO data input register 148 (GPIO[148]) SIU_GPDI148 8-bits Base + 0x0894

GPIO data input register 149 (GPIO[149]) SIU_GPDI149 8-bits Base + 0x0895

GPIO data input register 150 (GPIO[150]) SIU_GPDI150 8-bits Base + 0x0896

GPIO data input register 151 (GPIO[151]) SIU_GPDI151 8-bits Base + 0x0897

GPIO data input register 152 (GPIO[152]) SIU_GPDI152 8-bits Base + 0x0898

GPIO data input register 153 (GPIO[153]) SIU_GPDI153 8-bits Base + 0x0899

GPIO data input register 154 (GPIO[154]) SIU_GPDI154 8-bits Base + 0x089A

GPIO data input register 155 (GPIO[155]) SIU_GPDI155 8-bits Base + 0x089B

GPIO data input register 156 (GPIO[156]) SIU_GPDI156 8-bits Base + 0x089C

GPIO data input register 157 (GPIO[157]) SIU_GPDI157 8-bits Base + 0x089D

GPIO data input register 158 (GPIO[158]) SIU_GPDI158 8-bits Base + 0x089E

GPIO data input register 159 (GPIO[159]) SIU_GPDI159 8-bits Base + 0x089F

GPIO data input register 160 (GPIO[160]) SIU_GPDI160 8-bits Base + 0x08A0

GPIO data input register 161 (GPIO[161]) SIU_GPDI161 8-bits Base + 0x08A1

GPIO data input register 162 (GPIO[162]) SIU_GPDI162 8-bits Base + 0x08A2

GPIO data input register 163 (GPIO[163]) SIU_GPDI163 8-bits Base + 0x08A3

GPIO data input register 164 (GPIO[164]) SIU_GPDI164 8-bits Base + 0x08A4

GPIO data input register 165 (GPIO[165]) SIU_GPDI165 8-bits Base + 0x08A5

GPIO data input register 166 (GPIO[166]) SIU_GPDI166 8-bits Base + 0x08A6

GPIO data input register 167 (GPIO[167]) SIU_GPDI167 8-bits Base + 0x08A7

GPIO data input register 168 (GPIO[168]) SIU_GPDI168 8-bits Base + 0x08A8

GPIO data input register 169 (GPIO[169]) SIU_GPDI169 8-bits Base + 0x08A9

GPIO data input register 170 (GPIO[170]) SIU_GPDI170 8-bits Base + 0x08AA

GPIO data input register 171 (GPIO[171]) SIU_GPDI171 8-bits Base + 0x08AB

GPIO data input register 172 (GPIO[172]) SIU_GPDI172 8-bits Base + 0x08AC

GPIO data input register 173 (GPIO[173]) SIU_GPDI173 8-bits Base + 0x08AD

Table A-2. MPC5534 Detailed Register Map (continued)

Register Description Register Name
Used
Size

Address

MPC5534 Register Map

MPC5534 Microcontroller Reference Manual, Rev. 2

A-20 Freescale Semiconductor

GPIO data input register 174 (GPIO[174]) SIU_GPDI174 8-bits Base + 0x08AE

GPIO data input register 175 (GPIO[175]) SIU_GPDI175 8-bits Base + 0x08AF

GPIO data input register 176 (GPIO[176]) SIU_GPDI176 8-bits Base + 0x08B0

GPIO data input register 177 (GPIO[177]) SIU_GPDI177 8-bits Base + 0x08B1

GPIO data input register 178 (GPIO[178]) SIU_GPDI178 8-bits Base + 0x08B2

GPIO data input register 179 (GPIO[179]) SIU_GPDI179 8-bits Base + 0x08B3

GPIO data input register 180 (GPIO[180]) SIU_GPDI180 8-bits Base + 0x08B4

GPIO data input register 181 (GPIO[181]) SIU_GPDI181 8-bits Base + 0x08B5

GPIO data input register 182 (GPIO[182]) SIU_GPDI182 8-bits Base + 0x08B6

GPIO data input register 183 (GPIO[183]) SIU_GPDI183 8-bits Base + 0x08B7

GPIO data input register 184 (GPIO[184]) SIU_GPDI184 8-bits Base + 0x08B8

GPIO data input register 185 (GPIO[185]) SIU_GPDI185 8-bits Base + 0x08B9

GPIO data input register 186 (GPIO[186]) SIU_GPDI186 8-bits Base + 0x08BA

GPIO data input register 187 (GPIO[187]) SIU_GPDI187 8-bits Base + 0x08BB

GPIO data input register 188 (GPIO[188]) SIU_GPDI188 8-bits Base + 0x08BC

GPIO data input register 189 (GPIO[189]) SIU_GPDI189 8-bits Base + 0x08BD

GPIO data input register 190 (GPIO[190]) SIU_GPDI190 8-bits Base + 0x08BE

GPIO data input register 191 (GPIO[191]) SIU_GPDI191 8-bits Base + 0x08BF

GPIO data input register 192 (GPIO[192]) SIU_GPDI192 8-bits Base + 0x08C0

GPIO data input register 193 (GPIO[193]) SIU_GPDI193 8-bits Base + 0x08C1

GPIO data input register 194 (GPIO[194]) SIU_GPDI194 8-bits Base + 0x08C2

GPIO data input register 195 (GPIO[195]) SIU_GPDI195 8-bits Base + 0x08C3

GPIO data input register 196 (GPIO[196]) SIU_GPDI196 8-bits Base + 0x08C4

GPIO data input register 197 (GPIO[197]) SIU_GPDI197 8-bits Base + 0x08C5

GPIO data input register 198 (GPIO[198]) SIU_GPDI198 8-bits Base + 0x08C6

GPIO data input register 199 (GPIO[199]) SIU_GPDI199 8-bits Base + 0x08C7

GPIO data input register 200 (GPIO[200]) SIU_GPDI200 8-bits Base + 0x08C8

GPIO data input register 201 (GPIO[201]) SIU_GPDI201 8-bits Base + 0x08C9

GPIO data input register 202 (GPIO[202]) SIU_GPDI202 8-bits Base + 0x08CA

GPIO data input register 203 (GPIO[203]) SIU_GPDI203 8-bits Base + 0x08CB

GPIO data input register 204 (GPIO[204]) SIU_GPDI204 8-bits Base + 0x08CC

Reserved — 8-bits Base + 0x08CD

Table A-2. MPC5534 Detailed Register Map (continued)

Register Description Register Name
Used
Size

Address

MPC5534 Register Map

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor A-21

GPIO data input register 206 (GPIO[206]) SIU_GPDI206 8-bits Base + 0x08CE

GPIO data input register 207 (GPIO[207]) SIU_GPDI207 8-bits Base + 0x08CF

GPIO data input register 208 (GPIO[208]) SIU_GPDI208 8-bits Base + 0x08D0

GPIO data input register 209 (GPIO[209]) SIU_GPDI209 8-bits Base + 0x08D1

GPIO data input register 210 (GPIO[210]) SIU_GPDI210 8-bits Base + 0x08D2

GPIO data input register 211 (GPIO[211]) SIU_GPDI211 8-bits Base + 0x08D3

GPIO data input register 212 (GPIO[212]) SIU_GPDI212 8-bits Base + 0x08D4

GPIO data input register 213 (GPIO[213]) SIU_GPDI213 8-bits Base + 0x08D5

Reserved — — Base + (0x08D8–0x08FF)

eQADC trigger input select register SIU_ETISR 32-bits Base + 0x0900

External IRQ input select register SIU_EIISR 32-bits Base + 0x0904

DSPI input select register SIU_DISR 32-bits Base + 0x0908

Reserved — — Base + (0x090C–0x097C)

Chip configuration register SIU_CCR 32-bits Base + 0x0980

External clock control register SIU_ECCR 32-bits Base + 0x0984

Compare A high register SIU_CARH 32-bits Base + 0x0988

Compare A low register SIU_CARL 32-bits Base + 0x098C

Compare B high register SIU_CBRH 32-bits Base + 0x0990

Compare B low register SIU_CBRL 32-bits Base + 0x0994

Reserved — — (Base + 0x0998)–0xC3F9_FFFF

Chapter 16, “Enhanced Modular Input/Output Subsystem (eMIOS)” 0xC3FA_0000

Module configuration register EMIOS_MCR 32-bit Base + 0x0000

Global flag register EMIOS_GFR 32-bit Base + 0x0004

Output update disable register EMIOS_OUDR 32-bit Base + 0x0008

Reserved — — Base + (0x000C–0x001F)

Unified channel n, where n = 0–23 UC base addresses (UCn) 256-bit Base + (0x0020 x (n+1))

Channel A data register n EMIOS_CADRn 32-bit UCn Base + 0x0000

Channel B data register n EMIOS_CBDRn 32-bit UCn Base + 0x0004

Channel counter register n EMIOS_CCNTRn 32-bit UCn Base + 0x0008

Channel control register n EMIOS_CCRn 32-bit UCn Base + 0x000C

Channel status register n EMIOS_CSRn 32-bit UCn Base + 0x0010

Reserved — — UCn Base + (0x0014–0x001F)

Table A-2. MPC5534 Detailed Register Map (continued)

Register Description Register Name
Used
Size

Address

MPC5534 Register Map

MPC5534 Microcontroller Reference Manual, Rev. 2

A-22 Freescale Semiconductor

Chapter 17, “Enhanced Time Processing Unit (eTPU)” 0xC3FC_0000

eTPU module configuration register ETPU_MCR 32-bit Base + 0x0000

eTPU coherent dual-parameter controller register ETPU_CDCR 32-bit Base + 0x0004

Reserved — — Base + (0x0008–0x000B)

eTPU miscellaneous compare register ETPU_MISCCMPR 32-bit Base + 0x000C

eTPU SCM off-range data register ETPU_SCMOFFDATAR 32-bit Base + 0x0010

eTPU A engine configuration register ETPU_ECR_A 32-bit Base + 0x0014

Reserved — — Base + (0x0018–0x001F)

eTPU A time base configuration register ETPU_TBCR_A 32-bit Base + 0x0020

eTPU A time base 1 ETPU_TB1R_A 32-bit Base + 0x0024

eTPU A time base 2 ETPU_TB2R_A 32-bit Base + 0x0028

eTPU A STAC bus interface configuration register ETPU_REDCR_A 32-bit Base + 0x002C

Reserved — — Base + (0x0030–0x01FF)

eTPU A channel interrupt status register ETPU_CISR_A 32-bit Base + 0x0200

Reserved — — Base + (0x0204–0x020F)

eTPU A channel data transfer request status
register

ETPU_CDTRSR_A 32-bit Base + 0x0210

Reserved — — Base + (0x0214–0x021F)

eTPU A channel interrupt overflow status register ETPU_CIOSR_A 32-bit Base + 0x0220

Reserved — — Base + (0x0224–0x022F)

eTPU A channel data transfer request overflow
status register

ETPU_CDTROSR_A 32-bit Base + 0x0230

Reserved — — Base + (0x0234–0x023F)

eTPU A channel interrupt enable register ETPU_CIER_A 32-bit Base + 0x0240

Reserved — — Base + (0x0244–0x024F)

eTPU A channel data transfer request enable
register

ETPU_CDTRER_A 32-bit Base + 0x0250

Reserved — — Base + (0x0254–0x027F)

eTPU A channel pending service status register ETPU_CPSSR_A 32-bit Base + 0x0280

Reserved — — Base + (0x0284–0x028F)

eTPU A channel service status register ETPU_CSSR_A 32-bit Base + 0x0290

Reserved — — Base + (0x0294–0x03FF)

eTPU A channel 0 configuration register ETPU_C0CR_A 32-bit Base + 0x0400

Table A-2. MPC5534 Detailed Register Map (continued)

Register Description Register Name
Used
Size

Address

MPC5534 Register Map

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor A-23

eTPU A channel 0 status and control register ETPU_C0SCR_A 32-bit Base + 0x0404

eTPU A channel 0 host service request register ETPU_C0HSRR_A 32-bit Base + 0x0408

Reserved — — Base + (0x040C-0x040F)

eTPU A channel 1 configuration register ETPU_C1CR_A 32-bit Base + 0x0410

eTPU A channel 1 status and control register ETPU_C1SCR_A 32-bit Base + 0x0414

eTPU A channel 1 host service request register ETPU_C1HSRR_A 32-bit Base + 0x0418

Reserved — — Base + (0x041C–0x041F)

eTPU A channel 2 configuration register ETPU_C2CR_A 32-bit Base + 0x0420

eTPU A channel 2 status and control register ETPU_C2SCR_A 32-bit Base + 0x0424

eTPU A channel 2 host service request register ETPU_C2HSRR_A 32-bit Base + 0x0428

Reserved — — Base + (0x042C–0x042F)

eTPU A channel 3 configuration register ETPU_C3CR_A 32-bit Base + 0x0430

eTPU A channel 3 status and control register ETPU_C3SCR_A 32-bit Base + 0x0434

eTPU A channel 3 host service request register ETPU_C3HSRR_A 32-bit Base + 0x0438

Reserved — — Base + (0x043C–0x043F)

eTPU A channel 4 configuration register ETPU_C4CR_A 32-bit Base + 0x0440

eTPU A channel 4 status and control register ETPU_C4SCR_A 32-bit Base + 0x0444

eTPU A channel 4 host service request register ETPU_C4HSRR_A 32-bit Base + 0x0448

Reserved — — Base + (0x044C–0x044F)

eTPU A channel 5 configuration register ETPU_C5CR_A 32-bit Base + 0x0450

eTPU A channel 5 status and control register ETPU_C5SCR_A 32-bit Base + 0x0454

eTPU A channel 5 host service request register ETPU_C5HSRR_A 32-bit Base + 0x0458

Reserved — — Base + (0x045C–0x045F)

eTPU A channel 6 configuration register ETPU_C6CR_A 32-bit Base + 0x0460

eTPU A channel 6 status and control register ETPU_C6SCR_A 32-bit Base + 0x0464

eTPU A channel 6 host service request register ETPU_C6HSRR_A 32-bit Base + 0x0468

Reserved — — Base + (0x046C–0x046F)

eTPU A channel 7 configuration register ETPU_C7CR_A 32-bit Base + 0x0470

eTPU A channel 7 status and control register ETPU_C7SCR_A 32-bit Base + 0x0474

eTPU A channel 7 host service request register ETPU_C7HSRR_A 32-bit Base + 0x0478

Reserved — — Base + (0x047C–0x047F)

eTPU A channel 8 configuration register ETPU_C8CR_A 32-bit Base + 0x0480

Table A-2. MPC5534 Detailed Register Map (continued)

Register Description Register Name
Used
Size

Address

MPC5534 Register Map

MPC5534 Microcontroller Reference Manual, Rev. 2

A-24 Freescale Semiconductor

eTPU A channel 8 status and control register ETPU_C8SCR_A 32-bit Base + 0x0484

eTPU A channel 8 host service request register ETPU_C8HSRR_A 32-bit Base + 0x0488

Reserved — — Base + (0x048C–0x048F)

eTPU A channel 9 configuration register ETPU_C9CR_A 32-bit Base + 0x0490

eTPU A channel 9 status and control register ETPU_C9SCR_A 32-bit Base + 0x0494

eTPU A channel 9 host service request register ETPU_C9HSRR_A 32-bit Base + 0x0498

Reserved — — Base + (0x049C–0x049F)

eTPU A channel 10 configuration register ETPU_C10CR_A 32-bit Base + 0x04A0

eTPU A channel 10 status and control register ETPU_C10SCR_A 32-bit Base + 0x04A4

eTPU A channel 10 host service request register ETPU_C10HSRR_A 32-bit Base + 0x04A8

Reserved — — Base + (0x04AC–0x04AF)

eTPU A channel 11 configuration register ETPU_C11CR_A 32-bit Base + 0x04B0

eTPU A channel 11 status and control register ETPU_C11SCR_A 32-bit Base + 0x04B4

eTPU A channel 11 host service request register ETPU_C11HSRR_A 32-bit Base + 0x04B8

Reserved — — Base + (0x04BC–0x04BF)

eTPU A channel 12 configuration register ETPU_C12CR_A 32-bit Base + 0x04C0

eTPU A channel 12 status and control register ETPU_C12SCR_A 32-bit Base + 0x04C4

eTPU A channel 12 host service request register ETPU_C12HSRR_A 32-bit Base + 0x04C8

Reserved — — Base + (0x04CC–0x04CF)

eTPU A channel 13 configuration register ETPU_C13CR_A 32-bit Base + 0x04D0

eTPU A channel 13 status and control register ETPU_C13SCR_A 32-bit Base + 0x04D4

eTPU A channel 13 host service request register ETPU_C13HSRR_A 32-bit Base + 0x04D8

Reserved — — Base + (0x04DC–0x04DF)

eTPU A channel 14 configuration register ETPU_C14CR_A 32-bit Base + 0x04E0

eTPU A channel 14 status and control register ETPU_C14SCR_A 32-bit Base + 0x04E4

eTPU A channel 14 host service request register ETPU_C14HSRR_A 32-bit Base + 0x04E8

Reserved — — Base + (0x04EC–0x04EF)

eTPU A channel 15 configuration register ETPU_C15CR_A 32-bit Base + 0x04F0

eTPU A channel 15 status and control register ETPU_C15SCR_A 32-bit Base + 0x04F4

eTPU A channel 15 host service request register ETPU_C15HSRR_A 32-bit Base + 0x04F8

Reserved — — Base + (0x04FC–0x04FF)

eTPU A channel 16 configuration register ETPU_C16CR_A 32-bit Base + 0x0500

Table A-2. MPC5534 Detailed Register Map (continued)

Register Description Register Name
Used
Size

Address

MPC5534 Register Map

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor A-25

eTPU A channel 16 status and control register ETPU_C16SCR_A 32-bit Base + 0x0504

eTPU A channel 16 host service request register ETPU_C16HSRR_A 32-bit Base + 0x0508

Reserved — — Base + (0x050C–0x050F)

eTPU A channel 17 configuration register ETPU_C17CR_A 32-bit Base + 0x0510

eTPU A channel 17 status and control register ETPU_C17SCR_A 32-bit Base + 0x0514

eTPU A channel 17 host service request register ETPU_C17HSRR_A 32-bit Base + 0x0518

Reserved — — Base + (0x051C–0x051F)

eTPU A channel 18 configuration register ETPU_C18CR_A 32-bit Base + 0x0520

eTPU A channel 18 status and control register ETPU_C18SCR_A 32-bit Base + 0x0524

eTPU A channel 18 host service request register ETPU_C18HSRR_A 32-bit Base + 0x0528

Reserved — — Base + (0x052C–0x052F)

eTPU A channel 19 configuration register ETPU_C19CR_A 32-bit Base + 0x0530

eTPU A channel 19 status and control register ETPU_C19SCR_A 32-bit Base + 0x0534

eTPU A channel 19 host service request register ETPU_C19HSRR_A 32-bit Base + 0x0538

Reserved — — Base + (0x053C–0x053F)

eTPU A channel 20 configuration register ETPU_C20CR_A 32-bit Base + 0x0540

eTPU A channel 20 status and control register ETPU_C20SCR_A 32-bit Base + 0x0544

eTPU A channel 20 host service request register ETPU_C20HSRR_A 32-bit Base + 0x0548

Reserved — — Base + (0x054C–0x054F)

eTPU A channel 21 configuration register ETPU_C21CR_A 32-bit Base + 0x0550

eTPU A channel 21 status and control register ETPU_C21SCR_A 32-bit Base + 0x0554

eTPU A channel 21 host service request register ETPU_C21HSRR_A 32-bit Base + 0x0558

Reserved — — Base + (0x055C–0x055F)

eTPU A channel 22 configuration register ETPU_C22CR_A 32-bit Base + 0x0560

eTPU A channel 22 status and control register ETPU_C22SCR_A 32-bit Base + 0x0564

eTPU A channel 22 host service request register ETPU_C22HSRR_A 32-bit Base + 0x0568

Reserved — — Base + (0x056C–0x056F)

eTPU A channel 23 configuration register ETPU_C23CR_A 32-bit Base + 0x0570

eTPU A channel 23 status and control register ETPU_C23CR_A 32-bit Base + 0x0574

eTPU A channel 23 host service request register ETPU_C23HSRR_A 32-bit Base + 0x0578

Reserved — — Base + (0x057C–0x057F)

eTPU A channel 24 configuration register ETPU_C24CR_A 32-bit Base + 0x0580

Table A-2. MPC5534 Detailed Register Map (continued)

Register Description Register Name
Used
Size

Address

MPC5534 Register Map

MPC5534 Microcontroller Reference Manual, Rev. 2

A-26 Freescale Semiconductor

eTPU A channel 24 status and control register ETPU_C24SCR_A 32-bit Base + 0x0584

eTPU A channel 24 host service request register ETPU_C24HSRR_A 32-bit Base + 0x0588

Reserved — — Base + (0x058C–0x058F)

eTPU A channel 25 configuration register ETPU_C25CR_A 32-bit Base + 0x0590

eTPU A channel 25 status and control register ETPU_C25SCR_A 32-bit Base + 0x0594

eTPU A channel 25 host service request register ETPU_C25HSRR_A 32-bit Base + 0x0598

Reserved — — Base + (0x059C–0x059F)

eTPU A channel 26 configuration register ETPU_C26CR_A 32-bit Base + 0x05A0

eTPU A channel 26 status and control register ETPU_C26SCR_A 32-bit Base + 0x05A4

eTPU A channel 26 host service request register ETPU_C26HSRR_A 32-bit Base + 0x05A8

Reserved — — Base + (0x05AC–0x05AF)

eTPU A channel 27 configuration register ETPU_C27CR_A 32-bit Base + 0x05B0

eTPU A channel 27 status and control register ETPU_C27SCR_A 32-bit Base + 0x05B4

eTPU A channel 27 host service request register ETPU_C27HSRR_A 32-bit Base + 0x05B8

Reserved — — Base + (0x05BC–0x05BF)

eTPU A channel 28 configuration register ETPU_C28CR_A 32-bit Base + 0x05C0

eTPU A channel 28 status and control register ETPU_C28SCR_A 32-bit Base + 0x05C4

eTPU A channel 28 host service request register ETPU_C28HSRR_A 32-bit Base + 0x05C8

Reserved — — Base + (0x05CC–0x05CF)

eTPU A channel 29 configuration register ETPU_C29CR_A 32-bit Base + 0x05D0

eTPU A channel 29 status and control register ETPU_C29SCR_A 32-bit Base + 0x05D4

eTPU A channel 29 host service request register ETPU_C29HSRR_A 32-bit Base + 0x05D8

Reserved — — Base + (0x05DC–0x05DF)

eTPU A channel 30 configuration register ETPU_C30CR_A 32-bit Base + 0x05E0

eTPU A channel 30 status and control register ETPU_C30SCR_A 32-bit Base + 0x05E4

eTPU A channel 30 host service request register ETPU_C30HSRR_A 32-bit Base + 0x05E8

Reserved — — Base + (0x05EC–0x05EF)

eTPU A channel 31 configuration register ETPU_C31CR_A 32-bit Base + 0x05F0

eTPU A channel 31 status and control register ETPU_C31SCR_A 32-bit Base + 0x05F4

eTPU A channel 31 host service request register ETPU_C31HSRR_A 32-bit Base + 0x05F8

Reserved — — Base + (0x05FC–0x07FF)

Reserved — — Base + (0x09FC–0x7FFF)

Table A-2. MPC5534 Detailed Register Map (continued)

Register Description Register Name
Used
Size

Address

MPC5534 Register Map

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor A-27

Shared data memory (parameter RAM) SDM 2.5 KB Base + (0x8000–0x8BFF)

Reserved — — Base + (0x8C00–0xBFFF)

SDM PSE mirror 2.5 KB Base + (0xC000–0xCBFF)

Reserved — — Base + (0xCC00–0xFFFF)

Shared code memory SCM 12 KB Base + (0x0001_0000–0x0001_2FFF)

Reserved — — Base + (0x0001_4000–0xFFEF_FFFF)

Chapter 5, “Peripheral Bridge” 0xFFF0_0000

Peripheral bridge B master privilege control register PBRIDGEB_MPCR 32-bit Base + 0x0000

Reserved — — (Base + 0x0004)–0xFFF0_3FFF

Chapter 7, “Crossbar Switch (XBAR)” 0xFFF0_4000

Master priority register 0 XBAR_MPR0 32-bit Base + 0x0000

Reserved — — Base + (0x0004–0x000F)

Slave general purpose control register 0 XBAR_SGPCR0 32-bit Base + 0x0010

Reserved — — Base + (0x0014–0x00FF)

Master priority register 1 XBAR_MPR1 32-bit Base + 0x0100

Reserved — — Base + (0x0104–0x010F)

Slave general purpose control register 1 XBAR_SGPCR1 32-bit Base + 0x0110

Reserved — — Base + (0x0114–0x02FF)

Master priority register 3 XBAR_MPR3 32-bit Base + 0x0300

Reserved — — Base + (0x0304–0x030F)

Slave general purpose control register 3 XBAR_SGPCR3 32-bit Base + 0x0310

Reserved — — Base + (0x0314–0x05FF)

Master priority register 6 XBAR_MPR6 32-bit Base + 0x0600

Reserved — — Base + (0x0604–0x060F)

Slave general purpose control register 6 XBAR_SGPCR6 32-bit Base + 0x0610

Reserved — — Base + (0x0614–0x06FF)

Master priority register 7 XBAR_MPR7 32-bit Base + 0x0700

Reserved — — Base + (0x0704–0x070F)

Slave general purpose control register 7 XBAR_SGPCR7 32-bit Base + 0x0710

Reserved — — (Base + 0x0714)–0xFFF4_3FFF

Table A-2. MPC5534 Detailed Register Map (continued)

Register Description Register Name
Used
Size

Address

MPC5534 Register Map

MPC5534 Microcontroller Reference Manual, Rev. 2

A-28 Freescale Semiconductor

Chapter 8, “Error Correction Status Module (ECSM)” 0xFFF4_0000

Reserved — — Base + (0x0000–0x0015)

Software watchdog timer control register ECSM_SWTCR1 16-bit Base + 0x0016

Reserved — — Base + (0x0018–0x001A)

Software watchdog timer service register ECSM_SWTSR 1 8-bit Base + 0x001B

Reserved — — Base + (0x001C–0x001E)

Software watchdog timer interrupt register ECSM_SWTIR 1 8-bit Base + 0x001F

Reserved — Base + (0x0020–0x0042)

ECC configuration register ECSM_ECR 8-bit Base + 0x0043

Reserved — — Base + (0x0044–0x0046)

ECC status register ECSM_ESR 8-bit Base + 0x0047

Reserved — — Base + (0x0048–0x0049)

ECC error generation register ECSM_EEGR 16-bit Base + 0x004A

Reserved — — Base + (0x004C–0x004F)

Flash ECC address register ECSM_FEAR 32-bit Base + 0x0050

Reserved — — Base + (0x0054–0x0055)

Flash ECC master number register ECSM_FEMR 8-bit Base + 0x0056

Flash ECC attributes register ECSM_FEAT 8-bit Base + 0x0057

Flash ECC data register high ECSM_FEDRH 32-bit Base + 0x0058

Flash ECC data register low ECSM_FEDRL 32-bit Base + 0x005C

RAM ECC address register ECSM_REAR 32-bit Base + 0x0060

Reserved — — Base + (0x0064–0x0065)

RAM ECC master number register ECSM_REMR 8-bit Base + 0x0066

RAM ECC attributes register ECSM_REAT 8-bit Base + 0x0067

RAM ECC data register high ECSM_REDRH 32-bit Base + 0x0068

RAM ECC data register low ECSM_REDRL 32-bit Base + 0x006C

Reserved — — (Base + 0x0070)–0xFFF4_3FFF

Chapter 9, “Enhanced Direct Memory Access (eDMA)” 0xFFF4_4000

Control register EDMA_CR 32-bit Base + 0x0000

Error status register EDMA_ESR 32-bit Base + 0x0004

Reserved — — Base + 0x0008

Enable request register low EDMA_ERQRL 32-bit Base + 0x000C

Table A-2. MPC5534 Detailed Register Map (continued)

Register Description Register Name
Used
Size

Address

MPC5534 Register Map

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor A-29

Reserved — — Base + 0x0010

Enable error interrupt register low EDMA_EEIRL 32-bit Base + 0x0014

Set enable request register EDMA_SERQR 8-bit Base + 0x0018

Clear enable request register EDMA_CERQR 8-bit Base + 0x0019

Set enable error interrupt register EDMA_SEEIR 8-bit Base + 0x001A

Clear enable error interrupt request register EDMA_CEEIR 8-bit Base + 0x001B

Clear interrupt request register EDMA_CIRQR 8-bit Base + 0x001C

Clear error register EDMA_CER 8-bit Base + 0x001D

Set START bit register EDMA_SSBR 8-bit Base + 0x001E

Clear DONE status bit register EDMA_CDSBR 8-bit Base + 0x001F

Reserved — — Base + 0x0020

Interrupt request register low EDMA_IRQRL 32-bit Base + 0x0024

Reserved — — Base + 0x0028

Error register low EDMA_ERL 32-bit Base + 0x002C

Reserved — — Base + (0x0030–0x00FF)

Channel priority register 0 EDMA_CPR0 8-bit Base + 0x0100

Channel priority register 1 EDMA_CPR1 8-bit Base + 0x0101

Channel priority register 2 EDMA_CPR2 8-bit Base + 0x0102

Channel priority register 3 EDMA_CPR3 8-bit Base + 0x0103

Channel priority register 4 EDMA_CPR4 8-bit Base + 0x0104

Channel priority register 5 EDMA_CPR5 8-bit Base + 0x0105

Channel priority register 6 EDMA_CPR6 8-bit Base + 0x0106

Channel priority register 7 EDMA_CPR7 8-bit Base + 0x0107

Channel priority register 8 EDMA_CPR8 8-bit Base + 0x0108

Channel priority register 9 EDMA_CPR9 8-bit Base + 0x0109

Channel priority register 10 EDMA_CPR10 8-bit Base + 0x010A

Channel priority register 11 EDMA_CPR11 8-bit Base + 0x010B

Channel priority register 12 EDMA_CPR12 8-bit Base + 0x010C

Channel priority register 13 EDMA_CPR13 8-bit Base + 0x010D

Channel priority register 14 EDMA_CPR14 8-bit Base + 0x010E

Channel priority register 15 EDMA_CPR15 8-bit Base + 0x010F

Channel priority register 16 EDMA_CPR16 8-bit Base + 0x0110

Table A-2. MPC5534 Detailed Register Map (continued)

Register Description Register Name
Used
Size

Address

MPC5534 Register Map

MPC5534 Microcontroller Reference Manual, Rev. 2

A-30 Freescale Semiconductor

Channel priority register 17 EDMA_CPR17 8-bit Base + 0x0111

Channel priority register 18 EDMA_CPR18 8-bit Base + 0x0112

Channel priority register 19 EDMA_CPR19 8-bit Base + 0x0113

Channel priority register 20 EDMA_CPR20 8-bit Base + 0x0114

Channel priority register 21 EDMA_CPR21 8-bit Base + 0x0115

Channel priority register 22 EDMA_CPR22 8-bit Base + 0x0116

Channel priority register 23 EDMA_CPR23 8-bit Base + 0x0117

Channel priority register 24 EDMA_CPR24 8-bit Base + 0x0118

Channel priority register 25 EDMA_CPR25 8-bit Base + 0x0119

Channel priority register 26 EDMA_CPR26 8-bit Base + 0x011A

Channel priority register 27 EDMA_CPR27 8-bit Base + 0x011B

Channel priority register 28 EDMA_CPR28 8-bit Base + 0x011C

Channel priority register 29 EDMA_CPR29 8-bit Base + 0x011D

Channel priority register 30 EDMA_CPR30 8-bit Base + 0x011E

Channel priority register 31 EDMA_CPR31 8-bit Base + 0x011F

Reserved — — Base + (0x0120–0x0FFF)

Transfer control descriptor register 0 TCD0 256-bit Base + 0x1000

Transfer control descriptor register 1 TCD1 256-bit Base + 0x1020

Transfer control descriptor register 2 TCD2 256-bit Base + 0x1040

Transfer control descriptor register 3 TCD3 256-bit Base + 0x1060

Transfer control descriptor register 4 TCD4 256-bit Base + 0x1080

Transfer control descriptor register 5 TCD5 256-bit Base + 0x10A0

Transfer control descriptor register 6 TCD6 256-bit Base + 0x10C0

Transfer control descriptor register 7 TCD7 256-bit Base + 0x10E0

Transfer control descriptor register 8 TCD8 256-bit Base + 0x1100

Transfer control descriptor register 9 TCD9 256-bit Base + 0x1120

Transfer control descriptor register 10 TCD10 256-bit Base + 0x1140

Transfer control descriptor register 11 TCD11 256-bit Base + 0x1160

Transfer control descriptor register 12 TCD12 256-bit Base + 0x1180

Transfer control descriptor register 13 TCD13 256-bit Base + 0x11A0

Transfer control descriptor register 14 TCD14 256-bit Base + 0x11C0

Transfer control descriptor register 15 TCD15 256-bit Base + 0x11E0

Table A-2. MPC5534 Detailed Register Map (continued)

Register Description Register Name
Used
Size

Address

MPC5534 Register Map

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor A-31

Transfer control descriptor register 16 TCD16 256-bit Base + 0x1200

Transfer control descriptor register 17 TCD17 256-bit Base + 0x1220

Transfer control descriptor register 18 TCD18 256-bit Base + 0x1240

Transfer control descriptor register 19 TCD19 256-bit Base + 0x1260

Transfer control descriptor register 20 TCD20 256-bit Base + 0x1280

Transfer control descriptor register 21 TCD21 256-bit Base + 0x12A0

Transfer control descriptor register 22 TCD22 256-bit Base + 0x12C0

Transfer control descriptor register 23 TCD23 256-bit Base + 0x12E0

Transfer control descriptor register 24 TCD24 256-bit Base + 0x1300

Transfer control descriptor register 25 TCD25 256-bit Base + 0x1320

Transfer control descriptor register 26 TCD26 256-bit Base + 0x1340

Transfer control descriptor register 27 TCD27 256-bit Base + 0x1360

Transfer control descriptor register 28 TCD28 256-bit Base + 0x1380

Transfer control descriptor register 29 TCD29 256-bit Base + 0x13A0

Transfer control descriptor register 30 TCD30 256-bit Base + 0x13C0

Transfer control descriptor register 31 TCD31 256-bit Base + 0x13E0

Reserved — — (Base + 0x1400)–0xFFF4_7FFF

Chapter 10, “Interrupt Controller (INTC)” 0xFFF4_8000

Module configuration register INTC_MCR 32-bit Base + 0x0000

Reserved — — Base + (0x0004–0x0007)

Current priority register INTC_CPR 32-bit Base + 0x0008

Reserved — — Base + (0x000C–0x000F)

Interrupt acknowledge register INTC_IACKR 32-bit Base + 0x0010

Reserved — — Base + (0x0014–0x0017)

End of interrupt register INTC_EOIR 32-bit Base + 0x0018

Reserved — — Base + (0x001C–0x001F)

Software set/clear interrupt register 0 INTC_SSCIR0 8-bit Base + 0x0020

Software set/clear interrupt register 1 INTC_SSCIR1 8-bit Base + 0x0021

Software set/clear interrupt register 2 INTC_SSCIR2 8-bit Base + 0x0022

Software set/clear interrupt register 3 INTC_SSCIR3 8-bit Base + 0x0023

Software set/clear interrupt register 4 INTC_SSCIR4 8-bit Base + 0x0024

Software set/clear interrupt register 5 INTC_SSCIR5 8-bit Base + 0x0025

Table A-2. MPC5534 Detailed Register Map (continued)

Register Description Register Name
Used
Size

Address

MPC5534 Register Map

MPC5534 Microcontroller Reference Manual, Rev. 2

A-32 Freescale Semiconductor

Software set/clear interrupt register 6 INTC_SSCIR6 8-bit Base + 0x0026

Software set/clear interrupt register 7 INTC_SSCIR7 8-bit Base + 0x0027

Reserved — — Base + (0x0028–0x003F)

Priority select register 0 INTC_PSR0 8-bit Base + 0x0040

Priority select register 1 INTC_PSR1 8-bit Base + 0x0041

Priority select register 2 INTC_PSR2 8-bit Base + 0x0042

Priority select register 3 INTC_PSR3 8-bit Base + 0x0043

Priority select register 4 INTC_PSR4 8-bit Base + 0x0044

Priority select register 5 INTC_PSR5 8-bit Base + 0x0045

Priority select register 6 INTC_PSR6 8-bit Base + 0x0046

Priority select register 7 INTC_PSR7 8-bit Base + 0x0047

Priority select register 8 INTC_PSR8 8-bit Base + 0x0048

Priority select register 9 INTC_PSR9 8-bit Base + 0x0049

Priority select register 10 INTC_PSR10 8-bit Base + 0x004A

Priority select register 11 INTC_PSR11 8-bit Base + 0x004B

Priority select register 12 INTC_PSR12 8-bit Base + 0x004C

Priority select register 13 INTC_PSR13 8-bit Base + 0x004D

Priority select register 14 INTC_PSR14 8-bit Base + 0x004E

Priority select register 15 INTC_PSR15 8-bit Base + 0x004F

Priority select register 16 INTC_PSR16 8-bit Base + 0x0050

Priority select register 17 INTC_PSR17 8-bit Base + 0x0051

Priority select register 18 INTC_PSR18 8-bit Base + 0x0052

Priority select register 19 INTC_PSR19 8-bit Base + 0x0053

Priority select register 20 INTC_PSR20 8-bit Base + 0x0054

Priority select register 21 INTC_PSR21 8-bit Base + 0x0055

Priority select register 22 INTC_PSR22 8-bit Base + 0x0056

Priority select register 23 INTC_PSR23 8-bit Base + 0x0057

Priority select register 24 INTC_PSR24 8-bit Base + 0x0058

Priority select register 25 INTC_PSR25 8-bit Base + 0x0059

Priority select register 26 INTC_PSR26 8-bit Base + 0x005A

Priority select register 27 INTC_PSR27 8-bit Base + 0x005B

Priority select register 28 INTC_PSR28 8-bit Base + 0x005C

Table A-2. MPC5534 Detailed Register Map (continued)

Register Description Register Name
Used
Size

Address

MPC5534 Register Map

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor A-33

Priority select register 29 INTC_PSR29 8-bit Base + 0x005D

Priority select register 30 INTC_PSR30 8-bit Base + 0x005E

Priority select register 31 INTC_PSR31 8-bit Base + 0x005F

Priority select register 32 INTC_PSR32 8-bit Base + 0x0060

Priority select register 33 INTC_PSR33 8-bit Base + 0x0061

Priority select register 34 INTC_PSR34 8-bit Base + 0x0062

Priority select register 35 INTC_PSR35 8-bit Base + 0x0063

Priority select register 36 INTC_PSR36 8-bit Base + 0x0064

Priority select register 37 INTC_PSR37 8-bit Base + 0x0065

Priority select register 38 INTC_PSR38 8-bit Base + 0x0066

Priority select register 39 INTC_PSR39 8-bit Base + 0x0067

Priority select register 40 INTC_PSR40 8-bit Base + 0x0068

Priority select register 41 INTC_PSR41 8-bit Base + 0x0069

Priority select register 42 INTC_PSR42 8-bit Base + 0x006A

Priority select register 43 INTC_PSR43 8-bit Base + 0x006B

Priority select register 44 INTC_PSR44 8-bit Base + 0x006C

Priority select register 45 INTC_PSR45 8-bit Base + 0x006D

Priority select register 46 INTC_PSR46 8-bit Base + 0x006E

Priority select register 47 INTC_PSR47 8-bit Base + 0x006F

Priority select register 48 INTC_PSR48 8-bit Base + 0x0070

Priority select register 49 INTC_PSR49 8-bit Base + 0x0071

Priority select register 50 INTC_PSR50 8-bit Base + 0x0072

Priority select register 51 INTC_PSR51 8-bit Base + 0x0073

Priority select register 52 INTC_PSR52 8-bit Base + 0x0074

Priority select register 53 INTC_PSR53 8-bit Base + 0x0075

Priority select register 54 INTC_PSR54 8-bit Base + 0x0076

Priority select register 55 INTC_PSR55 8-bit Base + 0x0077

Priority select register 56 INTC_PSR56 8-bit Base + 0x0078

Priority select register 57 INTC_PSR57 8-bit Base + 0x0079

Priority select register 58 INTC_PSR58 8-bit Base + 0x007A

Priority select register 59 INTC_PSR59 8-bit Base + 0x007B

Priority select register 60 INTC_PSR60 8-bit Base + 0x007C

Table A-2. MPC5534 Detailed Register Map (continued)

Register Description Register Name
Used
Size

Address

MPC5534 Register Map

MPC5534 Microcontroller Reference Manual, Rev. 2

A-34 Freescale Semiconductor

Priority select register 61 INTC_PSR61 8-bit Base + 0x007D

Priority select register 62 INTC_PSR62 8-bit Base + 0x007E

Priority select register 63 INTC_PSR63 8-bit Base + 0x007F

Priority select register 64 INTC_PSR64 8-bit Base + 0x0080

Priority select register 65 INTC_PSR65 8-bit Base + 0x0081

Priority select register 66 INTC_PSR66 8-bit Base + 0x0082

Priority select register 67 INTC_PSR67 8-bit Base + 0x0083

Priority select register 68 INTC_PSR68 8-bit Base + 0x0084

Priority select register 69 INTC_PSR69 8-bit Base + 0x0085

Priority select register 70 INTC_PSR70 8-bit Base + 0x0086

Priority select register 71 INTC_PSR71 8-bit Base + 0x0087

Priority select register 72 INTC_PSR72 8-bit Base + 0x0088

Priority select register 73 INTC_PSR73 8-bit Base + 0x0089

Priority select register 74 INTC_PSR74 8-bit Base + 0x008A

Priority select register 75 INTC_PSR75 8-bit Base + 0x008B

Priority select register 76 INTC_PSR76 8-bit Base + 0x008C

Priority select register 77 INTC_PSR77 8-bit Base + 0x008D

Priority select register 78 INTC_PSR78 8-bit Base + 0x008E

Priority select register 79 INTC_PSR79 8-bit Base + 0x008F

Priority select register 80 INTC_PSR80 8-bit Base + 0x0090

Priority select register 81 INTC_PSR81 8-bit Base + 0x0091

Priority select register 82 INTC_PSR82 8-bit Base + 0x0092

Priority select register 83 INTC_PSR83 8-bit Base + 0x0093

Priority select register 84 INTC_PSR84 8-bit Base + 0x0094

Priority select register 85 INTC_PSR85 8-bit Base + 0x0095

Priority select register 86 INTC_PSR86 8-bit Base + 0x0096

Priority select register 87 INTC_PSR87 8-bit Base + 0x0097

Priority select register 88 INTC_PSR88 8-bit Base + 0x0098

Priority select register 89 INTC_PSR89 8-bit Base + 0x0099

Priority select register 90 INTC_PSR90 8-bit Base + 0x009A

Priority select register 91 INTC_PSR91 8-bit Base + 0x009B

Priority select register 92 INTC_PSR92 8-bit Base + 0x009C

Table A-2. MPC5534 Detailed Register Map (continued)

Register Description Register Name
Used
Size

Address

MPC5534 Register Map

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor A-35

Priority select register 93 INTC_PSR93 8-bit Base + 0x009D

Priority select register 94 INTC_PSR94 8-bit Base + 0x009E

Priority select register 95 INTC_PSR95 8-bit Base + 0x009F

Priority select register 96 INTC_PSR96 8-bit Base + 0x00A0

Priority select register 97 INTC_PSR97 8-bit Base + 0x00A1

Priority select register 98 INTC_PSR98 8-bit Base + 0x00A2

Priority select register 99 INTC_PSR99 8-bit Base + 0x00A3

Priority select register 100 INTC_PSR100 8-bit Base + 0x00A4

Priority select register 101 INTC_PSR101 8-bit Base + 0x00A5

Priority select register 102 INTC_PSR102 8-bit Base + 0x00A6

Priority select register 103 INTC_PSR103 8-bit Base + 0x00A7

Priority select register 104 INTC_PSR104 8-bit Base + 0x00A8

Priority select register 105 INTC_PSR105 8-bit Base + 0x00A9

Priority select register 106 INTC_PSR106 8-bit Base + 0x00AA

Priority select register 107 INTC_PSR107 8-bit Base + 0x00AB

Priority select register 108 INTC_PSR108 8-bit Base + 0x00AC

Priority select register 109 INTC_PSR109 8-bit Base + 0x00AD

Priority select register 110 INTC_PSR110 8-bit Base + 0x00AE

Priority select register 111 INTC_PSR111 8-bit Base + 0x00AF

Priority select register 112 INTC_PSR112 8-bit Base + 0x00B0

Priority select register 113 INTC_PSR113 8-bit Base + 0x00B1

Priority select register 114 INTC_PSR114 8-bit Base + 0x00B2

Priority select register 115 INTC_PSR115 8-bit Base + 0x00B3

Priority select register 116 INTC_PSR116 8-bit Base + 0x00B4

Priority select register 117 INTC_PSR117 8-bit Base + 0x00B5

Priority select register 118 INTC_PSR118 8-bit Base + 0x00B6

Priority select register 119 INTC_PSR119 8-bit Base + 0x00B7

Priority select register 120 INTC_PSR120 8-bit Base + 0x00B8

Priority select register 121 INTC_PSR121 8-bit Base + 0x00B9

Priority select register 122 INTC_PSR122 8-bit Base + 0x00BA

Priority select register 123 INTC_PSR123 8-bit Base + 0x00BB

Priority select register 124 INTC_PSR124 8-bit Base + 0x00BC

Table A-2. MPC5534 Detailed Register Map (continued)

Register Description Register Name
Used
Size

Address

MPC5534 Register Map

MPC5534 Microcontroller Reference Manual, Rev. 2

A-36 Freescale Semiconductor

Priority select register 125 INTC_PSR125 8-bit Base + 0x00BD

Priority select register 126 INTC_PSR126 8-bit Base + 0x00BE

Priority select register 127 INTC_PSR127 8-bit Base + 0x00BF

Priority select register 128 INTC_PSR128 8-bit Base + 0x00C0

Priority select register 129 INTC_PSR129 8-bit Base + 0x00C1

Priority select register 130 INTC_PSR130 8-bit Base + 0x00C2

Priority select register 131 INTC_PSR131 8-bit Base + 0x00C3

Priority select register 132 INTC_PSR132 8-bit Base + 0x00C4

Priority select register 133 INTC_PSR133 8-bit Base + 0x00C5

Priority select register 134 INTC_PSR134 8-bit Base + 0x00C6

Priority select register 135 INTC_PSR135 8-bit Base + 0x00C7

Priority select register 136 INTC_PSR136 8-bit Base + 0x00C8

Priority select register 137 INTC_PSR137 8-bit Base + 0x00C9

Priority select register 138 INTC_PSR138 8-bit Base + 0x00CA

Priority select register 139 INTC_PSR139 8-bit Base + 0x00CB

Priority select register 140 INTC_PSR140 8-bit Base + 0x00CC

Priority select register 141 INTC_PSR141 8-bit Base + 0x00CD

Priority select register 142 INTC_PSR142 8-bit Base + 0x00CE

Priority select register 143 INTC_PSR143 8-bit Base + 0x00CF

Priority select register 144 INTC_PSR144 8-bit Base + 0x00D0

Priority select register 145 INTC_PSR145 8-bit Base + 0x00D1

Priority select register 146 INTC_PSR146 8-bit Base + 0x00D2

Priority select register 147 (reserved) INTC_PSR147 8-bit Base + 0x00D3

Priority select register 148 (reserved) INTC_PSR148 8-bit Base + 0x00D4

Priority select register 149 INTC_PSR149 8-bit Base + 0x00D5

Priority select register 150 (reserved) INTC_PSR150 8-bit Base + 0x00D6

Priority select register 151 (reserved) INTC_PSR151 8-bit Base + 0x00D7

Priority select register 152 INTC_PSR152 8-bit Base + 0x00D8

Priority select register 153 INTC_PSR153 8-bit Base + 0x00D9

Priority select register 154 INTC_PSR154 8-bit Base + 0x00DA

Priority select register 155 INTC_PSR155 8-bit Base + 0x00DB

Priority select register 156 INTC_PSR156 8-bit Base + 0x00DC

Table A-2. MPC5534 Detailed Register Map (continued)

Register Description Register Name
Used
Size

Address

MPC5534 Register Map

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor A-37

Priority select register 157 INTC_PSR157 8-bit Base + 0x00DD

Priority select register 158 INTC_PSR158 8-bit Base + 0x00DE

Priority select register 159 INTC_PSR159 8-bit Base + 0x00DF

Priority select register 160 INTC_PSR160 8-bit Base + 0x00E0

Priority select register 161 INTC_PSR161 8-bit Base + 0x00E1

Priority select register 162 INTC_PSR162 8-bit Base + 0x00E2

Priority select register 163 INTC_PSR163 8-bit Base + 0x00E3

Priority select register 164 INTC_PSR164 8-bit Base + 0x00E4

Priority select register 165 INTC_PSR165 8-bit Base + 0x00E5

Priority select register 166 INTC_PSR166 8-bit Base + 0x00E6

Priority select register 167 INTC_PSR167 8-bit Base + 0x00E7

Priority select register 168 INTC_PSR168 8-bit Base + 0x00E8

Priority select register 169 INTC_PSR169 8-bit Base + 0x00E9

Priority select register 170 INTC_PSR170 8-bit Base + 0x00EA

Priority select register 171 INTC_PSR171 8-bit Base + 0x00EB

Priority select register 172 INTC_PSR172 8-bit Base + 0x00EC

Priority select register 173 INTC_PSR173 8-bit Base + 0x00ED

Priority select register 174 INTC_PSR174 8-bit Base + 0x00EE

Priority select register 175 INTC_PSR175 8-bit Base + 0x00EF

Priority select register 176 INTC_PSR176 8-bit Base + 0x00F0

Priority select register 177 INTC_PSR177 8-bit Base + 0x00F1

Priority select register 178 INTC_PSR178 8-bit Base + 0x00F2

Priority select register 179 INTC_PSR179 8-bit Base + 0x00F3

Priority select register 180 INTC_PSR180 8-bit Base + 0x00F4

Priority select register 181 INTC_PSR181 8-bit Base + 0x00F5

Priority select register 182 INTC_PSR182 8-bit Base + 0x00F6

Priority select register 183 INTC_PSR183 8-bit Base + 0x00F7

Priority select register 184 INTC_PSR184 8-bit Base + 0x00F8

Priority select register 185 INTC_PSR185 8-bit Base + 0x00F9

Priority select register 186 INTC_PSR186 8-bit Base + 0x00FA

Priority select register 187 INTC_PSR187 8-bit Base + 0x00FB

Priority select register 188 INTC_PSR188 8-bit Base + 0x00FC

Table A-2. MPC5534 Detailed Register Map (continued)

Register Description Register Name
Used
Size

Address

MPC5534 Register Map

MPC5534 Microcontroller Reference Manual, Rev. 2

A-38 Freescale Semiconductor

Priority select register 189 INTC_PSR189 8-bit Base + 0x00FD

Priority select register 190 INTC_PSR190 8-bit Base + 0x00FE

Priority select register 191 INTC_PSR191 8-bit Base + 0x00FF

Priority select register 192 INTC_PSR192 8-bit Base + 0x0100

Priority select register 193 INTC_PSR193 8-bit Base + 0x0101

Priority select register 194 (reserved) INTC_PSR194 8-bit Base + 0x0102

Priority select register 195 (reserved) INTC_PSR195 8-bit Base + 0x0103

Priority select register 196 (reserved) INTC_PSR196 8-bit Base + 0x0104

Priority select register 197 (reserved) INTC_PSR197 8-bit Base + 0x0105

Priority select register 198 (reserved) INTC_PSR198 8-bit Base + 0x0106

Priority select register 199 (reserved) INTC_PSR199 8-bit Base + 0x0107

Priority select register 200 (reserved) INTC_PSR200 8-bit Base + 0x0108

Priority select register 201 (reserved) INTC_PSR201 8-bit Base + 0x0109

Priority select register 202 INTC_PSR202 8-bit Base + 0x010A

Priority select register 203 INTC_PSR203 8-bit Base + 0x010B

Priority select register 204 INTC_PSR204 8-bit Base + 0x010C

Priority select register 205 INTC_PSR205 8-bit Base + 0x010D

Priority select register 206 INTC_PSR206 8-bit Base + 0x010E

Priority select register 207 INTC_PSR207 8-bit Base + 0x010F

Priority select register 208 INTC_PSR208 8-bit Base + 0x0110

Priority select register 209 INTC_PSR209 8-bit Base + 0x0111

Priority select register 210 (reserved) INTC_PSR210 8-bit Base + 0x0112

Priority select register 211 (reserved) INTC_PSR211 8-bit Base + 0x0113

Chapter 18, “Enhanced Queued Analog-to-Digital Converter (eQADC)” 0xFFF8_0000

Module configuration register EQADC_MCR 32-bit Base + 0x0000

Reserved — — Base + (0x0004–0x0007)

Null message send format register EQADC_NMSFR 32-bit Base + 0x0008

External trigger digital filter register EQADC_ETDFR 32-bit Base + 0x000C

CFIFO push register 0 EQADC_CFPR0 32-bit Base + 0x0010

CFIFO push register 1 EQADC_CFPR1 32-bit Base + 0x0014

CFIFO push register 2 EQADC_CFPR2 32-bit Base + 0x0018

CFIFO push register 3 EQADC_CFPR3 32-bit Base + 0x001C

Table A-2. MPC5534 Detailed Register Map (continued)

Register Description Register Name
Used
Size

Address

MPC5534 Register Map

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor A-39

CFIFO push register 4 EQADC_CFPR4 32-bit Base + 0x0020

CFIFO push register 5 EQADC_CFPR5 32-bit Base + 0x0024

Reserved — — Base + (0x0028–0x002F)

Result FIFO pop register 0 EQADC_RFPR0 32-bit Base + 0x0030

Result FIFO pop register 1 EQADC_RFPR1 32-bit Base + 0x0034

Result FIFO pop register 2 EQADC_RFPR2 32-bit Base + 0x0038

Result FIFO pop register 3 EQADC_RFPR3 32-bit Base + 0x003C

Result FIFO pop register 4 EQADC_RFPR4 32-bit Base + 0x0040

Result FIFO pop register 5 EQADC_RFPR5 32-bit Base + 0x0044

Reserved — — Base + (0x0048–0x004F)

CFIFO control register 0 EQADC_CFCR0 16-bit Base + 0x0050

CFIFO control register 1 EQADC_CFCR1 16-bit Base + 0x0052

CFIFO control register 2 EQADC_CFCR2 16-bit Base + 0x0054

CFIFO control register 3 EQADC_CFCR3 16-bit Base + 0x0056

CFIFO control register 4 EQADC_CFCR4 16-bit Base + 0x0058

CFIFO control register 5 EQADC_CFCR5 16-bit Base + 0x005A

Reserved — — Base + (0x005C–0x005F)

Interrupt and DMA control register 0 EQADC_IDCR0 16-bit Base + 0x0060

Interrupt and DMA control register 1 EQADC_IDCR1 16-bit Base + 0x0062

Interrupt and DMA control register 2 EQADC_IDCR2 16-bit Base + 0x0064

Interrupt and DMA control register 3 EQADC_IDCR3 16-bit Base + 0x0066

Interrupt and DMA control register 4 EQADC_IDCR4 16-bit Base + 0x0068

Interrupt and DMA control register 5 EQADC_IDCR5 16-bit Base + 0x006A

Reserved — — Base + (0x006C–0x006F)

FIFO and interrupt status register 0 EQADC_FISR0 32-bit Base + 0x0070

FIFO and interrupt status register 1 EQADC_FISR1 32-bit Base + 0x0074

FIFO and interrupt status register 2 EQADC_FISR2 32-bit Base + 0x0078

FIFO and interrupt status register 3 EQADC_FISR3 32-bit Base + 0x007C

FIFO and interrupt status register 4 EQADC_FISR4 32-bit Base + 0x0080

FIFO and interrupt status register 5 EQADC_FISR5 32-bit Base + 0x0084

Reserved — — Base + (0x0088–0x008F)

CFIFO transfer counter register 0 EQADC_CFTCR0 16-bit Base + 0x0090

Table A-2. MPC5534 Detailed Register Map (continued)

Register Description Register Name
Used
Size

Address

MPC5534 Register Map

MPC5534 Microcontroller Reference Manual, Rev. 2

A-40 Freescale Semiconductor

CFIFO transfer counter register 1 EQADC_CFTCR1 16-bit Base + 0x0092

CFIFO transfer counter register 2 EQADC_CFTCR2 16-bit Base + 0x0094

CFIFO transfer counter register 3 EQADC_CFTCR3 16-bit Base + 0x0096

CFIFO transfer counter register 4 EQADC_CFTCR4 16-bit Base + 0x0098

CFIFO transfer counter register 5 EQADC_CFTCR5 16-bit Base + 0x009A

Reserved — — Base + (0x009C–0x009F)

CFIFO status snapshot register 0 EQADC_CFSSR0 32-bit Base + 0x00A0

CFIFO status snapshot register 1 EQADC_CFSSR1 32-bit Base + 0x00A4

CFIFO status snapshot register 2 EQADC_CFSSR2 32-bit Base + 0x00A8

CFIFO status register EQADC_CFSR 32-bit Base + 0x00AC

Reserved — — Base + (0x00B0–0x00B3)

SSI control register EQADC_SSICR 32-bit Base + 0x00B4

SSI receive data register EQADC_SSIRDR 32-bit Base + 0x00B8

Reserved — — Base + (0x00BC–0x00FF)

CFIFO 0 register 0 EQADC_CF0R0 32-bit Base + 0x0100

CFIFO 0 register 1 EQADC_CF0R1 32-bit Base + 0x0104

CFIFO 0 register 2 EQADC_CF0R2 32-bit Base + 0x0108

CFIFO 0 register 3 EQADC_CF0R3 32-bit Base + 0x010C

Reserved — — Base + (0x0110–0x013F)

CFIFO 1 register 0 EQADC_CF1R0 32-bit Base + 0x0140

CFIFO 1 register 1 EQADC_CF1R1 32-bit Base + 0x0144

CFIFO 1 register 2 EQADC_CF1R2 32-bit Base + 0x0148

CFIFO 1 register 3 EQADC_CF1R3 32-bit Base + 0x014C

Reserved — — Base + (0x0150–0x017F)

CFIFO 2 register 0 EQADC_CF2R0 32-bit Base + 0x0180

CFIFO 2 register 1 EQADC_CF2R1 32-bit Base + 0x0184

CFIFO 2 register 2 EQADC_CF2R2 32-bit Base + 0x0188

CFIFO 2 register 3 EQADC_CF2R3 32-bit Base + 0x018C

Reserved — — Base + (0x0190–0x01BF)

CFIFO 3 register 0 EQADC_CF3R0 32-bit Base + 0x01C0

CFIFO 3 register 1 EQADC_CF3R1 32-bit Base + 0x01C4

CFIFO 3 register 2 EQADC_CF3R2 32-bit Base + 0x01C8

Table A-2. MPC5534 Detailed Register Map (continued)

Register Description Register Name
Used
Size

Address

MPC5534 Register Map

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor A-41

CFIFO 3 register 3 EQADC_CF3R3 32-bit Base + 0x01CC

Reserved — — Base + (0x01D0–0x01FF)

CFIFO 4 register 0 EQADC_CF4R0 32-bit Base + 0x0200

CFIFO 4 register 1 EQADC_CF4R1 32-bit Base + 0x0204

CFIFO 4 register 2 EQADC_CF4R2 32-bit Base + 0x0208

CFIFO 4 register 3 EQADC_CF4R3 32-bit Base + 0x020C

Reserved — — Base + (0x0210–0x023F)

CFIFO 5 register 0 EQADC_CF5R0 32-bit Base + 0x0240

CFIFO 5 register 1 EQADC_CF5R1 32-bit Base + 0x0244

CFIFO 5 register 2 EQADC_CF5R2 32-bit Base + 0x0248

CFIFO 5 register 3 EQADC_CF5R3 32-bit Base + 0x024C

Reserved — — Base + (0x0250–0x02FF)

RFIFO 0 register 0 EQADC_RF0R0 32-bit Base + 0x0300

RFIFO 0 register 1 EQADC_RF0R1 32-bit Base + 0x0304

RFIFO 0 register 2 EQADC_RF0R2 32-bit Base + 0x0308

RFIFO 0 register 3 EQADC_RF0R3 32-bit Base + 0x030C

Reserved — — Base + (0x0310–0x033F)

RFIFO 1 register 0 EQADC_RF1R0 32-bit Base + 0x0340

RFIFO 1 register 1 EQADC_RF1R1 32-bit Base + 0x0344

RFIFO 1 register 2 EQADC_RF1R2 32-bit Base + 0x0348

RFIFO 1 register 3 EQADC_RF1R3 32-bit Base + 0x034C

Reserved — — Base + (0x0350–0x037F)

RFIFO 2 register 0 EQADC_RF2R0 32-bit Base + 0x0380

RFIFO 2 register 1 EQADC_RF2R1 32-bit Base + 0x0384

RFIFO 2 register 2 EQADC_RF2R2 32-bit Base + 0x0388

RFIFO 2 register 3 EQADC_RF2R3 32-bit Base + 0x038C

Reserved — — Base + (0x0390–0x03BF)

RFIFO 3 register 0 EQADC_RF3R0 32-bit Base + 0x03C0

RFIFO 3 register 1 EQADC_RF3R1 32-bit Base + 0x03C4

RFIFO 3 register 2 EQADC_RF3R2 32-bit Base + 0x03C8

RFIFO 3 register 3 EQADC_RF3R3 32-bit Base + 0x03CC

Reserved — — Base + (0x03D0–0x03FF)

Table A-2. MPC5534 Detailed Register Map (continued)

Register Description Register Name
Used
Size

Address

MPC5534 Register Map

MPC5534 Microcontroller Reference Manual, Rev. 2

A-42 Freescale Semiconductor

RFIFO 4 register 0 EQADC_RF4R0 32-bit Base + 0x0400

RFIFO 4 register 1 EQADC_RF4R1 32-bit Base + 0x0404

RFIFO 4 register 2 EQADC_RF4R2 32-bit Base + 0x0408

RFIFO 4 register 3 EQADC_RF4R3 32-bit Base + 0x040C

Reserved — — Base + (0x0410–0x043F)

RFIFO 5 register 0 EQADC_RF5R0 32-bit Base + 0x0440

RFIFO 5 register 1 EQADC_RF5R1 32-bit Base + 0x0444

RFIFO 5 register 2 EQADC_RF5R2 32-bit Base + 0x0448

RFIFO 5 register 3 EQADC_RF5R3 32-bit Base + 0x044C

Reserved — — Base + (0x0450–0x07FF)

ADC0 control register ADC0_CR

No memory mapped access

ADC1 control register ADC1_CR

ADC time stamp control register ADC_TSCR

ADC time base counter register ADC_TBCR

ADC0 gain calibration constant register ADC0_GCCR

ADC1 gain calibration constant register ADC1_GCCR

ADC0 offset calibration constant register ADC0_OCCR

ADC1 offset calibration constant register ADC1_OCCR

Reserved — — (Base + 0x0800)–0xFFF8_FFFF

Chapter 19, “Deserial Serial Peripheral Interface (DSPI)”
0xFFF9_4000 (DSPI B)
0xFFF9_8000 (DSPI C)
0xFFF9_C000 (DSPI D)

Module configuration register DSPIx_MCR 32-bit Base + 0x0000

Reserved — — Base + (0x0004–0x0007)

Transfer count register DSPIx_TCR 32-bit Base + 0x0008

Clock and transfer attribute register 0 DSPIx_CTAR0 32-bit Base + 0x000C

Clock and transfer attribute register 1 DSPIx_CTAR1 32-bit Base + 0x0010

Clock and transfer attribute register 2 DSPIx_CTAR2 32-bit Base + 0x0014

Clock and transfer attribute register 3 DSPIx_CTAR3 32-bit Base + 0x0018

Clock and transfer attribute register 4 DSPIx_CTAR4 32-bit Base + 0x001C

Clock and transfer attribute register 5 DSPIx_CTAR5 32-bit Base + 0x0020

Clock and transfer attribute register 6 DSPIx_CTAR6 32-bit Base + 0x0024

Clock and transfer attribute register 7 DSPIx_CTAR7 32-bit Base + 0x0028

Table A-2. MPC5534 Detailed Register Map (continued)

Register Description Register Name
Used
Size

Address

MPC5534 Register Map

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor A-43

Status register DSPIx_SR 32-bit Base + 0x002C

DMA/interrupt request select and enable register DSPIx_RSER 32-bit Base + 0x0030

Push TX FIFO register DSPIx_PUSHR 32-bit Base + 0x0034

Pop RX FIFO register DSPIx_POPR 32-bit Base + 0x0038

Transmit FIFO registers 0 DSPIx_TXFR0 32-bit Base + 0x003C

Transmit FIFO registers 1 DSPIx_TXFR1 32-bit Base + 0x0040

Transmit FIFO registers 2 DSPIx_TXFR2 32-bit Base + 0x0044

Transmit FIFO registers 3 DSPIx_TXFR3 32-bit Base + 0x0048

Reserved — — Base + (0x004C–0x007B)

Receive FIFO registers 0 DSPIx_RXFR0 32-bit Base + 0x007C

Receive FIFO registers 1 DSPIx_RXFR1 32-bit Base + 0x0080

Receive FIFO registers 2 DSPIx_RXFR2 32-bit Base + 0x0084

Receive FIFO registers 3 DSPIx_RXFR3 32-bit Base + 0x0088

Reserved — — Base + (0x008C–0x00BB)

DSI configuration register DSPIx_DSICR 32-bit Base + 0x00BC

DSI serialization data register DSPIx_SDR 32-bit Base + 0x00C0

DSI alternate serialization data register DSPIx_ASDR 32-bit Base + 0x00C4

DSI transmit comparison register DSPIx_COMPR 32-bit Base + 0x00C8

DSI deserialization data register DSPIx_DDR 32-bit Base + 0x00CC

Reserved — — Base + 0x00D0–0xFFF9_7FFF (B)
0xFFF9_BFFF (C)
0xFFFA_FFFF (D)

Chapter 20, “Enhanced Serial Communication Interface (eSCI)”
0xFFFB_0000 (A)
0xFFFB_4000 (B)

Control register 1 ESCIx_CR1 32-bit Base + 0x0000

Control register 2 ESCIx_CR2 16-bit Base + 0x0004

Data register ESCIx_DR 16-bit Base + 0x0006

Status register ESCIx_SR 32-bit Base + 0x0008

LIN control register ESCIx_LCR 32-bit Base + 0x000C

LIN transmit register ESCIx_LTR 32-bit Base + 0x0010

LIN receive register ESCIx_LRR 32-bit Base + 0x0014

LIN CRC polynomial register ESCIx_LPR 32-bit Base + 0x0018

Table A-2. MPC5534 Detailed Register Map (continued)

Register Description Register Name
Used
Size

Address

MPC5534 Register Map

MPC5534 Microcontroller Reference Manual, Rev. 2

A-44 Freescale Semiconductor

Reserved — — Base + 0x001C–
0xFFFB_3FFF (A)
0xFFFB_7FFF (B)

Chapter 21, “FlexCAN2 Controller Area Network”
0xFFFC_0000 (CAN A)
0xFFFC_8000 (CAN C)

Module configuration register CANx_MCR 32-bit Base + 0x0000

Control register CANx_CR 32-bit Base + 0x0004

Free running timer register CANx_TIMER 32-bit Base + 0x0008

Reserved — — Base + (0x000C–0x000F)

Receive global mask register CANx_RXGMASK 32-bit Base + 0x0010

Receive buffer 14 mask register CANx_RX14MASK 32-bit Base + 0x0014

Receive buffer 15 mask register CANx_RX15MASK 32-bit Base + 0x0018

Error counter register CANx_ECR 32-bit Base + 0x001C

Error and status register CANx_ESR 32-bit Base + 0x0020

Interrupt mask register high CANx_IMRH 32-bit Base + 0x0024

Interrupt mask register low CANx_IMRL 32-bit Base + 0x0028

Interrupt flag register high CANx_IFRH 32-bit Base + 0x002C

Interrupt flag register low CANx_IFRL 32-bit Base + 0x0030

Reserved — — Base + (0x0034–0x007F)

Message buffer 0 MB0 128-bit Base + 0x0080

Message buffer 1 MB1 128-bit Base + 0x0090

Message buffer 2 MB2 128-bit Base + 0x00A0

Message buffer 3 MB3 128-bit Base + 0x00B0

Message buffer 4 MB4 128-bit Base + 0x00C0

Message buffer 5 MB5 128-bit Base + 0x00D0

Message buffer 6 MB6 128-bit Base + 0x00E0

Message buffer 7 MB7 128-bit Base + 0x00F0

Message buffer 8 MB8 128-bit Base + 0x0100

Message buffer 9 MB9 128-bit Base + 0x0110

Message buffer 10 MB10 128-bit Base + 0x0120

Message buffer 11 MB11 128-bit Base + 0x0130

Message buffer 12 MB12 128-bit Base + 0x0140

Message buffer 13 MB13 128-bit Base + 0x0150

Table A-2. MPC5534 Detailed Register Map (continued)

Register Description Register Name
Used
Size

Address

MPC5534 Register Map

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor A-45

Message buffer 14 MB14 128-bit Base + 0x0160

Message buffer 15 MB15 128-bit Base + 0x0170

Message buffer 16 MB16 128-bit Base + 0x0180

Message buffer 17 MB17 128-bit Base + 0x0190

Message buffer 18 MB18 128-bit Base + 0x01A0

Message buffer 19 MB19 128-bit Base + 0x01B0

Message buffer 20 MB20 128-bit Base + 0x01C0

Message buffer 21 MB21 128-bit Base + 0x01D0

Message buffer 22 MB22 128-bit Base + 0x01E0

Message buffer 23 MB23 128-bit Base + 0x01F0

Message buffer 24 MB24 128-bit Base + 0x0200

Message buffer 25 MB25 128-bit Base + 0x0210

Message buffer 26 MB26 128-bit Base + 0x0220

Message buffer 27 MB27 128-bit Base + 0x0230

Message buffer 28 MB28 128-bit Base + 0x0240

Message buffer 29 MB29 128-bit Base + 0x0250

Message buffer 30 MB30 128-bit Base + 0x0260

Message buffer 31 MB31 128-bit Base + 0x0270

Message buffer 32 MB32 128-bit Base + 0x0280

Message buffer 33 MB33 128-bit Base + 0x0290

Message buffer 34 MB34 128-bit Base + 0x02A0

Message buffer 35 MB35 128-bit Base + 0x02B0

Message buffer 36 MB36 128-bit Base + 0x02C0

Message buffer 37 MB37 128-bit Base + 0x02D0

Message buffer 38 MB38 128-bit Base + 0x02E0

Message buffer 39 MB39 128-bit Base + 0x02F0

Message buffer 40 MB40 128-bit Base + 0x0300

Message buffer 41 MB41 128-bit Base + 0x0310

Message buffer 42 MB42 128-bit Base + 0x0320

Message buffer 43 MB43 128-bit Base + 0x0330

Message buffer 44 MB44 128-bit Base + 0x0340

Message buffer 45 MB45 128-bit Base + 0x0350

Table A-2. MPC5534 Detailed Register Map (continued)

Register Description Register Name
Used
Size

Address

MPC5534 Register Map

MPC5534 Microcontroller Reference Manual, Rev. 2

A-46 Freescale Semiconductor

Message buffer 46 MB46 128-bit Base + 0x0360

Message buffer 47 MB47 128-bit Base + 0x0370

Message buffer 48 MB48 128-bit Base + 0x0380

Message buffer 49 MB49 128-bit Base + 0x0390

Message buffer 50 MB50 128-bit Base + 0x03A0

Message buffer 51 MB51 128-bit Base + 0x03B0

Message buffer 52 MB52 128-bit Base + 0x03C0

Message buffer 53 MB53 128-bit Base + 0x03D0

Message buffer 54 MB54 128-bit Base + 0x03E0

Message buffer 55 MB55 128-bit Base + 0x03F0

Message buffer 56 MB56 128-bit Base + 0x0400

Message buffer 57 MB57 128-bit Base + 0x0410

Message buffer 58 MB58 128-bit Base + 0x0420

Message buffer 59 MB59 128-bit Base + 0x0430

Message buffer 60 MB60 128-bit Base + 0x0440

Message buffer 61 MB61 128-bit Base + 0x0450

Message buffer 62 MB62 128-bit Base + 0x0460

Message buffer 63 MB63 128-bit Base + 0x0470

Reserved — — Base + 0x0480–0xFFFC_3FFF (A)
0xFFFF_FFFF (C)

Chapter 15, “Boot Assist Module (BAM)” 0xFFFF_C000

BAM Program Mirrored 4 KB 0xFFFF_C000–0xFFFF_CFFF

BAM Program Mirrored 4 KB 0xFFFF_D000–0xFFFF_DFFF

BAM Program Mirrored 4 KB 0xFFFF_E000–0xFFFF_EFFF

BAM Program 4 KB 0xFFFF_F000–0xFFFF_FFFF

1 The registers mapped in the ECSM module (0xFFF4_0014–0xFFF4_001F) provide control and configuration for a software
watchdog timer, and are included as part of a standard Freescale ECSM block incorporated in the MPC5534. The e200z3 core
also provides this functionality and is the preferred method for watchdog implementation. To optimize code portability to other
members of the eSys MPU family, use of the watchdog registers in the ECSM is not recommended.

Table A-2. MPC5534 Detailed Register Map (continued)

Register Description Register Name
Used
Size

Address

MPC5534 Register Map

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor A-47

A.2 e200z3 Core SPR Numbers
Table A-3. e200z3 Core SPR Numbers (Supervisor Mode)

Register Description SPR (decimal)

General Registers

XER Integer Exception Register 1

LR Link Register 8

CTR Count Register 9

GPR0–GPR31 General Purpose Registers —

Special Purpose General Registers

SPRG0 Special Purpose Register General 0 272

SPRG1 Special Purpose Register General 1 273

SPRG2 Special Purpose Register General 2 274

SPRG3 Special Purpose Register General 3 275

SPRG4 Special Purpose Register General 4 276

SPRG5 Special Purpose Register General 5 277

SPRG6 Special Purpose Register General 6 278

SPRG7 Special Purpose Register General 7 279

USPRG0 User Special Purpose General Register 256

BUCSR Branch Unit Control and Status Register 1013

Exception Handling/Control Registers

SRR0 Save and Restore Register 0 26

SRR1 Save and Restore Register 1 27

CSRR0 Critical Save and Restore Register 0 58

CSRR1 Critical Save and Restore Register 1 59

DSRR0 Debug Save and Restore Register 0 574

DSRR1 Debug Save and Restore Register 1 575

ESR Exception Syndrome Register 62

MCSR Machine Check Syndrome Register 572

DEAR Data Exception Address Register 61

IVPR Interrupt Vector Prefix Register 63

IVOR0 Interrupt Vector Offset Register 0 400

IVOR1 Interrupt Vector Offset Register 1 401

IVOR2 Interrupt Vector Offset Register 2 402

IVOR3 Interrupt Vector Offset Register 3 403

MPC5534 Register Map

MPC5534 Microcontroller Reference Manual, Rev. 2

A-48 Freescale Semiconductor

IVOR4 Interrupt Vector Offset Register 4 404

IVOR5 Interrupt Vector Offset Register 5 405

IVOR6 Interrupt Vector Offset Register 6 406

IVOR7 Interrupt Vector Offset Register 7 407

IVOR8 Interrupt Vector Offset Register 8 408

IVOR9 Interrupt Vector Offset Register 9 409

IVOR10 Interrupt Vector Offset Register 10 410

IVOR11 Interrupt Vector Offset Register 11 411

IVOR12 Interrupt Vector Offset Register 12 412

IVOR13 Interrupt Vector Offset Register 13 413

IVOR14 Interrupt Vector Offset Register 14 414

IVOR15 Interrupt Vector Offset Register 15 415

IVOR32 Interrupt Vector Offset Register 32 528

IVOR33 Interrupt Vector Offset Register 33 529

IVOR34 Interrupt Vector Offset Register 34 530

Processor Control Registers

MSR Machine State Register —

PVR Processor Version Register 287

PIR Processor ID Register 286

SVR System Version Register 1023

HID0 Hardware Implementation Dependent Register 0 1008

HID1 Hardware Implementation Dependent Register 1 1009

Timer Registers

TBL Time Base Lower Register 284

TBU Time Base Upper Register 285

TCR Timer Control Register 340

TSR Timer Status Register 336

DEC Decrementer Register 22

DECAR Decrementer Auto-reload Register 54

Debug Registers

DBCR0 Debug Control Register 0 308

DBCR1 Debug Control Register 1 309

DBCR2 Debug Control Register 2 310

Table A-3. e200z3 Core SPR Numbers (Supervisor Mode) (continued)

Register Description SPR (decimal)

MPC5534 Register Map

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor A-49

DBCR3 Debug Control Register 3 561

DBSR Debug Status Register 304

DBCNT Debug Counter Register 562

IAC1 Instruction Address Compare Register 1 312

IAC2 Instruction Address Compare Register 2 313

IAC3 Instruction Address Compare Register 3 314

IAC4 Instruction Address Compare Register 4 315

DAC1 Data Address Compare Register 1 316

DAC2 Data Address Compare Register 2 317

Memory Management Registers

MAS0 MMU Assist Register 0 624

MAS1 MMU Assist Register 1 625

MAS2 MMU Assist Register 2r 626

MAS3 MMU Assist Register 3 627

MAS4 MMU Assist Register 4 628

MAS6 MMU Assist Register 6 630

PID0 Process ID Register 48

MMUCSR0 MMU Control and Status Register 0 1012

MMUCFG MMU Configuration Register 1015

TLB0CFG TLB 0 Configuration Register 688

TLB1CFG TLB 1 Configuration Register 689

Cache Registers

L1CFG0 L1 Cache Configuration Register 515

APU Registers

SPEFSCR SPE APU Status and Control Register 512

Table A-3. e200z3 Core SPR Numbers (Supervisor Mode) (continued)

Register Description SPR (decimal)

MPC5534 Register Map

MPC5534 Microcontroller Reference Manual, Rev. 2

A-50 Freescale Semiconductor

Table A-4. e200z3 Core SPR Numbers (User Mode)

Register Description SPR (decimal)

General Registers

CTR Count Register 9

LR Link Register 8

XER Integer Exception Register 1

GPR0–GPR31 General Purpose Registers —

Special Purpose Registers (General)

SPRG4 Special Purpose Register General 4 260

SPRG5 Special Purpose Register General 5 261

SPRG6 Special Purpose Register General 6 262

SPRG7 Special Purpose Register General 7 263

USPRG0 User Special Purpose Register General 256

Timer Registers

TBL Time Base Lower Register 268

TBU Time Base Upper Register 269

Cache Registers

L1CFG0 L1 Cache Configuration Register 515

APU Registers

SPEFSCR SPE APU Status and Control Register 512

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor B-1

Appendix B
Calibration

NOTE
In addition to the MPC5534 device, the 496 VertiCal assembly is required
to use the calibration features. The External Bus Interface (EBI) and
Calibration Bus Interface (CBI) are not available due to pin limitations in
the 208 package.

B.1 Overview
The MPC5500 family of microcontrollers includes various specialized features to support automotive
calibration. Many of these calibration features are not available to the final application software, and some
MPC5500 devices support calibration signals that are not available in the standard 208 or 324
packages.See the Signals chapter for 324 package limitations. Special calibration assembled devices with
increased signal bond-out provide full access to all calibration resources for all MPC5500 variants.

Calibration hardware that uses the calibration assembled devices is detailed in Figure B-1.
Freescale-produced VertiCal bases use the calibration-assembled MPC5500 device mounted on a small
circuit board with a footprint which is compatible with that of the production BGA packaged MPC5500
device. A 156-way VertiCal connector on the top-side of the VertiCal base allows you to attach VertiCal
compliant top-board hardware. Various types of top-board hardware to support calibration and debug are
available from Freescale and commercial companies.

The VertiCal connector standard defines the set of signals used to communicate between the
microcontroller on the VertiCal base board and the attached calibration development tools, called
top-boards. Signal availability or sourcing for the VertiCal connector differs depending on the MPC5500
device used.

Calibration

MPC5534 Microcontroller Reference Manual, Rev. 2

B-2 Freescale Semiconductor

The calibration system is illustrated in Figure B-1 and the VertiCal Base is illustrated in Figure B-2.

Figure B-1. Calibration Assembly

Figure B-2. VertiCal Base

VertiCal compliant
top-board

VertiCal base

Application
production PCB

VertiCal connector
system

Calibration packaged
MPC5500 device

• Production packaged sized

23mm
(BGA)

calibration board, production
package compatible footprint.

• Standardized expansion connector
156 signal, 1 mm pitch, balled
surface mount.

 BGA
footprint

• Calibration address/data bus
brought out on this connector.

Calibration

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor B-3

B.2 Calibration Bus Interface
The calibration bus interface (CBI) has an address bus, data bus, bus control and clock signals. The
calibration bus is used by tools that include memory for calibration data or other code in development. See
Table B-1 for calibration bus signals. A 16-bit data bus and 19-bit address bus gives a basic addressing
range of 1 MB. Alternatively, the maximum memory addressable using just one chip select is 4 MB.
See Table B-2.

The VertiCal connector supports up to four chip select signals, although the actual number of chip selects
available depends on the device and package. Use the CAL_CS[0] chip select as the default calibration
chip select to ensure maximum portability of calibration tools across devices. The three calibration chip
select signals CAL_CS[0, 2:3] are configured and function like the external chip select signals CS[0:3],
except the calibration chip selects have a higher priority in address decoding than the external chip selects,
CS[0:3]. See Section B.7, “Application Information,” for application information on the number of
calibration chip selects.

The CAL_CS[0, 2:3] chip selects have multiplexed signal functions to provide additional addressing bits
that allows the flexibility of increasing the addressing range or the number of chip selects. Devices that
support less than four calibration chip selects can extend the contiguous calibration addressing range by
omitting chip selects starting from CS[1]. For this reason CS[1] is the only chip select pin not implemented
on the MPC5534 device.

The calibration functionality does not use any I/O available in the 208 and 324 pin production packages
for a calibration bus interface.

The P/A/G column in the following table differentiates each signal function that is multiplexed to the same
pin assignment. The P/A/G value is set in the PA field of the SIU_PCR registers and determines which
multiplexed signal function controls the pin. For more information on how to set the PA field, read the
Signals Chapter.

Table B-1. Calibration Bus Signals

496 VertiCal Signal Name Function MPC5534 Signal Name P/A/G

Address and Data Bus Signals

CAL_ADDR[12:26] Calibration Address bus CAL_ADDR[12:26] P

CAL_ADDR[27:30] Calibration Address bus CAL_ADDR[27:30] P

CAL_CS[3] Calibration Chip Select CAL_CS[3] P

CAL_CS[2] Calibration Chip Select CAL_CS[2] P

CAL_CS[1] Calibration Chip Select No Connect —

CAL_CS[0] Calibration Chip Select CAL_CS[0] P

CAL_DATA[0:15] Calibration Data Bus CAL_DATA[0:15] P

CAL_OE Calibration Output Enable CAL_OE P

CAL_RD_WR Calibration Read/Write CAL_RD_WR P

CAL_TS Calibration Transfer Start CAL_TS P

Calibration

MPC5534 Microcontroller Reference Manual, Rev. 2

B-4 Freescale Semiconductor

B.3 Device-Specific Information
The various address bus, data bus and bus control signals are sourced from different signals depending on
the MPC5500 device used, as detailed in the following sections.

B.3.1 MPC5534 Calibration Bus Implementation

The MPC5534 device has a set of external bus signals that are only used by the calibration bus. These
device signals are prefixed by CAL, and their use does not affect the usage modes and electrical loading
on the equivalent signals for the EBI.

B.4 Signals and Pads
The following sections detail the signal descriptions for the calibration bus.

B.4.1 CAL_CS[0, 2:3] — Calibration Chip Selects 0, 2 and 3

CAL_CS[n] is asserted by the master to indicate that this transaction is targeted for a particular calibration
memory bank.

The calibration chip selects (CAL_CS[n]) are driven by the EBI in the same clock as the assertion of TS
and valid address, and is kept valid until the cycle is terminated. Bus timing is identical to standard EBI
timing.

CAL_WE/BE[0:1] Calibration Write/Byte Enable CAL_WE/BE[0:1]
GPIO[64:65]

P
G

Clock Synthesizer

CLKOUT System Clock Output CLKOUT P

Table B-1. Calibration Bus Signals (continued)

496 VertiCal Signal Name Function MPC5534 Signal Name P/A/G

Calibration

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor B-5

B.4.1.1 Number of Chip Selects and Maximum Memory Size

The trade-off between calibration chip selects and address lines is the same as the trade-off between
non-calibration chip selects and address lines for the 324 pin package.

B.4.2 Pad Ring

This section provides a list of the calibration pins and associated pad configuration registers (PCRs),
including links to the detailed PCR information for each pin or pin group.

See Table B-1 for device signal names. The drive strength of the calibration pins is configured in the PCR
registers. In some cases, multiple pads have their drive strengths controlled by one PCR by grouping the
pins:

• CAL_ADDR[12:30]

• CAL_DATA[0:15]

• CAL_RD_WR, CAL_WE/BE[0:1], CAL_OE, CAL_TS

The SIU_PCR registers control whether the CAL_CS[2:3] pins are used for CAL_CS[2:3] or for
CAL_ADDR[10:11]. See Table B-2 for the pin assignments. Selecting between CAL_CS[2:3] and
CAL_ADDR[10:11] allows you to maximize the amount of calibration memory size by limiting the
number of calibration chip selects to CS[0]. See Section B.4.1.1, “Number of Chip Selects and Maximum
Memory Size.”

B.4.3 CLKOUT

CLKOUT is supplied by the clock control block, not the EBI. Nevertheless, the same CLKOUT is used
for both the non-calibration and calibration bus.

A drawback of having just one CLKOUT is that while the difference in board timing can be compensated
by the adjustment in the drive strength, the CLKOUT timing, and hence the timing of the non-calibration
bus, can have minor differences with a calibration tool from the production package.

Table B-2. Maximum Memory Size According to Calibration Chip Selects

 Maximum Memory Allocated for Calibration

Device 0 Device 2 Device 3

CAL_CS[0] only 4 MB — —

CAL_CS[0] and
CAL_CS[2]

2 MB 2 MB —

CAL_CS[0] and
CAL_CS[2:3]

1 MB 1 MB 1 MB

Table B-3. Calibration Pin Assignments

SIU_PCR
Number

Primary Function
(SIU_PCR[PA] = 0b1)

Alternate Function
(SIU_PCR[PA] = 0b0)

338 and 339 CAL_CS[2:3] CAL_ADDR[10:11]

Calibration

MPC5534 Microcontroller Reference Manual, Rev. 2

B-6 Freescale Semiconductor

B.5 Power Supplies
The signals that make up the calibration bus have their own power supply segment (VDDE12). The VDDE12
power supply balls are not connected to any other power supply segment from the standard package
ball-out but are routed on the VertiCal base to pins on the VertiCal connector. The VertiCal top board must
provide voltage to the VDDE12 power supply pins to power up the calibration bus.

B.6 Integration Logic Functionality
The EBI connects to both the non-calibration and calibration buses. The integration logic on MPC5534
selects between the data input from both buses to the EBI.

The MPC5534 integration logic also suppresses the reflections of the outputs of the calibration bus onto
the non-calibration bus. For the non-calibration bus pins that do not have a negated state to which the pins
return at the end of the access, this reflection suppression is enabled by the SIU_CCR[CRSE] bit.
SIU_CCR[CRSE] does not enable reflection suppression for the non-calibration bus pins that have a
negated state to which the pins return at the end of an access. Those reflections always are suppressed.
Furthermore, the suppression of reflections from the non-calibration bus onto the calibration bus is not
enabled by CRSE. Those reflections are also always suppressed.

See Section B.7.1, “Enabling Calibration Reflection Suppression,” for when to set SIU_CCR[CRSE] or
leave it in its reset negated state.

B.7 Application Information

B.7.1 Enabling Calibration Reflection Suppression

Set SIU_CCR[CRSE] to suppress reflections when calibrating. The calibration reflection suppression
logic for an output that does not return to a negated state at the end of an access can introduce a small glitch
on the output at the end of the access. The glitch does not interfere with the output valid or hold times.
However, keep SIU_CCR[CRSE] in its reset negated state when not calibrating to prevent a glitch on the
non-calibration bus outputs.

B.7.2 Communication With Development Tool Using I/O

The development tool can require some I/Os for communication between the MCU and the development
tool on the VertiCal connector. Because the application cannot use these pins in the 208 and 324 pin
packages, they can be used for development tool use in a VertiCal connector.

B.7.3 Matching Access Delay to Internal Flash With Calibration Memory

One use of VertiCal in the Automotive environment is engine calibration. For this application, an SRAM
Top Board is added onto the VertiCal connector. This allows the engine calibrator to modify settings in
SRAM, possibly using the Nexus interface or even by using the SCI port or a CAN interface.

See Table 13-2 “Internal Flash External Emulation Mode.”

Calibration

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor B-7

After the data is calibrated, it can be copied into the internal flash. The internal flash can be accessed faster
than the calibration memory, and the change in calibration data access time can change the overall system
performance. To mitigate this change in system performance, the internal flash memory includes a feature
that allows accesses to portions of the flash to be slowed down by adding extra wait states. This is done by
multiply mapping the internal flash at different locations with different number of wait states. For example,
the physical address of the flash array is 0x0000_0000 to 0x00FF_FFFF (depending on array size). That
same flash data can be accessed at address 0x0100_0000 to 0x01FF_FFFF but accesses are one clock cycle
slower. That same flash data can be accessed at addresses 0x0200_0000 to 0x02FF_FFFF but accesses are
two clock cycles slower. This pattern is repeated through the memory map to addresses 0x1F00_0000 to
0x1FFF_FFFF where accesses are 31 clock cycles slower.

The application can use this feature by mapping the calibration data to a region of the flash memory that
has access timing to match the timing of the calibration RAM used when calibrating the data. This
remapping of calibration data can be achieved by either using the translation feature of the MMU or
rebuilding the code with a modified link file.

Calibration

MPC5534 Microcontroller Reference Manual, Rev. 2

B-8 Freescale Semiconductor

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor C-1

Appendix C
MPC5534RM Revision History
This appendix describes corrections to the MPC5534 Reference Manual. For convenience, the corrections
are grouped by revision.

C.1 Changes between Rev. 1 and Rev. 2
Table C-1. Changes Between Revisions 1 and 2

Chapter Description

All chapters Throughout, language and format cleanup.

Chapter 1, “Overview”

Changed switchpoint to 35 or 65.

Minor editorial changes to the first three paragraphs in the Chapter Introduction. Combined
sentences two and three in paragraph seven.

Figure 1-1. MPC5534 Block Diagram: Relocated the JTAG module outside of the e200z3 core
between the external connection and the Nexus Interface. Removed arrow from the eDMA to the
Nexus interface.

Table 1-1. MPC5500 Family Members: Added footnote 7: ‘82 MHz parts allow for 80 MHz system
clock + 2% FM’ to columns MPC5533 and MPC5534; and footnote 8: ‘132 MHz parts allow for
128 MHz system clock + 2% FM’ to columns MPC5553 and MPC5554.

Section 1.2.1 Operating Parameters: Changed 75% to 65% in the first subbullet in ‘Input and output
pins with 3.0–5.5 V range.

Section 1.2.2 e200z3 Core Processor: Changed PowerPC Book E to PowerPC Architecture Book E.

Section 1.2.7 External Bus Interface (EBI): Added BE to the 10th first-level bullet to make ‘Two
write/byte enable (WE/BE[0:1]) signals.

Section 1.2.8 Calibration Bus: Title changes to Calibration Bus Interface. Added BE to the 7th
first-level bullet to make ‘Two write/byte enable (WE/BE[0:1]) signals.

Section 1.3.1 External Master Mode Operation Memory Map: Table 1-3, shaded row one.

Section 1.3.1 External Master Mode Operation Memory Map: Table 1-4, MPC5534 Slave Memory
Map as seen from an External Master, shaded row two. Changed ‘shadow row’ to ‘shadow block’
throughout the entire document.

Section 1.4.7 Calibration Bus (cal_bus): Changed title to Calibration Bus Interface (CBI), changed
cal_bus to CBI.

Section 1.4.11: Changed from ‘The BAM also reads the reset configuration half word (RCHW) from
Flash memory (either internal or external) and configures the MPC5534 hardware accordingly.’
to ‘The BAM reads the reset configuration half word (RCHW) from flash memory and configures
the device. Flash memory can be either internal (208 and 324 packages) or external (324
package only).’

MPC5534RM Revision History

MPC5534 Microcontroller Reference Manual, Rev. 2

C-2 Freescale Semiconductor

Chapter 1, “Overview”
(continued)

Table 1-1. MPC5500 Family Members: Added footnote 5 to the eQADC channel number row:
‘eQADC has 34 channels on the 208 package.’

Section 1.4.13 Enhanced Time Processing Unit (eTPU): deleted bullet that reads,
Hardware implementation of four semaphores support coherent parameter sharing between both
eTPU engines

Section 1.2.7 External Bus Interface (EBI): Added NOTE at the beginning of the section:
NOTE

EBI features apply to devices using the 324 package, The EBI is not available in the 208 package.

Chapter 2, “Signals”

Updated “Signal Properties” table to match other MPC5500 devices (e.g. complete signal names,
VertiCal information, etc.)

Updated introductory text in section, “External Signal Description” and added figure, “Primary
Function Not Available on Device”.

Added Section 2.2.1. Multiplexed Signals, including Figures 2-2 and 2-3.

Changed eMIOS pins [0:23] all to’ — / WKPCFG’

Added Section 2.2.2. Device Signals Summary: Added at the end of the first paragraph before Table
2-1. MPC5534 Signal Properties: The signals shown in red are not available on the 208 package.
Signals shown in blue are not designed into this device.

Table MPC5534 Power/Ground Segmentation:
 • Changed ‘MTS’ to ‘eMIOS’
 • Updated the signal names to include the alternate and GPIO signals.

Section 2.1 Block Diagram: Added ‘Signals designated in red are not available on the 208 package.’
to the second paragraph.

Table 2-1. MPC5534 Signal Properties: Marked signal names that are not available in the 208
package in red text in column one.

Table 2-1. MPC5534 Signal Properties: Deleted column one to eliminate redundancy; added a
column two to describe the signal function, and moved the PAG column after the description
column.

Table 2-1. MPC5534 Signal Properties: Included all primary signals in column one and put ‘No
primary signal’ in the second column (Description) for all primary signals not designed in the
device.

Table 2-1. MPC5534 Signal Properties: Power / Ground signals: added VRCVSS, Voltage regulator
control ground, P, I —, VSSE, I / –, VRCVSS, —, T21, V27.

Table 2-1. MPC5534 Signal Properties: Footnotes 1 and 2 identical. Removed footnote 2.

Table 2-1. MPC5534 Signal Properties: Footnote 5: ‘Added the 208’ to read ‘The 496 assembly
contains the VertiCal base and includes 324 and 208 package pins.’

Table 2-1. MPC5534 Signal Properties: Added footnote 7: The BOOTCFG[0] and RSTCFG pin are
not available in the 208 package and are internally asserted (driven to 0) in the package.

Table 2-1. MPC5534 Signal Properties: removed footnote 9: ‘Do not configure both the primary
function of ADDR[8:11]_GPIO[4:7] and the alternate function of CS[0:3]_ADDR[8:11]_GPIO[0:3]
pins as address input pins. Only configure one set of pins for the address input. ‘
The 324 and 208 packages do not have ADDR[8:11]_GIOP[4:7] pins due to package limitations.

Table C-1. Changes Between Revisions 1 and 2 (continued)

Chapter Description

MPC5534RM Revision History

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor C-3

Chapter 2, “Signals”
(continued)

Table 2-1. MPC5534 Signal Properties:
 • Marked footnotes 12 and 13 with red text since these signals are not available on the 208

package.
 • Footnote 12: Removed WE/BE[2:3] from WE/BE[2:3]_CAL_WE/BE[0:1]_GPIO[66:67] which are not

available on the 324 or the 208 packages.

Table 2-1. MPC5534 Signal Properties: Marked footnotes 23 and 24 (were 24 and 25) with red text
since these signals are not available on the 208 package.

Table 2-2: MPC5534 Power/Ground Segmentation: Added two sentences before the table: The
primary signals shown in blue are not designed into the MPC5534 device, and are shown to
locate the pin on the ball grid array (BGA). The signals shown in red are not available on the 208
package.

Table 2-2: MPC5534 Power/Ground Segmentation: Footnote 1: Changed from VDDEH 3.0–5.5 V to
VDDEH 3.0–5.25 V.

Table 2-1. MPC5534 Signal Properties: Changed P/A/G value of AN[12:15] from P (primary=01) to
MP (main primary=11).

Section 2.3.8.4: Changed section title from PCSD2 / GPIO to DSPI D / GPIO

Sections 2.8.2.1through 2.8.2.9: Added the DSPI A primary signals to the sections respectively:
SCKA, SINA, SOUTA, PCSA[0], PCSA[1], PCSA[2], PCSA[3], PCSA[4], PCSA[5].

Table 2-1. MPC5534 Signal Properties: Removed ETRIG[0:1]_GPIO[111:112].

Section 2.3.9 Enhanced Queued Analog/Digital Converter (eQADC): Added NOTE at the beginning
of the section:

NOTE
The eQADC has 40 channels in the 324 package; the 208 packages in limited to 34 channels due
to pin limitations.

Chapter 3, “Core
Complex (e200z3)”

Spelled out Auxiliary Processing Unit (APU) in the first paragraph.

Added Section 3.2.1 e200z3 Core Features not Supported on this Device.

Section 4.2. Features: From Power management bullet: removed second subbullet: Power saving
modes: doze, nap, sleep.

Section 4.5.4 Permissions: Removed the last sentence before Figure: 4-4 ‘Granting Access
Permission’ —”The current privilege level of an access is signaled to the MMU with the CPUs
p_[d,i]tc[0] output signals,”

Initial capped the headings for Sections’4.2.1 Feature Summary,’ ‘4.7.1.1 User-level Registers,’ and
4.7.1.2: Supervisor-level registers.

Section ‘4.7.1.1 User-level Registers,’: changed: GPROGPR31 to GPR0–GPR31; CR0CR7 to
CR0–CR7.

Section 4.10: ‘Book E Instruction Extensions—VLE,’ added space between Book and E, and
replaced the hyphen with an emdash before VLE.

Table C-1. Changes Between Revisions 1 and 2 (continued)

Chapter Description

MPC5534RM Revision History

MPC5534 Microcontroller Reference Manual, Rev. 2

C-4 Freescale Semiconductor

Chapter 4, “Reset”

Corrected base addresses.

The WDRS bit in the reset status register (SIU_RSR) is set when the watchdog timer or a debug
request reset occurs. A watchdog timer reset occurs and the WDRS bit is set when all the following
conditions occur:
 • e200z3 core watchdog timer is enabled with the enable next watchdog timer (EWT)
 • Watchdog timer interrupt status (WIS) bits are set in the timer status register (TSR)
 • Watchdog reset control (WRC) field in the timer control register (TCR) is configured to reset
 • Time-out occurs
The debug tool can issue a debug reset command by writing 2’b10 to the RST bit {DBCR0[2:3]}
register in the e200z3 core, which sets the WDRS bit in the reset status register of the systems
integration unit (SIU_RSR). To determine if WDRS was set by a watchdog timer or debug reset,
check the WRS field in the e200z3 core TSR. The effect of a watchdog timer or debug reset request
is the same on the reset controller. The debug tool can also reset the device using one of the
following methods:
 • Debug tool asserts the RESET signal on the RESET_b pin
 • Debug tool sets the software system reset (SSR) bit in the system reset control register

(SIU_SRCR)
The debug tool writes a one to the software external reset (SER) bit in the system reset control

register (SIU_SRCR) to generate an external software reset.

The device comes out of reset using the following sequence:
1. Starting when the internal reset signal asserts, as indicated by RSTOUT asserting, the value on

the WKPCFG pin is applied. At the same time, the PLLCFG[0:1] values are applied only if
RSTCFG is asserted.

2. After the FMPLL is locked, the reset controller waits the predetermined number of clock cycles
before negating RSTOUT. When the clock count finishes, WKPCFG and BOOTCFG[0:1] are
sampled. BOOTCFG[0:1] is only sampled if RSTCFG asserts.

3. The reset controller then waits 4 clock cycles before the negating RSTOUT, and the associated
bits/fields are updated in the SIU_RSR.

See the e200z3 Core Guide for more information on the watchdog timer and debug operation. See
Section 3.2.2, “Reset Output (RSTOUT).” BOOTCFG[0] is not available on the 208 package.

Section 3.1 Introduction: Added two types of qualifying sentences for the 208 package throughout
the chapter:
208 Package: BOOTCFG[0] is not available due to pin limitations and is internally asserted (driven
to 0).
208 Package: BOOTCFG[0] and RSTCFG are not available due to pin limitations and are internally
asserted (driven to 0). Therefore, BOOTCFG[1] and PLLCFG[0:1] are always sampled.

Section 3.2.5 Boot Configuration (BOOTCFG [0:1]): changed DATA[0:31] to DATA[0:15], and
WE/BE[0:3] to WE/BE[0:1].

Section 4.4.3.2. External Reset: Added an introductory paragraph about the external reset
limitations: The external reset feature is available on this device in the 324 package only, which has
a 16-bit external bus interface. The 208 package does not have EBI pins, therefore the external reset
feature is not supported.

Added entire Section 4.4.3.3.1 BOOTCFG[0:1] Configuration in the 208 Package.

Chapter 5, “Peripheral
Bridge”

No changes.

Table C-1. Changes Between Revisions 1 and 2 (continued)

Chapter Description

MPC5534RM Revision History

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor C-5

Chapter 6, “System
Integration Unit (SIU)””

In figure titled “Pad Configuration Registers 8–27 (SIU_PCR8–SIU_PCR27),” changed PA field to
be 1 bit instead of 3 bits. Changed footnote #1 to “When configured as ADDR[12:31], the OBE
bit has no effect. When configured as GPO, set the OBE bit to one.”

Added “w1c” to write portion of EIF bits in EISR register.

Modified the paragraph directly preceding Table 6-15 for clarity and to remove primary signal names
not available on this device.

Section 6.3.1.12.12 SIU_PCR75–SIU_PCR82, MDO [4:11]; Changed the register sequence to
SIU_PCR82–SIU_PCR75 and the MDO pins to [11:4]

Changed footnote 1 on PCR 105:
From: “When configured as PCS, the OBE bit has no effect. When configured as GPO, set the

OBE bit to 1. “
To: “When configured as PCSB[0], the OBE bit has no effect. When configured as PCSD[2], set

the OBE bit to 1 for master operation, and clear it to 0 for slave operation. When configured as
GPO, set the OBE bit to 1.”

Modified the paragraph directly preceding Table 6-15 for clarity and to remove primary signal names
not available on this device.

Figure 6-1. SIU Block Diagram:
 • Added RSTCFG and PLLCFG[0].
 • Changed listings of IRQs and CS signals to indicate full sequence of pins.
 • Added footnote on IRQ[1:5, 7:15]. The footnote reads: IRQ[6] is not designed into this device.

IRQ[2] is not available due to pin limitations on the 208 package.
 • Added footnote on BOOTCFG[0:1] that reads:

BOOTCFG[0] and RSTCFG are not available and are internally asserted (driven to 0) in the 208
package.

 • Added footnote on CS[0:3] that reads: CS[1:3] are not available due to pin limitations on the 208
package.

Section 6.2.1 Overview: Reformatted features bulleted list into Table 6-1. SIU Features.

Section 6.2.2 Modes of Operation:
 • Reformatted operating mode subsections into Table 6-2. SIU Operating Modes.

Section 6.3.1.2 Reset Output (RSTOUT):
 • Added: 208 Package: BOOTCFG[0] is not available due to pun limitations and is internally

asserted (driven to 0) in the 208 package.

Section 6.3.1.3 General-Purpose I/O Pins (GPIO[0:213]):
 • Added: NOTE: Not all GPIO pins are available on all packages. See Chapter 2, “Signals” for a

listing of available GPIO pins.

Section 6.3.1.4 BOOT Configurations Pins (BOOTCFG[0:1]):
 • Numbered the sequence of occurrences if RSTCFG negates while processing a reset.
 • Added; 208 Package: BOOTCFG[0] and RSTCFG are not available due to pin limitations and are

internally asserted (driven to 0) in the 208 package.

Section 6.3.1.6 External Interrupt Request Input Pins (IRQ[0:15]):
 • Changed section title to External Interrupt Request Input Pins (IRQ[0:5, 7:15]).
 • Throughout this chapter, changed IRQ[0:15] to IRQ[0:5, 7:15].
 • Added: NOTE IRQ[6] is not designed into this device.
 • Added: 208 Package: IRQ[2] is not available in the 208 package due to pin limitations.

Table C-1. Changes Between Revisions 1 and 2 (continued)

Chapter Description

MPC5534RM Revision History

MPC5534 Microcontroller Reference Manual, Rev. 2

C-6 Freescale Semiconductor

Chapter 6, “System
Integration Unit (SIU)”

(continued)

Section 6.3.1.6.1 External Interrupts:
 • Added: NOTE IRQ[6] is not designed into this device.
 • Added: 208 Package: IRQ[2] is not available in the 208 package due to pin limitations.

Section 6.3.1.6.2 DMA Transfers:
Added: 208 Package: IRQ[2] is not available in the 208 package due to pin limitations.

Section 6.3.1.6.3 Overruns:
 • Added: NOTE IRQ[6] is not designed into this device.
 • Added: 208 Package: IRQ[2] is not available in the 208 package due to pin limitations.

Section 6.3.1.6.4 Edge Detects:
 • Added: NOTE IRQ[6] is not designed into this device.
 • Added: 208 Package: IRQ[2] is not available in the 208 package due to pin limitations.

Table 6-3. SIU Signal Properties:
 • Added the RSTCFG, PLLCFG[0], and PLLCFG[1].
 • Added footnote 2: RSTCFG and BOOTCFG[0] pins are not available on the 208 package. These

signals are internally asserted
(driven to 0) in the 208 package.

 • Added to footnote 3: The GPIO and IRQ pins are multiplexed with other functions on the chip. The
IRQ[6] function is not designed into this device. IRQ[2] is not available on the 208 package. Not
all GPIO pins are available on all packages. See Chapter 2, “Signals” for a list of available IRQ
and GPIO signals.

Section 6.4.1.2 Reset Status Register (SIU_RSR):
Changed numbered list to bulleted list.

Table 6-7 Reset Source Priorities:
Added ‘Lowest-high’ to the priority column of row 2 ‘Software system reset (Group1)
Added ‘Highest-low’ to the priority column of row 3 ‘Loss of clock, loss of lock, watchdog, checkstop
(Group2).

Figure 6-3 Reset Status Register (SIU_RSR): Rewrote footnote 3 to read:
The reset value of the BOOTCFG field is determined by the values on the BOOTCFG[0:1] pins at
reset. BOOTCFG[0] is not available due to pin limitations, and is internally asserted
(driven to 0) in the 208 package.

Table 6-8 SIU_RSR Field Descriptions: BOOTCFG row: added, NOTE BOOTCFG[0] is not available
due to pin limitations and is internally asserted (driven to 0) in the 208 package.

Section 6.4.1.4 External Interrupt Status Register (SIU_EISR): Changed IRQ[1]–IRQ[15] Added
page footnote that reads:
IRQ[6] is not available in this device. IRQ[2] is not available on the 208 package due to pin
limitations.

Section 6.4.1.6 DMA/Interrupt Request Select Register (SIU_DIRSR): Added page footnote that
reads: IRQ[2] is not available on the 208 package.

Section 6.4.1.11 IRQ Digital Filter Register (SIU_IDFR): Added NOTE IRQ[6] is not available in this
device. IRQ[2] is not available on the 208 package due to pin limitations.

Section 6.4.1.12 Pad Configuration Registers (SIU_PCR): Added NOTE IRQ[6] is not available in
this device. IRQ[2] is not available on the 208 package due to pin limitations.

Sections 6.4.1.10–6.4.1.11 SIU_PCR72 and SIU_PCR73: Removed. Not available on the 324 or the
208 packages.

Table C-1. Changes Between Revisions 1 and 2 (continued)

Chapter Description

MPC5534RM Revision History

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor C-7

Chapter 6, “System
Integration Unit (SIU)”

(continued)

Section 6.4.1.11 IRQ Digital Filter Register (SIU_IDFR): Table 6-17: DFL field 28-31: Changed From
For a 100-MHz system clock, this gives a range of 20ns to 328μs. The minimum time of three clocks
accounts for synchronization of the IRQ input pins with the system clock.
To
For a 82-MHz system clock, this gives a range of 24ns to 400μs. The minimum time of three clocks
accounts for synchronization of the IRQ input pins with the system clock.

Chapter 7, “Crossbar
Switch (XBAR)”

Updated XBAR_SGPCRn Field Descriptions table.

Changed wording of reserved fields in registers from: “Reserved” to Reserved, must be cleared.”

Added footnote 2 to register figures 5-3 and 5-4 for the SP0 and TP0 bits:
The SP0 and TP0 bits default values are always used, even though the bits are writeable.
Added Notes to table 5-5 for the SP0 bit:
Note: For PBRIDGE_A_PACR0 and PBRIDGE_B_PACR0, you must have supervisor privileges to

access PBRIDGE registers.
Note: Even though the SP0 bit (1) is writeable, the reset value for SP0 is always used.

Added Notes to table 5-5 for the TP0 bit:
Note: For PBRIDGE_A_PACR0 and PBRIDGE_B_PACR0, you must have trusted master privileges

to access PBRIDGE registers.
Even though the TP0 bit (1) is writeable, the reset value for TP0 is always used.

Section 5.4 Functional Description: Changed “64-bit accesses” to “64-bit instruction accesses.”

Figure 5-3. Peripheral Access Control Registers and figure 5-4 Off-Platform Peripheral Access
Control Registers. Changed bits 0, 1, and 3 to read only. Added footnote 2: to bits 1 and 3 that
reads: ‘The default values are always used for the SP0 and TP0 bits, even though the bits are
writeable.’

Added paragraph at the end of the chapter that reads: PBRIDGE also supports buffered writes,
allowing write accesses to be terminated on the system bus in a single clock cycle, and then
subsequently performed on the slave interface. Write buffering is controllable on a per-peripheral
basis. The PBRIDGE implements a two-entry 32-bit write buffer.

Chapter 8, “Error
Correction Status Module

(ECSM)”

Added footnote numeral 1 to the RESET rows of all figures that have uninitialized values upon reset.

Section 8.3 Initialization and Application Information expanded to include exception processing.

Removed the 8.1 Introduction level-head making the introductory paragraph follow the Chapter tag.
‘Overview’ became section 8.1. Removed the bullet structure for 8.1.1 Features.
Section 8.2 Memory Map and Register Definition, Table 8-1 ECSM Memory Map: changed e200z6

to e200z3 in footnote 1.

Section 8.1 Overview: Rewrote in its entirety.
 • Added details on Read, 32-bit Write, and Eight- and 16-bit Writes.
 • Defined ECC error types: correctable and non-correctable
 • Clarified that SRAM ECC operates on 32 data bits plus seven check bits; Flash ECC operates on

64 data bits plus eight check bits

Table C-1. Changes Between Revisions 1 and 2 (continued)

Chapter Description

MPC5534RM Revision History

MPC5534 Microcontroller Reference Manual, Rev. 2

C-8 Freescale Semiconductor

Chapter 9, “Enhanced
Direct Memory Access

(eDMA)

In the section on DMA Performance, changed:
 • FROM: removed eDMA Peak Transfer Rate table
 • TO: Added an eDMA Peak Transfer Rates table (Table 9-20) with columns that show the effect of

buffering enabled and disabled.

Removed the Note: referring to bit 2 in the following tables: EDMA_SERQR, EDMA_CERQR,
EDMA_SEEIR, EDMA_CEEIR, EDMA_CER,
EDMA_SSBR, EDMA_CDSBR.

Section 9.4.2. DMA Programming Errors: In the numbered list, changed steps 2 and 3 to subbullets
of step 1. Renumbered steps, which resulted in made the last step 5. Changed the step reference
in Step 5 to read ‘Repeat step 4 until . . .’

Section 9.4.5.1 Signal Request: capitalized all alpha characters in hexadecimal addresses.

Chapter 10, “Interrupt
Controller (INTC)”

Changed INTC_ACKR to INTC_IACKR

Put overbars on IRQs in table, “External Interrupt Signals”

Added interrupt vectors 152 (FLEXCAN_A_ESR_BOFF_INT) and 173
(FLEXCAN_C_ESR_BOFF_INT).

Chapter 11, “Frequency
Modulated Phase Locked
Loop and System Clocks

(FMPLL)”

Section Programming System Clock Frequency Without Frequency Modulation:
 • Moved the following paraphrase at the end of step 4 to a second sentence in the last bullet of step

2C:
 • RFD must be set to greater than one to protect from overshoot.

Removed all references to PLLCFG[2].

11.1.4 FMPLL Operating Modes: Removed most of the first paragraph, combined tables 11-1 and
11-2, added footnote 2 that reads: Because the 208 package has no RSTCFG pin, the signal is
internally asserted (driven to 0), therefore the PLLCFG pins are always used to configure the
FMPLL. After the device resets, the PLLCFG values remain the same as before the reset. The
device does not reset to the crystal reference mode. Bypass mode is not enabled in the 208
package.

Removed ‘See FMPLL_SYNCR[PREDIV].’ directly before section 11.1.4.2 External Reference
Mode.

Table 11-3. PLL External Pin Interface: Added the RSTCFG pin, and added a footnote that reads:
The 208 package does not have a RSTCFG pin, therefore the signal is internally asserted (driven
to 0).

Table 11-5. FMPLL_SYNCR Field Descriptions: PREDIV field, changed 4–20 MHz to 4 MHz;
LOLRE field, added system before ‘integration module’ throughout.

Section 11.4.1 Clock Architecture: moved the following sentence to section 11.4.1.1 Software
Controlled Power Management Clock Gating; ‘The peripheral IP modules are designed to let
software gate the clocks to the non-memory-mapped logic of the modules.
Spelled out Nexus Port Controller (NPC)
Removed H7FA.

Section 11.4.3.1 Programming System Clock Frequency without Frequency Modulation: changed
the NOTE format to regular text.

Table title changed from “Clock Mode Selection in 416 Pin and 324 Pin (if available) Packages” to
“Clock Mode Selection in 416 and 324 (with or without the 496 assembly)”

Added a 2nd row for crystal reference clock mode in Clock Mode Selection tables.

Table C-1. Changes Between Revisions 1 and 2 (continued)

Chapter Description

MPC5534RM Revision History

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor C-9

Chapter 11, “Frequency
Modulated Phase Locked
Loop and System Clocks

(FMPLL)”
(continued)

Added sentence: “Bypass mode is not enabled in the 208 package.”

Changed sentence from “The engineering clock (ENGCLK) divider can be programmed to divide the
system clock by factors from 2 to 128 in increments of two” to “The engineering clock (ENGCLK)
divider can be programmed to divide the system clock by factors from 2 to 126 in increments of
two.”

Modified the LOCK bit to read:
PLL lock status bit. Indicates whether the FMPLL has acquired lock. If the LOCK bit is read when

the FMPLL simultaneously loses lock or acquires lock, the bit does not reflect the current
condition of the FMPLL.

If operating in bypass mode, LOCK remains cleared after reset. Refer to the frequency as defined
in the MPC5534 Microcontroller Data Sheet for the lock/unlock range.

0 PLL is unlocked.
1 PLL is locked.

Clarified that PLLCFG2 is present but must be tied to ground in devices that have only 8-20 MHz
range.

In Section “Reduced Frequency Divider (RFD)”:
From: “The RFD must be programmed to be ≥1 when changing MFD or PREDIV or when enabling

frequency modulation”
To: “To protect the system from frequency overshoot during the PLL lock detect phase, the RFD

must be programmed to be ≥1 when changing MFD or PREDIV or when enabling frequency
modulation.”

Made changes in LOCKS bit:
From “a write to the FMPLL_SYNCR which modifies the MFD bits”
To: “a write to the FMPLL_SYNCR which modifies the MFD and PREDIV bits”

In section “Alternate/Backup Clock Selection” changed sentence:
From: “Note that when the FMPLL is operated in SCM the system frequency is dependent upon the

value in RFD[0:2].”
To: “Note that when the FMPLL is operated in SCM, writes to FMPLL_SYNCR[RFD] have no effect

on clock frequency.”

Added the symbols Fref_crystal and Fref_ext to the diagrams, and throughout the manual added further
explanation of the fact that Fprediv is the frequency after the predivider.

Modified table “Input Clock Frequency” by adding a column of frequency symbols.

Modified table “Clock Out vs. Clock In Relationships” by changing Fref symbols to Fref_crystal and
Fref_ext.

Changed the range 16 -40 MHz to simply 40 MHz.

Modified the crystal oscillator network figure to show resistor on the XTAL signal.

Chapter 12, “External
Bus Interface (EBI)”

Updated block diagram to reflect signals available on MPC5534. Added calibration signals to block
diagram.

In “Features,” changed Burst Support note to say, “The MPC5534 does not have any cache,
therefore its core never generates a burst transfer to the EBI; therefore, only the DMA can cause
a burst transfer to occur.”

In “Burst Support (Wrapped Only),” removed first NOTE under section heading.

Table C-1. Changes Between Revisions 1 and 2 (continued)

Chapter Description

MPC5534RM Revision History

MPC5534 Microcontroller Reference Manual, Rev. 2

C-10 Freescale Semiconductor

Chapter 12, “External
Bus Interface (EBI)”

(continued)

In “EBI Base Registers 0–3 (EBI_BRn) and EBI Calibration Base Registers 0–3 (EBI_CAL_BRn)”,
Updated the BL bit description.

In “Back-to-Back Accesses,” updated text, added NOTE to intro text, added new figure, “Read After
Write to the Same CS Bank.”

Removed 1 as a bus speed mode, left 1/2 and 1/4.

In “Basic Transfer Protocol” changed:
From: “To facilitate asynchronous write support, the EBI keeps driving valid write data on the data

bus until 1 clock after the rising edge where RD_WR and WE are negated (for chip select
accesses only).”

To: “To facilitate asynchronous write support, the EBI keeps driving valid write data on the data bus
until 1 clock after the rising edge where RD_WR (and WE for chip select accesses) are negated.”

Changed the name of table from “Signal Function by Mode” to “Signal Function According to EBI
Mode”

In table, “Signal Function According to EBI Mode,” added the following footnote: “All I/O signals are
three-stated by the EBI when not actively involved in a transfer.” Added a NOTE below the table.

To “Calibration Signals,” added: “During a calibration bus access, the non-calibration bus signals
(other than DATA) are held in a negated state, with the exception of RD_WR and ADDR, which
reflect the same values shown on the calibration version of those signals. This is harmless
because TS and CS are held negated on the non-calibration bus during calibration accesses, so
no transfer takes place on the non-calibration bus. DATA is not driven by the EBI during calibration
accesses.

During a non-calibration bus access, the calibration bus signals (other than CAL_DATA) are held
in a negated state. CAL_DATA is not driven during non-calibration accesses.”

To “Back-to-Back Accesses,” added the note: “In some cases, CS remains asserted during this dead
cycle, such as the cases of back-to-back writes or read-after-write to the same chip-select.

In section “Basic Transfer Protocol,” changed
From: “To facilitate asynchronous write support, the EBI keeps driving valid write data on the data

bus until 1 clock after the rising edge where RD_WR and WE are negated (for chip select
accesses only).”

To: “To facilitate asynchronous write support, the EBI keeps driving valid write data on the data bus
until 1 clock after the rising edge where RD_WR (and WE for chip select accesses) are negated.”

To “External Master Mode,” added: “Use the SIZEN and SIZE fields of the EBI_MCR must be used
for MCU-to-MCU transfers to indicate transfer size”

Throughout chapter, added text to indicate if a signal is only available via VertiCal.

“External Signal Description”: Moved the following text from this section to “Calibration Signals”:
DATA is not driven by the EBI during a calibration bus access. During a calibration bus access, the

non-calibration bus signals (other than DATA) are held in a negated state, with the exception of
RD_WR and ADDR, which reflect the same values shown on the calibration version of those
signals. Because the TS and CS signals are held negated on the EBI (non-calibration bus) during
calibration accesses, no transfer occurs on the EBI.

During a EBI bus access, the calibration bus signals (other than CAL_DATA) are held in a negated
state. CAL_DATA is not driven during non-calibration accesses.

Updated table, “Signal Function According to EBI Mode Settings”

Table C-1. Changes Between Revisions 1 and 2 (continued)

Chapter Description

MPC5534RM Revision History

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor C-11

Chapter 12, “External
Bus Interface (EBI)”

(continued)

Section 12.1 Introduction: Added a NOTE that reads: The 208 package does not have an external
bus interface. This chapter pertains only to the 324 package.

Section 12.1.4.1 Single Master Mode: Removed the NOTE because the 324 has not arbitration pins,

Section 12.4.1.2 32-bit Data Bus: Removed this section. This device has a 16-bit bus.

Section 12.4.1.1 32-bit Address Bus: Removed the NOTE. Removed references to TSIZ pins
through the chapter. Removed references to the arbitration pins (BB, BR, BG) throughout the
chapter.

Section 12.2.1 Basic Transfer Protocol: Figure 12-8 Basic Transfer Protocol: removed Arbitration
section of drawing.

Section 12.1.4.2 External Master Mode: Rewrote 1st sentence in the second paragraph:
Dual-master operation (multiple masters initiating external bus cycles) is not supported.

Removed references to the external arbitration pins (BB, BR, BG) throughout the chapter. Removed
all references to TSIZ pins throughout the chapter, including all the timing operation figures.

Section 12.4.2.1 External Clocking: Added ‘208 Package There is no CLKOUT pin on this
package.’

Section 12.4.2.7 Size, Alignment, and Packaging Transfers: Removed parenthetical reference to the
TEA pin.

Figure 12-24. Removed 32-bit section of drawing,

Section 12.5.3 Using Asynchronous Memory: Rewrote 2nd sentence to read: Asynchronous
memories do not support bursting, and do not require the CLKOUT, TS, and BDIP pins.

Section 12.5.6 Summary of Differences from the MCP500: Changed the following:
 • Second bullet changed to ‘No memory controller support for external masters: no support for

multi-master system to drive its own chip selects’
 • Removed 3rd subbullet of 3rd bullet: Modified TSIZ[0:1] functionality to indicate size of the current

transfer, not given information on ensuing transfers that may be part of the same atomic
sequence

 • 5th bullet: changed e200z6 to e200z3.
 • Removed 8th bullet: Open drain mode and pull-up resistors no longer required for multi-master

systems, extra cycle needed to switch between masters
 • Removed 9th bullet: Modified arbitration protocol to require extra cycles when switching between

masters
 • Removed 16th bullet: Address decoding for external master accesses uses 4-bit code to

determine the internal slave instead of the straight address decode

Sections 12.5.5.3 to 12.5.5.6: removed reference to absent pins in the headings. These signals were
never supported for the MPC553X family of devices.

Section 12.4.1.14 Optional Automatic CLKOUT Gating: Removed the following note:
NOTE

This feature must be disabled for multi-master systems. In those cases, one master is getting its
clock source from the other master and needs the other master to stay valid continuously.

Tables 12-1 and 12-2: Removed tables and formatted into sub-bullets. Removed 208 package
information.

Table C-1. Changes Between Revisions 1 and 2 (continued)

Chapter Description

MPC5534RM Revision History

MPC5534 Microcontroller Reference Manual, Rev. 2

C-12 Freescale Semiconductor

Chapter 12, “External
Bus Interface (EBI)”

(continued)

Chapter Title, 12.2 External Signal Definition, 12.3 Memory Map and Register Description, 12.4
Functional Description and 12.5 Applications and Initialization: Added:

NOTE
The 208 package does not have an external bus interface. This chapter pertains to the 324 and 496
packages only.

Deleted individual references to 208 differences throughout the chapter.

Figure 12-1 Block Diagram: Removed individual ADD[8:11] signal; added _ADDR[8] to the CS[0]
signal; added _ADDR[9:11] to the CS[1:3] signals to clarify that the 324 package does not have
separate pins for ADDR[8:11].

Sections 12.4.1.7 Port Size Configuration per Chip Select (16 or 32 Bits) and 12.4.1.8 Port Size
Configuration per Calibration Chip Select (16 or 32 Bits): removed references to 32-bit port size.
This device only supports 16-bit port size. Removed (16 bits) from the titles.

Sections 12.4.1.14 Configurable Bus Speed Clock Modes and 12.4.1.15 Stop and Module Disable
Modes for Power Savings. Removed both sections since they contain cross-references only.
There is no power savings mode in the MPC553X devices.

Section 12.4.2.3 Basic Transfer Protocol: Added to 5th paragraph:
For chip select accesses, use the OE signal to indicate that the external device can drive data onto

the bus during an MCU read cycle. To prevent bus contentions for chip select accesses, the
output enable signal (OE) must be used to determine when the external device can drive the bus.

Figure 12-4. EBI Bus Monitor Control Register (EBI_BMCR): Added [0:7] after the field name BMT
to completely clarify the field and bit range.

Combined section 12.1.2 Overview into 12.1 Introduction.

Section 12.1.2 Features: Grouped calibration features

Chapter 13, “Flash
Memory”

Changed LLOCK description
From: “Low address block lock. These bits have the same description and attributes as MLOCK. As

an example of how the LLOCK bits are used, if a configuration has sixteen 16-KB blocks in the
low address space (MCR-LAS = 3’b011), the block residing at address array base + 0,
corresponds to LLOCK0. The next 16-KB block corresponds to LLOCK1, and so on up to
LLOCK15.”

To: “Low address block lock. These bits have the same description and attributes as MLOCK. As an
example of how the LLOCK bits are used, if a configuration has six 16-KB blocks in the low
address space, the block residing at address array base + 0, corresponds to LLOCK0. The next
16-KB block corresponds to LLOCK1, and so on up to LLOCK5.”

Changed bullet in features list
From: “Page program of 1 to 84 consecutive 32-bit words within a page (recommended minimum is

2 words due to ECC)
To: “Page program size of 128 bits allows programming from one to two consecutive 64-bit

doublewords within a page.”

In Flash Partitions table, corrected size value for Array Base + 0x00FF_FE04 – 0x00FF_FFFF
From: 516
To: 508

Corrected reset values in FLASH_BIUAPR (changed 0’s to 1’s).

Table 13-17 FLASH_BU_CR2 Field Description and the paragraph directly succeeding the table:
Corrected the word location in the flash array used to change the values loaded at reset from
0x7e00 shadow block address to 0x0200 + the shadow base address.

Table C-1. Changes Between Revisions 1 and 2 (continued)

Chapter Description

MPC5534RM Revision History

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor C-13

Chapter 13, “Flash
Memory”

Figure 13-1. Flash System Block Diagram: Added footnote 1 that reads, ‘VFLASH is not available on
the 208 package.’

Section 13.1.2 Overview: 2nd paragraph, fourth sentence, added ‘in a single cycle’ to read: Normal
flash array accesses (accesses that don’t go to the prefetch buffers) are registered in the FBIU in
a single cycle, and are forwarded to the system bus on the next cycle, incurring at least two wait
states (depending on the frequency).

Sections 13.4.2.6 Censorship and 13.4.6.4 External Boot Default: Added, ‘208 Package:
BOOTCFG[0] and RSTCFG are not available due to pin limitations. This signal is internally
asserted (driven to 0) therefore, the device defaults to internal flash on the 208 package.’

Chapter 14, “Internal
Static RAM (SRAM)”

Majority of chapter re-organized.

Corrected wait states in table, “Number of Wait States Required for SRAM Operation (continued).”

Removed “multi-bit” error correction.

Table 14-3 Number of Wait States Required for RAM Operation: Changed the ‘/’ to ‘or’

Table 14-1. SRAM Operating Modes: Standby description: Added VDD and (0.8–1.2 V) to the first
sentence to read, ‘Preserves the 32 KB of standby memory when the VDD (1.5 V) power drops
below the level of VSTBY (0.8–1.2 V). Updates to standby SRAM are inhibited during system reset
or during standby mode.

Section 14.7.1 Example Code: Added MPC5534 example code.

Section 14.6 SRAM ECC Mechanism: throughout section changed 8-bit ECC to 7-bit ECC.

Chapter 15, “Boot Assist
Module (BAM)”

Update Overview section
From: The BAM contains the MCU boot program code, identical for all eSys MCUs with an e200z3

core. The BAM control block is connected to peripheral bridge B and occupies the last 16 KBs of
the MCU memory space. The BAM program supports four different booting modes: from internal
Flash, from external memory without bus arbitration, serial boot via SCI or CAN interfaces. The
BAM program is executed by the e200z3 core just after the MCU reset. Depending on the boot
mode, the program initializes appropriate minimum MCU resources to start user code execution.

To: The BAM contains the MCU boot program code. The BAM control block is connected to
peripheral bridge B and occupies the last 16 KB of the MCU memory space. The BAM program
supports several booting modes:
- Internal flash
- External memory without bus arbitration
- Serial boot using an eSCI interface
- FlexCAN interfaces
The BAM program is executed by the e200z3 core just after the MCU reset. Depending on the
boot mode, the program initializes the minimum MCU resources to start application code
execution.

Table C-1. Changes Between Revisions 1 and 2 (continued)

Chapter Description

MPC5534RM Revision History

MPC5534 Microcontroller Reference Manual, Rev. 2

C-14 Freescale Semiconductor

Chapter 15, “Boot Assist
Module (BAM)”

(continued)

Added the following to “Serial Boot Mode” section:
Serial boot mode downloads:

64-bit password
32-bit start address
32-bit download consisting of 1-bit VLE flag (most significant bit)

followed by a 31-bit length field containing the number of bytes to receive (download length)

Set the VLE flag to 1 for devices that support variable length encoding and must run in VLE mode.
When the VLE flag is set, the BAM programs the external bus interface (EBI), RAM, and the flash
memory map unit (MMU) TLB entries 1, 2, and 3 with the VLE attribute.

Clear the VLE bit to 0 for devices that use the PowerPC Book E or Power Architecture instruction
set mode.

In “BAM Program Operation” section, changed
From: “Then the BAM program reads the status of the two BOOTCFG pins from the reset status

register (SIU_RSR) and the appropriate boot sequence is started as shown in the Table 15-3.

Depending on the values stored in the censorship word and serial boot control word in the
shadow block of internal Flash memory, the internal Flash memory can be enabled or disabled,
the Nexus port can be enabled or disabled, the password received in serial boot mode is
compared with a fixed public password or compared to a user programmable password in the
internal Flash memory.”

To: “The BAM program reads the following data and determines the boot mode for the boot
sequence:
- BOOTCFG[0:1] located in the reset status register (SIU_RSR)
- Censorship control field located at 0x00FF_FDE0 in the shadow block of internal flash
- Serial boot control field located at 0x00FF_FDE2 in the shadow block of internal flash
The boot mode determines the following:
- Enables or disables internal flash memory
- Enables or disables the Nexus port
- Compares the password received in serial boot mode to a preset public password or a
programmable password located in internal flash”

Table 15-3: ‘MMU Configuration for Internal Flash Boot’ and Table 15-6:’MMU Configuration for
External Boot (continued) Mode’: Removed the reference to cache because the MPC553X
devices do not have cache.

Table 15-3: ‘MMU Configuration for Internal Flash Boot’ and Table 15-6:’MMU Configuration for
External Boot (continued) Mode’: Corrected the physical base address for the EBI from
0x0000_0000 to 0x2000_0000.

Throughout this chapter, added 208 package information that BOOTCFG is not available and is
internally asserted (Driven to 0).

Section 15.1.3.5 Serial Boot Mode: Added serial boot mode downloads and VLE instructions.

Section 15.1.1 Overview
 • Bulleted BAM modes
 • Deleted ‘eSys,’
 • Added to bullet ‘External memory without bus arbitration:’ ‘(324 package only; not available on

the 208 package)

Added ‘For devices using the 208 package, the BAM determines the value of BOOTCFG[1] only,
since BOOTCFG[0] is not available due to pin limitations and is internally asserted (driven to 0).’

Table C-1. Changes Between Revisions 1 and 2 (continued)

Chapter Description

MPC5534RM Revision History

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor C-15

Chapter 15, “Boot Assist
Module (BAM)”

(continued)

Section 15.3.2. BAM Program Operation, Table 15-2 MMU Configuration for Internal Flash Boot:
removed reference to Cache memory in the Attributes column. No Cache available in the
MPC553X family.

Section 15.3.2. BAM Program Operation, Figure 15-2 Censorship Word, updated register format.

Table 15-5 MMU Configuration for External Flash Boot: removed reference to Cache memory in the
Attributes column. No Cache available in the MPC553X family.

Section 15.3.2.4.2. Serial Boot Mode FlexCAN and eSCI Configuration: replaced ‘All data received
is assumed to be good and is echoed. . .’ with ‘All data received is accepted as valid and is echoed
out on the TXD signal.

Chapter 16, “Enhanced
Modular Input/Output
Subsystem (eMIOS)”

Section 16.4.3 Global clock prescaler submodule: deleted ‘The output is clocked every time the counter
overflows.’

Section 16.1.4.1 eMIOS Modes: added to the end of Freeze mode: ‘In freeze mode, all clocks are
running and all registers are accessible for use debugging software; there is no power saving
during freeze mode.

Table 16-11 EMIOS_CSRn Field Descriptions: Shaded reserved row (bits 17–28).

Section 16.4.4.4.11 Modulus Counter Mode (MC) Changed table column label from ‘Unified
Channel Mode of Operation’ to Modulus Counter Operating Modes. Bulleted the operating modes
in that column.

Chapter 17, “Enhanced
Time Processing Unit

(eTPU)”

Section 17.5.2.1.4 eTPU SCM Off-Range Data Register (ETPU_SCMOFFDATAR): Deleted ‘This
register is global to both ETPU engines.

Chapter 18, “Enhanced
Queued Analog-to-Digital

Converter (eQADC)”

Section Overview:
From:
It also monitors the fullness of CFIFOs and RFIFOs, which may result in either underflow or overflow
conditions. A CFIFO underflow occurs when the CFIFO is in the TRIGGERED state and it becomes
empty. An RFIFO overflow occurs when an RFIFO is full and more data is ready to be moved to the
RFIFO by the host CPU or by eDMA.
Accordingly, the eQADC generates eDMA or interrupt requests to control data movement between
the FIFOs and the system memory, which is external to the eQADC.
To:
It also monitors the amount of memory currently in use by each the CFIFO and RFIFO to detect
underflow and overflow conditions.
A CFIFO underflow occurs when a CFIFO:
 • Is in the TRIGGERED state; and
 • Becomes empty.
An RFIFO overflow occurs when an RFIFO:
 • Becomes full; and the
 • Host CPU or eDMA data is waiting to transmit to the RFIFO.
The eQADC generates eDMA or interrupt requests to control data movement between the FIFOs

and the system memory, which is external to the eQADC.

Section Feature Overview
 • From: When commands of distinct CFIFOs are bound for the same ADC, the higher priority

CFIFO is always served first.
 • To: When commands from different CFIFOs are sent to the same ADC, the higher priority CFIFO

is always served first.

Table C-1. Changes Between Revisions 1 and 2 (continued)

Chapter Description

MPC5534RM Revision History

MPC5534 Microcontroller Reference Manual, Rev. 2

C-16 Freescale Semiconductor

Chapter 18, “Enhanced
Queued Analog-to-Digital

Converter (eQADC)”
(continued)

Section Feature Overview
 • From: Supports four external 8-to-1 muxes that can expand the input channel number from 40 to

68
 • To: Supports four external 8-to-1 muxes that can expand the number of input channels from 40

to 65.

Section eQADC Memory Map
Added footnote 1 to the eQADC result FIFOs in the eQADC Memory Map:
Result FIFOs are 16-bits wide [0:15]; bits [16:31] are filled with zeros to allow for 32-bit read access.

Section eQADC null message send format register.
 • From: The eQADC null message send format register only affects how the eQADC sends a null

message, but it has no control on how the eQADC detects a null
 • To: The eQADC null message send format register (eQADC_NMSFR) only defines the format of

the null message that eQADC sends. The null message register does not control how the eQADC
detects a null message from the input source.

Section eQADC FIFO POP Registers 0–5: Changed Note
 • From: The EQADC_RFPRn must not be read speculatively. For future compatibility, the TLB entry

covering the EQADC_RFPRn must be configured to be guarded.
 • To: Do not read the EQADC_RFPRn unless absolutely necessary, since the data is lost when the

read occurs. For future compatibility, configure the TLB entry for the EQADC_RFPRn registers
as guarded.

Section Functional Description
 • From: The two on-chip ADCs are architected to allow access to all the analog channels.
 • To: The two on-chip ADCs can access all the analog channels.

Section Message Format in eQADC:
 • From: The FIFO control unit decodes the information contained in the RFIFO header to determine

the RFIFO to which the ADC result should be sent. An ADC result is always 16 bits long.
 • To: The FIFO control unit decodes the information contained in the RFIFO header to determine

the RFIFO to which the ADC result is sent. An ADC result field is always 16 bits.

Section Conversion Command Message Format for On-Chip ADC Operation
 • From: The lower byte of conversion commands is always set to 0 to distinguish it from

configuration commands.
 • To: Conversion commands are sent to the ADC internal memory map address zero, therefore the

lower byte of conversion commands is always cleared to 0 to distinguish it from configuration
commands.

Removed section “Detailed Signals” from this chapter because this information is contained in the
Signals chapter of the Reference Manual.

Added this cross reference to the EQADC_NMSFR[NMF] bit: “See the section ‘Null Message
Format for External Device Operation’ for more information.”

Table Result Message Format for External Device Operation. In the description field of the
ADC_Results [16:31], changed
 • From: This can be the result. . .
 • To: This can be any value produced by the external device, such as the. . .

Table C-1. Changes Between Revisions 1 and 2 (continued)

Chapter Description

MPC5534RM Revision History

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor C-17

Chapter 18, “Enhanced
Queued Analog-to-Digital

Converter (eQADC)”
(continued)

Table. On-chip ADC Field Descriptions: Conversion Command Message Format. Changed
description of BN field
 • From: Indicates which ADC the message will be sent to.
 • To: For internal commands, indicates the ADC to which the message is sent. For external

commands, indicates to which command FIFO the messages is sent.
 • From: ‘24:31 Reserved’
 • To: 24:31 ADC_REG_ADDRESS [0:7] ADC register address. Identifies the address of the ADC

register. Only use 16-bit (halfword) addresses. See Table 18-22. Include $00 for conversion
commands.

Figure. Conversion Command Message Format for On-Chip ADC Operation. Changed name for bits
16:31 from ADC Command to ADC Address.

Table EQADC_RF[0–5]Rn Field Descriptions: added reserved row for bits 0:15.

Figure 18-26 Conversion Command Message Format for On-Chip ADC Operation: Gave bits 24–31
value of 0, and changed the label for bits 16–23 to ADC Command.

Section 18.4.5.2 ADC Clock and Conversion Speed, 3rd paragraph and Table 18-44:ADC Clock
Configuration Example—System Clock Frequency = 120 MHz: Changed the system clock speed
from 120 MHz to 72 MHz.

Section 18.1 Introduction: Added the following NOTE: The 324 package supports 40 channels in the
dual eQADC engines. The 208 package supports 34 channels only.

Table 18-44 ADC Clock Configuration Example—System Clock Frequency = 72 MHz: Updated table with
values for 72 MHz.

Chapter 19, “Deserial
Serial Peripheral
Interface (DSPI)”

Changed the NOTE in the DSPI_PUSHR register:
 • From: “Only the TXDATA field is used for slaves.”
 • To: “TXDATA is used in master and slave modes.”

Section 19.5.5.2, “Address Calculation for the First-in Entry and Last-in Entry in the RX FIFO”
Changed
 • From: First-in entry address = TX FIFO base + [4 x (POPNXTPTR)]
 • To: First-in entry address = RX FIFO base + [4 x (POPNXTPTR)]

Numbered and edited the steps in section ‘How to Change Queues.”
Changed the following section titles:
 • From: Modified SPI/DSI Transfer Format (MTFE = 1, CPHA = 0)
 • To: Modified Transfer Format Enabled (MTFE = 1) and

Classic SPI Transfer Format Cleared (CPHA = 0) for SPI and DSI
 • From: Modified SPI/DSI Transfer Format (MTFE = 1, CPHA = 1)
 • To: Modified Transfer Format Enabled (MTFE = 1) with Classic SPI Transfer Format Set

(CPHA = 1) for SPI and DSI

Throughout chapter: Changed fsys from 100 MHz to 82 MHz.

Tables 19-20, 19-22, and 19-23: changed IRQ[6] to reserved.

Table C-1. Changes Between Revisions 1 and 2 (continued)

Chapter Description

MPC5534RM Revision History

MPC5534 Microcontroller Reference Manual, Rev. 2

C-18 Freescale Semiconductor

Chapter 20, “Enhanced
Serial Communication

Interface (eSCI)”

Section 20.1.3 Features: added 13-bit to bullet Configurable baud rate.

Section 20.3.2.4 ESCI Status Register (ESCIx_SR): Table 20-6. ESCIx_SR Field Descriptions:
Added the following:
BERR bit

0 No bit error
1 Bit error

RXRDY
0 No receive data ready
1 Receive data ready

TXRDY
0 ESCIx_LTR is not free
1 ESCIx_LTR is free

LWAKE
0 LIN2.0 wakeup signal not received
1 LIN2.0 wakeup signal received

STO
0 No time out detected
1 A slave did not complete a frame within the specified maximum frame length

PBERR
0 No error
1 Physical bus error

CKERR
0 No error
1 Checksum error

FRC
0 Frame not complete
1 Frame complete

OVFL
0 No overflow
1 Overflow detected

Section 20.3.2.5 LIN Control Register (ESCIx_LCR): Table 20-7. ESCIx_LCR Field Descriptions:
LIN bit 7, added ‘When LIN is enabled, even if parity generation/checking is enabled via
ESCIx_CR[PE], the parity bit is not masked out.’

Section 20.4.5.5.1 Slow Data Tolerance: changed ‘9 bit times x 16 RT cycles = 147 RT cycles’ to ‘9
bit times x 16 RT cycles = 144 RT cycles.’

Chapter 21, “FlexCAN2
Controller Area Network”

No changes.

Chapter 22, “Voltage
Regulator Controller

(VRC) and POR Module”

Table 22-2 Values after POR Negation:
Replaced table with Tables 11-1 and 11-2 from the FMPLL chapter, becoming tables 22-2 Clock

Mode Selection and 22-3 PLL External Pin Interface.

Table C-1. Changes Between Revisions 1 and 2 (continued)

Chapter Description

MPC5534RM Revision History

MPC5534 Microcontroller Reference Manual, Rev. 2

Freescale Semiconductor C-19

Chapter 23, “IEEE 1149.1
Test Access Port

Controller (JTAGC)”

Table 24-1. JTAG Signal Properties: combined the Reset State and Pull columns. Changed TDO pull
state to up instead of down. TDO reset state is now High Z / Pullup.

Changed footnote 2 to read, ‘A weak pullup is implemented on TDO.

Figure 24-2. 5-bit Instruction Register: Changed bit order from Least Significant Bit (LSB) to Most
Significant Bit (MSB).

Tables 24-3 JTAG Instructions:
 • Code column label changed to Code[0:4].
 • Changed row ACCESS_AUX_TAP_ONCE from e2000z6 (NZ6C3) to e200z3 (NZ3C3).
 • Added the row ACCESS_AUX_TAP_eTPUN3, 10010, Grants the Nexus eTPU development

interface (NSEDI) ownership of the TAP
 • Added 10011 to the first reserved row at the end of the table.
Added ‘Do not use these settings.’ to the second reserved row at the end of the table. Changed
Decoded to select bypass register’ to ‘Defaults to bypass register.’

Chapter 24, “Nexus
Development Interface”

Section 24.2.1.3 Message Data Output (MDO[3:0] or [11:4]): Added
‘208 Package: MDO[11:4] pins are not available due to pin limitations.’

Changed e200z6 to e200z3 throughout the chapter.
Changed NZ6C3 to NZ3C3 throughout the chapter.

Appendix A, “MPC5534
Register Map”

Signals not available on the 208 package appear in red text. Primary signals not designed into this
device appear in blue text.

Appendix B, “Calibration”

Added footnote to the following signals in the Calibration Bus Signals table:
WE/BE[2,3]
ADDR[8:11]
TEA
The footnote reads: Not available on the 324 package.

Removed references to the 416 package since it is not available for MPC5534.

Added NOTE at the beginning of the chapter that reads: NOTE
In addition to the MPC5534 device, the 496 VertiCal assembly is required to use the calibration
features. The External Bus Interface (EBI) and Calibration Bus Interface (CBI) are not available due
to pin limitations in the 208 package.

Table C-1. Changes Between Revisions 1 and 2 (continued)

Chapter Description

MPC5534RM Revision History

MPC5534 Microcontroller Reference Manual, Rev. 2

C-20 Freescale Semiconductor

	MPC5534RM
	MPC5534 Microcontroller Reference Manual

	MPC5534RMAD
	1 Addendum for Revision 2.0
	2 Revision history

	MPC5534RM
	MPC5534 Microcontroller Reference Manual
	Table of Contents

	Chapter 1 Overview
	1.1 Block Diagram
	1.1.1 MPC5500 Family Comparison

	1.2 MPC5534 Features List
	1.2.1 Operating Parameters
	1.2.2 e200z3 Core Processor
	1.2.3 Crossbar Switch (XBAR)
	1.2.4 Enhanced Direct Memory Access (eDMA) Controller
	1.2.5 Interrupt Controller (INTC)
	1.2.6 Frequency Modulated Phase-Locked Loop (FMPLL)
	1.2.7 External Bus Interface (EBI)
	1.2.8 Calibration Bus Interface (CBI)
	1.2.9 System Integration Unit (SIU)
	1.2.10 Error Correction Status Module (ECSM)
	1.2.11 On-chip Flash
	1.2.12 On-chip Static RAM (SRAM)
	1.2.13 Boot Assist Module (BAM)
	1.2.14 Enhanced Modular I/O System (eMIOS)
	1.2.15 Enhanced Time Processor Unit (eTPU)
	1.2.16 Enhanced Queued A/D Converter (eQADC)
	1.2.17 Deserial Serial Peripheral Interface (DSPI) Module
	1.2.18 Enhanced Serial Communication Interface (eSCI) Module
	1.2.19 FlexCAN
	1.2.20 Nexus Development Interface (NDI)
	1.2.21 IEEE 1149.1 JTAG controller (JTAGC)
	1.2.22 On-chip Voltage Regulator Controller

	1.3 MPC5534 Memory Map
	1.3.1 External Master Mode Operation Memory Map

	1.4 Detailed Features
	1.4.1 e200z3 Core Overview
	1.4.2 Crossbar Switch (XBAR)
	1.4.3 Enhanced Direct Memory Access (eDMA) Controller
	1.4.4 Interrupt Controller (INTC)
	1.4.5 Frequency Modulated Phase-Locked Loop (FMPLL)
	1.4.6 External Bus Interface (EBI)
	1.4.7 Calibration Bus Interface (CBI)
	1.4.8 System Integration Unit (SIU)
	1.4.9 On-chip Flash
	1.4.10 Static Random Access Memory (SRAM)
	1.4.11 Boot Assist Module (BAM)
	1.4.12 Enhanced Module Input/Output System (eMIOS)
	1.4.13 Enhanced Time Processing Unit (eTPU)
	1.4.14 Enhanced Queued Analog/Digital Converter (eQADC)
	1.4.15 Deserial/Serial Peripheral Interface (DSPI)
	1.4.16 Enhanced System Communications Interface (eSCI)
	1.4.17 Flexible Controller Area Network (FlexCAN)
	1.4.18 Nexus
	1.4.19 JTAG

	1.5 Chip Configuration
	1.6 Related Documentation

	Chapter 2 Signals
	2.1 Block Diagram
	2.2 External Signal Descriptions
	2.2.1 Multiplexed Signals
	2.2.2 Device Signals Summary

	2.3 Detailed Signal Description
	2.3.1 Reset and Configuration Signals
	2.3.1.1 External Reset Input RESET
	2.3.1.2 External Reset Output RSTOUT
	2.3.1.3 FMPLL Mode Selection / External Interrupt Request / GPIO PLLCFG[0]_IRQ[4]_GPIO[208]
	2.3.1.4 FMPLL Mode Selection / External Interrupt Request / DSPI D / GPIO PLLCFG[1]_IRQ[5]_SOUTD_GPIO[209]
	2.3.1.5 Reset Configuration Input / GPIO RSTCFG_GPIO[210]
	2.3.1.6 Reset Configuration / External Interrupt Request / GPIO BOOTCFG[0:1]_IRQ[2:3]_GPIO[211:212]
	2.3.1.7 Weak Pull Configuration / GPIO WKPCFG_GPIO[213]

	2.3.2 External Bus Interface (EBI)
	2.3.2.1 External Chip Selects / External Address / GPIO CS[0]_ADDR[8]_GPIO[0]
	2.3.2.2 External Chip Selects / External Address / GPIO CS[1:3]_ADDR[9:11]_GPIO[1:3]
	2.3.2.3 External Address / GPIO ADDR[12:31]_GPIO[8:27]
	2.3.2.4 External Data / GPIO DATA[0:15]_GPIO[28:43]
	2.3.2.5 External Read/Write / GPIO RD_WR_GPIO[62]
	2.3.2.6 External Burst Data In Progress / GPIO BDIP_GPIO[63]
	2.3.2.7 External Write/Byte Enable / GPIO WE/BE[0:1]_GPIO[64:65]
	2.3.2.8 External Output Enable / GPIO OE_GPIO[68]
	2.3.2.9 External Transfer Start / GPIO TS_GPIO[69]
	2.3.2.10 External Transfer Acknowledge TA_GPIO[70]

	2.3.3 Calibration Bus Interface (CBI)
	2.3.3.1 Calibration Chip Select CAL_CS[0]
	2.3.3.2 Calibration Chip Selects / Calibration Address CAL_CS[2:3]_CAL_ADDR[10:11]
	2.3.3.3 Calibration Address CAL_ADDR[12:30]
	2.3.3.4 Calibration Data CAL_DATA[0:15]
	2.3.3.5 Calibration Read/Write CAL_RD_WR
	2.3.3.6 Calibration Write / Byte Enable CAL_WE/BE[0:1]
	2.3.3.7 Calibration Output Enable CAL_OE
	2.3.3.8 Calibration Transfer Start CAL_TS

	2.3.4 Nexus Controller
	2.3.4.1 Nexus Event In EVTI
	2.3.4.2 Nexus Event Out EVTO
	2.3.4.3 Nexus Message Clock Out MCKO
	2.3.4.4 Nexus Message Data Out MDO[3:0]
	2.3.4.5 Nexus Message Data Out / GPIO MDO[4:11]_GPIO[82:75]
	2.3.4.6 Nexus Message Start/End Out MSEO[1:0]
	2.3.4.7 Nexus Ready Output RDY

	2.3.5 JTAG
	2.3.5.1 JTAG Test Clock Input TCK
	2.3.5.2 JTAG Test Data Input TDI
	2.3.5.3 JTAG Test Data Output TDO
	2.3.5.4 JTAG Test Mode Select Input TMS
	2.3.5.5 JTAG Compliance Input JCOMP
	2.3.5.6 Test Mode Enable Input TEST

	2.3.6 Flexible Controller Area Network (FlexCAN)
	2.3.6.1 FlexCAN A Transmit / GPIO CNTXA_GPIO[83]
	2.3.6.2 FlexCAN A Receive / GPIO CNRXA_GPIO[84]
	2.3.6.3 FlexCAN B Transmit / DSPI C Chip Select / GPIO CNTXB_PCSC[3]_GPIO[85]
	2.3.6.4 FlexCAN B Receive / DSPI C Chip Select / GPIO CNRXB_PCSC[4]_GPIO[86]
	2.3.6.5 FlexCAN C Transmit / DSPI D Chip Select / GPIO CNTXC_PCSD[3]_GPIO[87]
	2.3.6.6 FlexCAN C Receive / DSPI D Chip Select / GPIO CNRXC_PCSD[4]_GPIO[88]

	2.3.7 Enhanced Serial Communications Interface (eSCI)
	2.3.7.1 eSCI A Transmit / GPIO TXDA_GPIO[89]
	2.3.7.2 eSCI A Receive / GPIO RXDA_GPIO[90]
	2.3.7.3 eSCI B Transmit / DSPI D Chip Select / GPIO TXDB_PCSD[1]_GPIO[91]
	2.3.7.4 eSCI B Receive / DSPI D Chip Select / GPIO RXDB_PCSD[5]_GPIO[92]

	2.3.8 Deserial/Serial Peripheral Interface (DSPI)
	2.3.8.1 DSPI A Clock / DSPI C / GPIO SCKA_PCSC[1]_GPIO[93]
	2.3.8.2 DSPI A Input / DSPI C / GPIO SINA_PCSC[2]_GPIO[94]
	2.3.8.3 DSPI A Output / DSPI C / GPIO SOUTA_PCSC[5]_GPIO[95]
	2.3.8.4 DSPI A / DSPI D / GPIO PCSA[0]_PCSD[2]_GPIO[96]
	2.3.8.5 DSPI A / DSPI B / GPIO PCSA[1]_PCSB[2]_GPIO[97]
	2.3.8.6 DSPI A / DSPI D Clock / GPIO PCSA[2]_SCKD_GPIO[98]
	2.3.8.7 DSPI A / DSPI D Data Input / GPIO PCSA[3]_SIND_GPIO[99]
	2.3.8.8 DSPI A / DSPI D Data Output / GPIO PCSA[4]_SOUTD_GPIO[100]
	2.3.8.9 DSPI A / DSPI B / GPIO PCSA[5]_PCSB[3]_GPIO[101]
	2.3.8.10 DSPI B Clock / DSPI C Chip Select / GPIO SCKB_PCSC[1]_GPIO[102]
	2.3.8.11 DSPI B Data Input / DSPI C Chip Select / GPIO SINB_PCSC[2]_GPIO[103]
	2.3.8.12 DSPI B Data Output / DSPI C Chip Select / GPIO SOUTB_PCSC[5]_GPIO[104]
	2.3.8.13 DSPI B Chip Select / DSPI D Chip Select / GPIO PCSB[0]_PCSD[2]_GPIO[105]
	2.3.8.14 DSPI B Chip Select / DSPI D Chip Select / GPIO PCSB[1]_PCSD[0]_GPIO[106]
	2.3.8.15 DSPI B Chip Select / DSPI C Data Output / GPIO PCSB[2]_SOUTC_GPIO[107]
	2.3.8.16 DSPI B Chip Select / DSPI C Data Input / GPIO PCSB[3]_SINC_GPIO[108]
	2.3.8.17 DSPI B Chip Select / DSPI C Clock / GPIO PCSB[4]_SCKC_GPIO[109]
	2.3.8.18 DSPI B Chip Select / DSPI C Chip Select / GPIO PCSB[5]_PCSC[0]_GPIO[110]

	2.3.9 Enhanced Queued Analog/Digital Converter (eQADC)
	2.3.9.1 Analog Input / Differential Analog Input AN[0]_DAN0+
	2.3.9.2 Analog Input / Differential Analog Input AN[1]_DAN0-
	2.3.9.3 Analog Input / Differential Analog Input AN[2]_DAN1+
	2.3.9.4 Analog Input / Differential Analog Input AN[3]_DAN1-
	2.3.9.5 Analog Input / Differential Analog Input AN[4]_DAN2+
	2.3.9.6 Analog Input / Differential Analog Input AN[5]_DAN2-
	2.3.9.7 Analog Input / Differential Analog Input AN[6]_DAN3+
	2.3.9.8 Analog Input / Differential Analog Input AN[7]_DAN3-
	2.3.9.9 Analog Input / Multiplexed Analog Input AN[8]_ANW
	2.3.9.10 Analog Input / Multiplexed Analog Input AN[9]_ANX
	2.3.9.11 Analog Input / Multiplexed Analog Input AN[10]_ANY
	2.3.9.12 Analog Input / Multiplexed Analog Input AN[11]_ANZ
	2.3.9.13 Analog Input / Mux Address 0 / eQADC Serial Data Strobe AN[12]_MA[0]_SDS
	2.3.9.14 Analog Input / Mux Address 1 / eQADC Serial Data Out AN[13]_MA[1]_SDO
	2.3.9.15 Analog Input / Mux Address 2 / eQADC Serial Data In AN[14]_MA[2]_SDI
	2.3.9.16 Analog Input / eQADC Free Running Clock AN[15]_FCK
	2.3.9.17 Analog Input AN[16:39]
	2.3.9.18 Voltage Reference High VRH
	2.3.9.19 Voltage Reference Low VRL
	2.3.9.20 Reference Bypass Capacitor REFBYPC

	2.3.10 Enhanced Time Processing Unit (eTPU)
	2.3.10.1 eTPU A TCR Clock / External Interrupt Request / GPIO TCRCLKA_IRQ[7]_GPIO[113]
	2.3.10.2 eTPU A Channel / eTPU A Channel (Output Only) / GPIO ETPUA[0:11]_ETPUA[12:23]_GPIO[114:125]
	2.3.10.3 eTPU A Channel / DSPI / GPIO ETPUA[12:19]_PCSXn_GPIO[126:133]
	2.3.10.4 eTPU A Channel / External Interrupt Request / GPIO ETPUA[20:27]_IRQ[8:15]_GPIO[134:141]
	2.3.10.5 eTPU A Channels / DSPI C / GPIO ETPUA[28:31]_PCSC[1:4]_GPIO[142:145]

	2.3.11 Enhanced Modular Input/Output System (eMIOS)
	2.3.11.1 eMIOS Channels / eTPU A Channels (Output Only) / GPIO EMIOS[0:9]_ETPUA[0:9]_GPIO[179:188]
	2.3.11.2 eMIOS Channels / GPIO EMIOS[10:11]_GPIO[189:190]
	2.3.11.3 eMIOS Channel (Output Only) / DSPI C Data Output / GPIO EMIOS[12]_SOUTC_GPIO[191]
	2.3.11.4 eMIOS Channel (Output Only) / DSPI D Data Output / GPIO EMIOS[13]_SOUTD_GPIO192
	2.3.11.5 eMIOS Channel (Output Only) / External Interrupt Request / GPIO EMIOS[14:15]_IRQ[0:1]_GPIO[193:194]
	2.3.11.6 eMIOS Channel (Output Only) / GPIO EMIOS[16:23]_GPIO[195:202]

	2.3.12 GPIO
	2.3.12.1 GPIO EMIOS[14:15]_GPIO[203:204]
	2.3.12.2 GPIO GPIO[206:207]

	2.3.13 Clock Synthesizer
	2.3.13.1 Crystal Oscillator Output XTAL
	2.3.13.2 Crystal Oscillator Input / External Clock Input EXTAL_EXTCLK
	2.3.13.3 System Clock Output CLKOUT
	2.3.13.4 Engineering Clock Output ENGCLK

	2.3.14 Power/Ground
	2.3.14.1 Voltage Regulator Control Supply Input VRC33
	2.3.14.2 Voltage Regulator Control Ground Input VRCVSS
	2.3.14.3 Voltage Regulator Control Output VRCCTL
	2.3.14.4 eQADC Analog Supply VDDAn
	2.3.14.5 eQADC Analog Ground Reference VSSAn
	2.3.14.6 Clock Synthesizer Power Input VDDSYN
	2.3.14.7 Clock Synthesizer Ground Input VSSSYN
	2.3.14.8 Flash Read Supply Input VFLASH
	2.3.14.9 Flash Program/Erase Supply Input VPP
	2.3.14.10 SRAM Standby Power Input VSTBY
	2.3.14.11 Internal Logic Supply Input VDD
	2.3.14.12 External I/O Supply Input VDDEn
	2.3.14.13 External I/O Supply Input VDDEHn
	2.3.14.14 Fixed 3.3 V Internal Supply Input VDD33
	2.3.14.15 Ground VSS

	2.3.15 I/O Power/Ground Segmentation

	2.4 eTPU Pin Connections and Serialization
	2.4.1 ETPUA[0:15]
	2.4.2 ETPUA[16:31]

	2.5 eMIOS Pin Connections and Serialization

	Chapter 3 Core Complex (e200z3)
	3.1 Overview
	3.2 Features
	3.2.1 e200z3 Core Features Not Supported in the Device

	3.3 Microarchitecture Summary
	3.3.1 Instruction Unit Features
	3.3.2 Integer Unit Features
	3.3.3 Load/Store Unit Features
	3.3.4 e200 System Bus Features
	3.3.5 MMU Features
	3.3.6 Nexus 3 Features

	3.4 Block Diagram
	3.5 Memory Management Unit (MMU)
	3.5.1 Overview
	3.5.2 Translation Lookaside Buffer (TLB)
	3.5.3 Translation Flow
	3.5.4 Permissions

	3.6 Bus Interface Unit (BIU)
	3.7 Core Registers and Programmer’s Models
	3.7.1 PowerPC Book E Registers
	3.7.1.1 User-level Registers
	3.7.1.2 Supervisor-level Registers

	3.7.2 e200-specific Registers
	3.7.2.1 User-level Registers
	3.7.2.2 Supervisor-level Registers

	3.8 Signal Processing Extension APU (SPE APU)
	3.8.1 Overview
	3.8.2 SPE Programming Model

	3.9 Instruction Summary
	3.9.1 SPE APU Simple and Complex Integer Instructions
	3.9.2 SPE APU Scalar and Vector Floating Point Instructions
	3.9.3 SPE APU Load and Store Instructions

	3.10 Book E Instruction Extensions-VLE

	Chapter 4 Reset
	4.1 Introduction
	4.2 External Signal Description
	4.2.1 Reset Input (RESET)
	4.2.2 Reset Output (RSTOUT)
	4.2.3 Reset Configuration (RSTCFG)
	4.2.4 Weak Pull Configuration (WKPCFG)
	4.2.5 Boot Configuration (BOOTCFG[0:1])

	4.3 Memory Map/Register Definition
	4.3.1 Register Descriptions
	4.3.1.1 Reset Status Register (SIU_RSR)
	4.3.1.2 System Reset Control Register (SIU_SRCR)

	4.4 Functional Description
	4.4.1 Reset Vector Locations
	4.4.2 Reset Sources
	4.4.2.1 FMPLL Lock
	4.4.2.2 Flash High Voltage
	4.4.2.3 Reset Source Descriptions

	4.4.3 Reset Configuration and Configuration Pins
	4.4.3.1 RSTCFG Pin
	4.4.3.2 WKPCFG Pin (Reset Weak Pullup/Pulldown Configuration)
	4.4.3.3 BOOTCFG[0:1] Pins (MCU Configuration)
	4.4.3.4 PLLCFG[0:1] Pins
	4.4.3.5 Reset Configuration Half Word (RCHW)

	4.4.4 Reset Configuration Timing
	4.4.5 Reset Flow

	Chapter 5 Peripheral Bridge
	5.1 Introduction
	5.1.1 Block Diagram
	5.1.2 Overview
	5.1.2.1 Access Protections

	5.1.3 Features
	5.1.4 Modes of Operation

	5.2 External Signal Description
	5.3 Memory Map and Register Definition
	5.3.1 Register Descriptions
	5.3.1.1 Master Privilege Control Register (PBRIDGE_x_MPCR)

	5.4 Functional Description
	5.4.1 Access Support
	5.4.2 Peripheral Write Buffering
	5.4.2.1 Read Cycles
	5.4.2.2 Write Cycles
	5.4.2.3 Buffered Write Cycles

	5.4.3 General Operation

	Chapter 6 System Integration Unit (SIU)
	6.1 Introduction
	6.2 Block Diagram
	6.2.1 Overview
	6.2.2 Modes of Operation

	6.3 External Signal Description
	6.3.1 Detailed Signal Descriptions
	6.3.1.1 Reset Input (RESET)
	6.3.1.2 Reset Output (RSTOUT)
	6.3.1.3 General-Purpose I/O Pins (GPIO[0:213])
	6.3.1.4 Boot Configuration Pins (BOOTCFG[0:1])
	6.3.1.5 I/O Pin Weak Pull Up Reset Configuration Pin (WKPCFG)
	6.3.1.6 External Interrupt Request Input Pins (IRQ[0:5, 7:15])

	6.4 Memory Map and Register Definition
	6.4.1 Register Descriptions
	6.4.1.1 MCU ID Register (SIU_MIDR)
	6.4.1.2 Reset Status Register (SIU_RSR)
	6.4.1.3 System Reset Control Register (SIU_SRCR)
	6.4.1.4 External Interrupt Status Register (SIU_EISR)
	6.4.1.5 DMA/Interrupt Request Enable Register (SIU_DIRER)
	6.4.1.6 DMA/Interrupt Request Select Register (SIU_DIRSR)
	6.4.1.7 Overrun Status Register (SIU_OSR)
	6.4.1.8 Overrun Request Enable Register (SIU_ORER)
	6.4.1.9 IRQ Rising-Edge Event Enable Register (SIU_IREER)
	6.4.1.10 IRQ Falling-Edge Event Enable Register (SIU_IFEER)
	6.4.1.11 IRQ Digital Filter Register (SIU_IDFR)
	6.4.1.12 Pad Configuration Registers (SIU_PCR)
	6.4.1.13 GPIO Pin Data Output Registers 0-213 (SIU_GPDOn)
	6.4.1.14 GPIO Pin Data Input Registers 0-213 (SIU_GPDIn)
	6.4.1.15 eQADC Trigger Input Select Register (SIU_ETISR)
	6.4.1.16 External IRQ Input Select Register (SIU_EIISR)
	6.4.1.17 DSPI Input Select Register (SIU_DISR)
	6.4.1.18 Chip Configuration Register (SIU_CCR)
	6.4.1.19 External Clock Control Register (SIU_ECCR)
	6.4.1.20 Compare A High Register (SIU_CARH)
	6.4.1.21 Compare A Low Register (SIU_CARL)
	6.4.1.22 Compare B High Register (SIU_CBRH)
	6.4.1.23 Compare B Low Register (SIU_CBRL)

	6.5 Functional Description
	6.5.1 System Configuration
	6.5.1.1 Boot Configuration
	6.5.1.2 Pad Configuration

	6.5.2 Reset Control
	6.5.2.1 RESET Pin Glitch Detect

	6.5.3 External Interrupt
	6.5.4 GPIO Operation
	6.5.5 Internal Multiplexing
	6.5.5.1 eQADC External Trigger Input Multiplexing
	6.5.5.2 SIU External Interrupt Input Multiplexing
	6.5.5.3 Multiplexed Inputs for DSPI Multiple Transfer Operation

	Chapter 7 Crossbar Switch (XBAR)
	7.1 Introduction
	7.1.1 Block Diagram
	7.1.2 Overview
	7.1.3 Features
	7.1.4 Modes of Operation

	7.2 Memory Map and Register Definition
	7.2.1 Register Descriptions
	7.2.1.1 Master Priority Registers (XBAR_MPRn)
	7.2.1.2 Slave General-Purpose Control Registers (XBAR_SGPCRn)

	7.3 Functional Description
	7.3.1 Overview
	7.3.2 General Operation
	7.3.3 Master Ports
	7.3.4 Slave Ports
	7.3.5 Priority Assignment
	7.3.6 Arbitration
	7.3.6.1 Fixed Priority Operation
	7.3.6.2 Round-Robin Priority Operation

	Chapter 8 Error Correction Status Module (ECSM)
	8.1 Overview
	8.1.1 Types of ECC Errors
	8.1.2 ECC Operations

	8.2 Memory Map and Register Definition
	8.2.1 Register Descriptions
	8.2.1.1 Software Watchdog Timer Registers: Control, Service, and Interrupt (ECSM_SWTCR, ECSM_SWTSR, and ECSM_SWTIR)
	8.2.1.2 ECC Registers
	8.2.1.3 ECC Configuration Register (ECSM_ECR)
	8.2.1.4 ECC Status Register (ECSM_ESR)
	8.2.1.5 ECC Error Generation Register (ECSM_EEGR)
	8.2.1.6 Flash ECC Address Register (ECSM_FEAR)
	8.2.1.7 Flash ECC Master Number Register (ECSM_FEMR)
	8.2.1.8 Flash ECC Attributes Register (ECSM_FEAT)
	8.2.1.9 Flash ECC Data High Register (ECSM_FEDRH)
	8.2.1.10 Flash ECC Data Low Registers (ECSM_FEDRL)
	8.2.1.11 SRAM ECC Address Register (ECSM_REAR)
	8.2.1.12 SRAM ECC Master Number Register (ECSM_REMR)
	8.2.1.13 SRAM ECC Attributes Register (ECSM_REAT)
	8.2.1.14 SRAM ECC Data High Register (ECSM_REDRH)
	8.2.1.15 SRAM ECC Data Low Registers (ECSM_REDRL)

	8.3 Initialization and Application Information

	Chapter 9 Enhanced Direct Memory Access (eDMA)
	9.1 Introduction
	9.1.1 Features
	9.1.2 Modes of Operation
	9.1.2.1 Normal Mode
	9.1.2.2 Debug Mode

	9.2 Memory Map and Register Definition
	9.2.1 Memory Map
	9.2.2 Register Descriptions
	9.2.2.1 eDMA Control Register (EDMA_CR)
	9.2.2.2 eDMA Error Status Register (EDMA_ESR)
	9.2.2.3 eDMA Enable Request Register (EDMA_ERQRL)
	9.2.2.4 eDMA Enable Error Interrupt Register (EDMA_EEIRL)
	9.2.2.5 eDMA Set Enable Request Register (EDMA_SERQR)
	9.2.2.6 eDMA Clear Enable Request Register (EDMA_CERQR)
	9.2.2.7 eDMA Set Enable Error Interrupt Register (EDMA_SEEIR)
	9.2.2.8 eDMA Clear Enable Error Interrupt Register (EDMA_CEEIR)
	9.2.2.9 eDMA Clear Interrupt Request Register (EDMA_CIRQR)
	9.2.2.10 eDMA Clear Error Register (EDMA_CER)
	9.2.2.11 eDMA Set START Bit Register (EDMA_SSBR)
	9.2.2.12 eDMA Clear DONE Status Bit Register (EDMA_CDSBR)
	9.2.2.13 eDMA Interrupt Request Register (EDMA_IRQRL)
	9.2.2.14 eDMA Error Register (EDMA_ERL)
	9.2.2.15 DMA Hardware Request Status (EDMA_HRSL)
	9.2.2.16 eDMA Channel n Priority Registers (EDMA_CPRn)
	9.2.2.17 Transfer Control Descriptor (TCD)

	9.3 Functional Description
	9.3.1 eDMA Microarchitecture
	9.3.2 eDMA Basic Data Flow
	9.3.3 eDMA Performance

	9.4 Initialization and Application Information
	9.4.1 eDMA Initialization
	9.4.2 DMA Programming Errors
	9.4.3 DMA Request Assignments
	9.4.4 DMA Arbitration Mode Considerations
	9.4.4.1 Fixed-Group Arbitration and Fixed-Channel Arbitration
	9.4.4.2 Round-Robin Group Arbitration, Fixed-Channel Arbitration
	9.4.4.3 Round-Robin Group Arbitration, Round-Robin Channel Arbitration
	9.4.4.4 Fixed-Group Arbitration, Round-Robin Channel Arbitration

	9.4.5 DMA Transfer
	9.4.5.1 Single Request
	9.4.5.2 Multiple Requests
	9.4.5.3 Modulo Feature

	9.4.6 TCD Status
	9.4.6.1 Minor Loop Complete
	9.4.6.2 Active Channel TCD Reads
	9.4.6.3 Preemption Status

	9.4.7 Channel Linking
	9.4.8 Dynamic Programming
	9.4.8.1 Dynamic Channel Linking and Dynamic Scatter/Gather

	Chapter 10 Interrupt Controller (INTC)
	10.1 Introduction
	10.1.1 Block Diagram
	10.1.2 Overview
	10.1.3 Features
	10.1.4 Modes of Operation
	10.1.4.1 Software Vector Mode
	10.1.4.2 Hardware Vector Mode

	10.2 External Signal Description
	10.3 Memory Map/Register Definition
	10.3.1 Register Descriptions
	10.3.1.1 INTC Module Configuration Register (INTC_MCR)
	10.3.1.2 INTC Current Priority Register (INTC_CPR)
	10.3.1.3 INTC Interrupt Acknowledge Register (INTC_IACKR)
	10.3.1.4 INTC End-of-Interrupt Register (INTC_EOIR)
	10.3.1.5 INTC Software Set/Clear Interrupt Registers (INTC_SSCIR[0-7])
	10.3.1.6 INTC Priority Select Registers (INTC_PSR[0-211])

	10.4 Functional Description
	10.4.1 Interrupt Request Sources
	10.4.1.1 Peripheral Interrupt Requests
	10.4.1.2 Software Settable Interrupt Requests
	10.4.1.3 Unique Vector for Each Interrupt Request Source

	10.4.2 Priority Management
	10.4.2.1 Current Priority and Preemption
	10.4.2.2 LIFO

	10.4.3 Details on Handshaking with Processor
	10.4.3.1 Software Vector Mode Handshaking
	10.4.3.2 Hardware Vector Mode Handshaking

	10.5 Initialization/Application Information
	10.5.1 Initialization Flow
	10.5.2 Interrupt Exception Handler
	10.5.2.1 Software Vector Mode
	10.5.2.2 Hardware Vector Mode

	10.5.3 ISR, RTOS, and Task Hierarchy
	10.5.4 Order of Execution
	10.5.5 Priority Ceiling Protocol
	10.5.5.1 Elevating Priority
	10.5.5.2 Ensuring Coherency

	10.5.6 Selecting Priorities According to Request Rates and Deadlines
	10.5.7 Software Settable Interrupt Requests
	10.5.7.1 Scheduling a Lower Priority Portion of an ISR
	10.5.7.2 Scheduling an ISR on Another Processor

	10.5.8 Lowering Priority Within an ISR
	10.5.9 Negating an Interrupt Request Outside of its ISR
	10.5.9.1 Negating an Interrupt Request as a Side Effect of an ISR
	10.5.9.2 Negating Multiple Interrupt Requests in One ISR
	10.5.9.3 Proper Setting of Interrupt Request Priority

	10.5.10 Examining LIFO Contents

	Chapter 11 Frequency Modulated Phase Locked Loop and System Clocks (FMPLL)
	11.1 Introduction
	11.1.1 Block Diagrams
	11.1.1.1 FMPLL and Clock Architecture
	11.1.1.2 FMPLL Bypass Mode
	11.1.1.3 FMPLL External Reference Mode
	11.1.1.4 FMPLL Crystal Reference Mode Without FM
	11.1.1.5 FMPLL Crystal Reference Mode With FM
	11.1.1.6 FMPLL Dual-Controller Mode (1:1)

	11.1.2 Overview
	11.1.3 Features
	11.1.4 FMPLL Modes of Operation
	11.1.4.1 Crystal Reference
	11.1.4.2 External Reference Mode
	11.1.4.3 Bypass Mode
	11.1.4.4 Dual-Controller Mode (1:1)

	11.2 External Signal Description
	11.3 Memory Map/Register Definition
	11.3.1 Register Descriptions
	11.3.1.1 Synthesizer Control Register (FMPLL_SYNCR)
	11.3.1.2 Synthesizer Status Register (FMPLL_SYNSR)

	11.4 Functional Description
	11.4.1 Clock Architecture
	11.4.1.1 Software Controlled Power Management/Clock Gating
	11.4.1.2 Clock Dividers

	11.4.2 Clock Operation
	11.4.2.1 Input Clock Frequency
	11.4.2.2 Reduced Frequency Divider (RFD)
	11.4.2.3 Programmable Frequency Modulation
	11.4.2.4 FMPLL Lock Detection
	11.4.2.5 FMPLL Loss-of-Lock Conditions
	11.4.2.6 Loss-of-Clock Detection

	11.4.3 Clock Configuration
	11.4.3.1 Programming System Clock Frequency Without Frequency Modulation
	11.4.3.2 Programming System Clock Frequency with Frequency Modulation
	11.4.3.3 FM Calibration Routine

	Chapter 12 External Bus Interface (EBI)
	12.1 Introduction
	12.1.1 Block Diagram
	12.1.2 Features
	12.1.3 Modes of Operation
	12.1.3.1 Single Master Mode
	12.1.3.2 External Master Mode
	12.1.3.3 Module Disable Mode
	12.1.3.4 Configurable Bus Speed Modes
	12.1.3.5 16-Bit Data Bus Mode
	12.1.3.6 Debug Mode

	12.2 External Signal Description
	12.2.1 Detailed Signal Descriptions
	12.2.1.1 Address Lines 8-31 (ADDR[8:31])
	12.2.1.2 Burst Data in Progress (BDIP)
	12.2.1.3 Clockout (CLKOUT)
	12.2.1.4 Chip Selects 0-3 (CS[0:3])
	12.2.1.5 Calibration Chip Selects (CAL_CS[0, 2:3]) - 496 Assembly Only
	12.2.1.6 Calibration Signals
	12.2.1.7 Data Lines 0-15 (DATA[0:15])
	12.2.1.8 Output Enable (OE)
	12.2.1.9 Read/Write (RD_WR)
	12.2.1.10 Transfer Acknowledge (TA)
	12.2.1.11 Transfer Start (TS)
	12.2.1.12 Write/Byte Enables (WE/BE)

	12.2.2 Signal Function and Direction by Mode

	12.3 Memory Map and Register Definition
	12.3.1 Register Descriptions
	12.3.1.1 Writing EBI Registers While a Transaction is in Progress
	12.3.1.2 Separate Input Clock for Registers
	12.3.1.3 EBI Module Configuration Register (EBI_MCR)
	12.3.1.4 EBI Transfer Error Status Register (EBI_TESR)
	12.3.1.5 EBI Bus Monitor Control Register (EBI_BMCR)
	12.3.1.6 EBI Base Registers 0-3 (EBI_BRn) and EBI Calibration Base Registers 0-3 (EBI_CAL_BRn)
	12.3.1.7 EBI Option Registers 0-3 (EBI_ORn) and EBI Calibration Option Registers 0-3 (EBI_CAL_ORn)

	12.4 Functional Description
	12.4.1 External Bus Interface Features
	12.4.1.1 32-Bit Address Bus
	12.4.1.2 16-Bit Data Bus
	12.4.1.3 Support for External Master Accesses to Internal Addresses
	12.4.1.4 Memory Controller with Support for Various Memory Types
	12.4.1.5 Burst Support (Wrapped Only)
	12.4.1.6 Bus Monitor
	12.4.1.7 Port Size Configuration per Chip Select (16 Bits)
	12.4.1.8 Port Size Configuration per Calibration Chip Select (16 Bits)
	12.4.1.9 Configurable Wait States
	12.4.1.10 Four Chip Select (CS[0:3]) Signals
	12.4.1.11 Support for Dynamic Calibration with Up to Three Chip Selects
	12.4.1.12 Two Write/Byte Enable (WE/BE) Signals
	12.4.1.13 Optional Automatic CLKOUT Gating
	12.4.1.14 Compatible with MPC500 External Bus (with Some Limitations)

	12.4.2 External Bus Operations
	12.4.2.1 External Clocking
	12.4.2.2 Reset
	12.4.2.3 Basic Transfer Protocol
	12.4.2.4 Single-Beat Transfer
	12.4.2.5 Burst Transfer
	12.4.2.6 Small Accesses (Small Port Size and Short Burst Length)
	12.4.2.7 Size, Alignment, and Packaging on Transfers
	12.4.2.8 Arbitration
	12.4.2.9 Termination Signals Protocol
	12.4.2.10 Bus Operation in External Master Mode
	12.4.2.11 Non-Chip-Select Burst in 16-bit Data Bus Mode
	12.4.2.12 Calibration Bus Operation

	12.5 Initialization and Application Information
	12.5.1 Booting from External Memory
	12.5.2 Running with SDR (Single Data Rate) Burst Memories
	12.5.3 Using Asynchronous Memory
	12.5.3.1 Example Wait State Calculation
	12.5.3.2 Timing and Connections for Asynchronous Memories

	12.5.4 Connecting an MCU to Multiple Memories
	12.5.5 Dual-MCU Operations
	12.5.5.1 Connecting 16-bit MCU to 32-bit MCU (Master and Slave)
	12.5.5.2 Arbiting a Master and Slave configuration
	12.5.5.3 Setting the transfer size
	12.5.5.4 Acknowledging a transfer
	12.5.5.5 Detecting a transfer error
	12.5.5.6 Detecting Burst Data in Progress

	12.5.6 Summary of Differences from MPC500

	Chapter 13 Flash Memory
	13.1 Introduction
	13.1.1 Block Diagram
	13.1.2 Overview
	13.1.3 Features
	13.1.4 Modes of Operation
	13.1.4.1 User Mode
	13.1.4.2 Stop Mode

	13.2 External Signal Description
	13.2.1 Voltage for Flash Only VFLASH
	13.2.2 Program and Erase Voltage for Flash Only VPP

	13.3 Memory Map/Register Description
	13.3.1 Flash Memory Map
	13.3.2 Register Descriptions
	13.3.2.1 Module Configuration Register FLASH_MCR
	13.3.2.2 Low/Mid Address Space Block Locking Register FLASH_LMLR
	13.3.2.3 High Address Space Block Locking Register (FLASH_HLR)
	13.3.2.4 Secondary Low/Mid Address Space Block Locking Register FLASH_SLMLR
	13.3.2.5 Low/Mid Address Space Block Select Register FLASH_LMSR
	13.3.2.6 High Address Space Block Select Register FLASH_HSR
	13.3.2.7 Address Register FLASH_AR
	13.3.2.8 Flash Bus Interface Unit Control Register FLASH_BIUCR
	13.3.2.9 Flash Bus Interface Unit Access Protection Register FLASH_BIUAPR
	13.3.2.10 Flash Bus Interface Unit Control Register 2 FLASH_BIUCR2

	13.4 Functional Description
	13.4.1 Flash Bus Interface Unit (FBIU)
	13.4.1.1 FBIU Basic Interface Protocol
	13.4.1.2 FBIU Access Protections
	13.4.1.3 Flash Read Cycles-Buffer Miss
	13.4.1.4 Flash Read Cycles-Buffer Hit
	13.4.1.5 Flash Access Pipelining
	13.4.1.6 Flash Error Response Operation
	13.4.1.7 FBIU Line Read Buffers and Prefetch Operation
	13.4.1.8 Prefetch Triggering
	13.4.1.9 FBIU Buffer Invalidation
	13.4.1.10 Flash Wait-state Emulation

	13.4.2 Flash Memory Array: User Mode
	13.4.2.1 Flash Read and Write
	13.4.2.2 Read While Write (RWW)
	13.4.2.3 Flash Programming
	13.4.2.4 Flash Erase
	13.4.2.5 Flash Shadow Block
	13.4.2.6 Censorship

	13.4.3 Flash Memory Array: Stop Mode
	13.4.4 Flash Memory Array: Reset

	Chapter 14 Internal Static RAM (SRAM)
	14.1 Introduction
	14.2 SRAM Operating Modes
	14.3 External Signal Description
	14.4 Register Memory Map
	14.5 Functional Description
	14.6 SRAM ECC Mechanism
	14.6.1 Access Timing
	14.6.2 Reset Effects on SRAM Accesses

	14.7 Initialization and Application Information
	14.7.1 Example Code

	Chapter 15 Boot Assist Module (BAM)
	15.1 Introduction
	15.1.1 Overview
	15.1.2 Features
	15.1.3 Modes of Operation
	15.1.3.1 Normal Mode
	15.1.3.2 Debug Mode
	15.1.3.3 Internal Boot Mode
	15.1.3.4 External Boot Modes
	15.1.3.5 Serial Boot Mode

	15.2 Memory Map
	15.3 Functional Description
	15.3.1 BAM Program Resources
	15.3.2 BAM Program Operation
	15.3.2.1 Boot Mode Features
	15.3.2.2 Internal Boot Mode Flow
	15.3.2.3 External Boot Modes Flow
	15.3.2.4 Serial Boot Mode Operation

	15.3.3 Interrupts

	Chapter 16 Enhanced Modular Input/Output Subsystem (eMIOS)
	16.1 Introduction
	16.1.1 Block Diagram
	16.1.2 Overview
	16.1.3 Features
	16.1.4 Modes of Operation
	16.1.4.1 eMIOS Modes
	16.1.4.2 Unified Channel Modes

	16.2 External Signal Description
	16.2.1 Overview
	16.2.1.1 External Signals
	16.2.1.2 Output Disable Input-eMIOS Output Disable Input Signals

	16.3 Memory Map and Register Definitions
	16.3.1 Register Description
	16.3.1.1 eMIOS Module Configuration Register EMIOS_MCR
	16.3.1.2 eMIOS Global Flag Register EMIOS_GFR
	16.3.1.3 eMIOS Output Update Disable Register EMIOS_OUDR
	16.3.1.4 eMIOS Channel A Data Register EMIOS_CADRn
	16.3.1.5 eMIOS Channel B Data Register (EMIOS_CBDRn)
	16.3.1.6 eMIOS Channel Counter Register EMIOS_CCNTRn
	16.3.1.7 eMIOS Channel Control Register EMIOS_CCRn
	16.3.1.8 eMIOS Channel Status Register (EMIOS_CSRn)

	16.4 Functional Description
	16.4.1 Bus Interface Unit (BIU)
	16.4.1.1 Effect of Freeze on the BIU

	16.4.2 STAC Client Submodule
	16.4.2.1 Effect of Freeze on the STAC Client Submodule

	16.4.3 Global Clock Prescaler Submodule (GCP)
	16.4.3.1 Effect of Freeze on the GCP

	16.4.4 Unified Channel (UC)
	16.4.4.1 Programmable Input Filter (PIF)
	16.4.4.2 Clock Prescaler (CP)
	16.4.4.3 Effect of Freeze on the Unified Channel
	16.4.4.4 Modes of Operation of the Unified Channels

	16.5 Initialization and Application Information
	16.5.1 Considerations on Changing a UC Mode
	16.5.2 Generating Correlated Output Signals
	16.5.3 Time Base Generation

	Chapter 17 Enhanced Time Processing Unit (eTPU)
	17.1 Introduction
	17.1.1 eTPU Implementation
	17.1.2 Block Diagram
	17.1.3 eTPU Operation Overview
	17.1.3.1 eTPU Engine
	17.1.3.2 Time Bases
	17.1.3.3 eTPU Timer Channels
	17.1.3.4 Debug Interface

	17.1.4 Features

	17.2 Modes of Operation
	17.2.1 User Configuration Mode
	17.2.2 User Mode
	17.2.3 Debug Mode
	17.2.4 Module Disable Mode
	17.2.5 eTPU Mode Selection

	17.3 External Signal Description
	17.4 eTPU Detailed Signal Description
	17.4.1 Output and Input Channel Signals
	17.4.1.1 Time Base Clock Signal (TCRCLK[A])
	17.4.1.2 Channel Output Disable Signals

	17.5 Memory Map and Register Definition
	17.5.1 Memory Map
	17.5.2 Register Description
	17.5.2.1 System Configuration Registers

	17.6 Time Base Registers
	17.6.0.1 Time Base Registers
	17.6.0.2 Global Channel Registers
	17.6.0.3 Channel Configuration and Control Registers

	17.7 Functional Description
	17.8 Initialization and Application Information

	Chapter 18 Enhanced Queued Analog-to-Digital Converter (eQADC)
	18.1 Introduction
	18.1.1 Block Diagram
	18.1.2 Overview
	18.1.3 Features
	18.1.4 Modes of Operation
	18.1.4.1 Normal Mode
	18.1.4.2 Debug Mode
	18.1.4.3 Stop Mode

	18.2 External Signal Description
	18.3 Memory Map and Register Definition
	18.3.1 eQADC Memory Map
	18.3.2 eQADC Register Descriptions
	18.3.2.1 eQADC Module Configuration Register (EQADC_MCR)
	18.3.2.2 eQADC Null Message Send Format Register (EQADC_NMSFR)
	18.3.2.3 eQADC External Trigger Digital Filter Register (EQADC_ETDFR)
	18.3.2.4 eQADC CFIFO Push Registers 0-5 (EQADC_CFPRn)
	18.3.2.5 eQADC Result FIFO Pop Registers 0-5 (EQADC_RFPRn)
	18.3.2.6 eQADC CFIFO Control Registers 0-5 (EQADC_CFCRn)
	18.3.2.7 eQADC Interrupt and eDMA Control Registers 0-5 (EQADC_IDCRn)
	18.3.2.8 eQADC FIFO and Interrupt Status Registers 0-5 (EQADC_FISRn)
	18.3.2.9 eQADC CFIFO Transfer Counter Registers 0-5 (EQADC_CFTCRn)
	18.3.2.10 eQADC CFIFO Status Snapshot Registers 0-2
	18.3.2.11 eQADC CFIFO Status Register EQADC_CFSR
	18.3.2.12 eQADC SSI Control Register EQADC_SSICR
	18.3.2.13 eQADC SSI Receive Data Register EQADC_SSIRDR
	18.3.2.14 eQADC CFIFO Registers (EQADC_CF[0-5]Rn)
	18.3.2.15 eQADC RFIFO Registers (EQADC_RF[0-5]Rn)

	18.3.3 On-Chip ADC Registers
	18.3.3.1 ADCn Control Registers (ADC0_CR and ADC1_CR)
	18.3.3.2 ADC Time Stamp Control Register (ADC_TSCR)
	18.3.3.3 ADC Time Base Counter Registers (ADC_TBCR)
	18.3.3.4 ADCn Gain Calibration Constant Registers (ADC0_GCCR and ADC1_GCCR)
	18.3.3.5 ADCn Offset Calibration Constant Registers (ADC0_OCCR and ADC1_OCCR)

	18.4 Functional Description
	18.4.1 Data Flow in the eQADC
	18.4.1.1 Assumptions/Requirements Regarding the External Device
	18.4.1.2 Message Format in eQADC

	18.4.2 Command and Result Queues
	18.4.3 eQADC Command FIFOs
	18.4.3.1 CFIFO Basic Functionality
	18.4.3.2 CFIFO Prioritization and Command Transfer
	18.4.3.3 External Trigger from eTPU or eMIOS Channels
	18.4.3.4 CFIFO Scan Trigger Modes
	18.4.3.5 CFIFO and Trigger Status

	18.4.4 Result FIFOs
	18.4.4.1 RFIFO Basic Functionality
	18.4.4.2 Distributing Result Data into RFIFOs

	18.4.5 On-Chip ADC Configuration and Control
	18.4.5.1 Enabling and Disabling the on-chip ADCs
	18.4.5.2 ADC Clock and Conversion Speed
	18.4.5.3 Time Stamp Feature
	18.4.5.4 ADC Calibration Feature
	18.4.5.5 ADC Control Logic Overview and Command Execution

	18.4.6 Internal and External Multiplexing
	18.4.6.1 Channel Assignment
	18.4.6.2 External Multiplexing

	18.4.7 eQADC eDMA or Interrupt Request
	18.4.8 eQADC Synchronous Serial Interface (SSI) Submodule
	18.4.8.1 eQADC SSI Data Transmission Protocol
	18.4.8.2 Baud Clock Generation

	18.4.9 Analog Submodule
	18.4.9.1 Reference Bypass
	18.4.9.2 Analog-to-Digital Converter (ADC)

	18.5 Initialization and Application Information
	18.5.1 Multiple Queues Control Setup Example
	18.5.1.1 Initialization of On-Chip ADCs and an External Device
	18.5.1.2 Configuring eQADC for Applications

	18.5.2 eQADC to eDMA Controller Interface
	18.5.2.1 Command Queue and CFIFO Transfers
	18.5.2.2 Receive Queue/RFIFO Transfers

	18.5.3 Sending Immediate Command Setup Example
	18.5.4 Modifying Queues
	18.5.5 Command Queue and Result Queue Usage
	18.5.6 ADC Result Calibration
	18.5.6.1 MAC Configuration Procedure
	18.5.6.2 Example Calculation of Calibration Constants
	18.5.6.3 Quantization Error Reduction During Calibration

	18.5.7 eQADC versus QADC

	Chapter 19 Deserial Serial Peripheral Interface (DSPI)
	19.1 Introduction
	19.1.1 Block Diagram
	19.1.2 Overview
	19.1.3 Features
	19.1.4 Modes of Operation
	19.1.4.1 Master Mode
	19.1.4.2 Slave Mode
	19.1.4.3 Module Disable Mode
	19.1.4.4 Debug Mode

	19.2 External Signal Description
	19.2.1 Signal Overview
	19.2.2 Signal Descriptions
	19.2.2.1 Peripheral Chip Select / Slave Select PCSx[0]_SS
	19.2.2.2 Peripheral Chip Selects 1-3 PCSx[1:3]
	19.2.2.3 Peripheral Chip Select 4 / Master Trigger PCSx[4]_MTRIG
	19.2.2.4 Peripheral Chip Select 5 / Peripheral Chip Select Strobe PCSx[5]_PCSS
	19.2.2.5 Serial Input (SINx)
	19.2.2.6 Serial Output (SOUTx)
	19.2.2.7 Serial Clock (SCKx)
	19.2.2.8 Internal Hardware Trigger

	19.3 Memory Map and Register Definition
	19.3.1 Memory Map
	19.3.2 Register Descriptions
	19.3.2.1 DSPI Module Configuration Register (DSPIx_MCR)
	19.3.2.2 DSPI Transfer Count Register (DSPIx_TCR)
	19.3.2.3 DSPI Clock and Transfer Attributes Registers 0-7 (DSPIx_CTARn)
	19.3.2.4 DSPI Status Register (DSPIx_SR)
	19.3.2.5 DSPI DMA and Interrupt Request Select and Enable Register (DSPIx_RSER)
	19.3.2.6 DSPI PUSH TX FIFO Register (DSPIx_PUSHR)
	19.3.2.7 DSPI POP RX FIFO Register (DSPIx_POPR)
	19.3.2.8 DSPI Transmit FIFO Registers 0-3 (DSPIx_TXFRn)
	19.3.2.9 DSPI Receive FIFO Registers 0-3 (DSPIx_RXFRn)
	19.3.2.10 DSPI DSI Configuration Register (DSPIx_DSICR)
	19.3.2.11 DSPI DSI Serialization Data Register (DSPIx_SDR)
	19.3.2.12 DSPI DSI Alternate Serialization Data Register (DSPIx_ASDR)
	19.3.2.13 DSPI DSI Transmit Comparison Register (DSPIx_COMPR)
	19.3.2.14 DSPI DSI Deserialization Data Register (DSPIx_DDR)

	19.4 Functional Description
	19.4.1 Modes of Operation
	19.4.1.1 Master Mode
	19.4.1.2 Slave Mode
	19.4.1.3 Module Disable Mode
	19.4.1.4 Debug Mode

	19.4.2 Start and Stop of DSPI Transfers
	19.4.3 Serial Peripheral Interface (SPI) Configuration
	19.4.3.1 SPI Master Mode
	19.4.3.2 SPI Slave Mode
	19.4.3.3 FIFO Disable Operation
	19.4.3.4 Using the TX FIFO Buffering Mechanism
	19.4.3.5 Using the RX FIFO Buffering Mechanism

	19.4.4 Deserial Serial Interface (DSI) Configuration
	19.4.4.1 DSI Master Mode
	19.4.4.2 DSI Slave Mode
	19.4.4.3 DSI Serialization
	19.4.4.4 DSI Deserialization
	19.4.4.5 DSI Transfer Initiation Control
	19.4.4.6 DSPI Connections to eTPUA, eMIOS and SIU
	19.4.4.7 Multiple Transfer Operation (MTO)

	19.4.5 Combined Serial Interface (CSI) Configuration
	19.4.5.1 CSI Serialization
	19.4.5.2 CSI Deserialization

	19.4.6 DSPI Baud Rate and Clock Delay Generation
	19.4.6.1 Baud Rate Generator
	19.4.6.2 PCS to SCK Delay (tCSC)
	19.4.6.3 After SCK Delay (tASC)
	19.4.6.4 Delay after Transfer (tDT)
	19.4.6.5 Peripheral Chip Select Strobe Enable (PCSS)

	19.4.7 Transfer Formats
	19.4.7.1 Classic SPI Transfer Format (CPHA = 0)
	19.4.7.2 Classic SPI Transfer Format (CPHA = 1)
	19.4.7.3 Modified Transfer Format Enabled (MTFE = 1) with Classic SPI Transfer Format Cleared (CPHA = 0) for SPI and DSI
	19.4.7.4 Modified Transfer Format Enabled (MTFE = 1) with Classic SPI Transfer Format Set (CPHA = 1) for SPI and DSI
	19.4.7.5 Continuous Selection Format
	19.4.7.6 Clock Polarity Switching between DSPI Transfers

	19.4.8 Continuous Serial Communications Clock
	19.4.9 Interrupts and DMA Requests
	19.4.9.1 End-of-Queue Interrupt Request (EOQF)
	19.4.9.2 Transmit FIFO Fill Interrupt or DMA Request (TFFF)
	19.4.9.3 Transfer Complete Interrupt Request (TCF)
	19.4.9.4 Transmit FIFO Underflow Interrupt Request (TFUF)
	19.4.9.5 Receive FIFO Drain Interrupt or DMA Request (RFDF)
	19.4.9.6 Receive FIFO Overflow Interrupt Request (RFOF)
	19.4.9.7 FIFO Overrun Request (TFUF) or (RFOF)

	19.4.10 Power Saving Features
	19.4.10.1 Module Disable Mode
	19.4.10.2 Slave Interface Signal Gating

	19.5 Initialization and Application Information
	19.5.1 How to Change Queues
	19.5.2 Baud Rate Settings
	19.5.3 Delay Settings
	19.5.4 MPC5xx QSPI Compatibility with the DSPI
	19.5.5 Calculation of FIFO Pointer Addresses
	19.5.5.1 Address Calculation for the First-in Entry and Last-in Entry in the TX FIFO
	19.5.5.2 Address Calculation for the First-in Entry and Last-in Entry in the RX FIFO

	Chapter 20 Enhanced Serial Communication Interface (eSCI)
	20.1 Introduction
	20.1.1 Block Diagram
	20.1.2 Overview
	20.1.3 Features
	20.1.4 Modes of Operation

	20.2 External Signal Description
	20.2.1 Detailed Signal Description
	20.2.1.1 eSCI Transmit (TXDA, TXDB)
	20.2.1.2 eSCI Receive Pin (RXDA, RXDB)

	20.3 Memory Map and Register Definition
	20.3.1 Module Memory Map
	20.3.2 Register Descriptions
	20.3.2.1 eSCI Control Register 1 (ESCIx_CR1)
	20.3.2.2 eSCI Control Register 2 (ESCIx_CR2)
	20.3.2.3 eSCI Data Register (ESCIx_DR)
	20.3.2.4 eSCI Status Register (ESCIx_SR)
	20.3.2.5 LIN Control Register (ESCIx_LCR)
	20.3.2.6 LIN Transmit Register (ESCIx_LTR)
	20.3.2.7 LIN Receive Register (ESCIx_LRR)
	20.3.2.8 LIN CRC Polynomial Register (ESCIx_LPR)

	20.4 Functional Description
	20.4.1 Overview
	20.4.2 Data Format
	20.4.3 Baud Rate Generation
	20.4.4 Transmitter
	20.4.4.1 Transmitter Character Length
	20.4.4.2 Character Transmission
	20.4.4.3 Break Characters
	20.4.4.4 Idle Characters
	20.4.4.5 Fast Bit Error Detection in LIN Mode

	20.4.5 Receiver
	20.4.5.1 Receiver Character Length
	20.4.5.2 Character Reception
	20.4.5.3 Data Sampling
	20.4.5.4 Framing Errors
	20.4.5.5 Baud Rate Tolerance
	20.4.5.6 Receiver Wake-up

	20.4.6 Single-Wire Operation
	20.4.7 Loop Operation
	20.4.8 Modes of Operation
	20.4.8.1 Run Mode
	20.4.8.2 Disabling the eSCI

	20.4.9 Interrupt Operation
	20.4.9.1 Interrupt Sources

	20.4.10 Using the LIN Hardware
	20.4.10.1 Features of the LIN Hardware
	20.4.10.2 Generating a TX Frame
	20.4.10.3 Generating an RX Frame
	20.4.10.4 LIN Error Handling
	20.4.10.5 LIN Setup

	Chapter 21 FlexCAN2 Controller Area Network
	21.1 Introduction
	21.1.1 Block Diagram
	21.1.2 Overview
	21.1.3 Features
	21.1.4 Modes of Operation
	21.1.4.1 Normal Mode
	21.1.4.2 Freeze Mode
	21.1.4.3 Listen-Only Mode
	21.1.4.4 Loop-Back Mode
	21.1.4.5 Module Disabled Mode

	21.2 External Signal Description
	21.2.1 Overview
	21.2.2 Detailed Signal Description
	21.2.2.1 CNRXx
	21.2.2.2 CNTXx

	21.3 Memory Map/Register Definition
	21.3.1 Memory Map
	21.3.2 Message Buffer Structure
	21.3.3 Register Descriptions
	21.3.3.1 Module Configuration Register (CANx_MCR)
	21.3.3.2 Control Register (CANx_CR)
	21.3.3.3 Free Running Timer (CANx_TIMER)
	21.3.3.4 RX Mask Registers
	21.3.3.5 RX Individual Mask Registers (CANx_RXIMR0 through CANx_RXIMR63)
	21.3.3.6 Error Counter Register (CANx_ECR)
	21.3.3.7 Error and Status Register (CANx_ESR)
	21.3.3.8 Interrupt Masks High Register (CANx_IMRH)
	21.3.3.9 Interrupt Masks Low Register (CANx_IMRL)
	21.3.3.10 Interrupt Flags High Register (CANx_IFRH)
	21.3.3.11 Interrupt Flags Low Register (CANx_IFRL)

	21.4 Functional Description
	21.4.1 Overview
	21.4.2 Transmit Process
	21.4.2.1 Arbitration Process

	21.4.3 Receive Process
	21.4.3.1 Matching Process
	21.4.3.2 Reception Queue
	21.4.3.3 Self Received Frames

	21.4.4 Message Buffer Handling
	21.4.4.1 Notes on TX Message Buffer Deactivation
	21.4.4.2 Notes on RX Message Buffer Deactivation
	21.4.4.3 Data Coherency Mechanisms

	21.4.5 CAN Protocol Related Features
	21.4.5.1 Remote Frames
	21.4.5.2 Overload Frames
	21.4.5.3 Time Stamp
	21.4.5.4 Protocol Timing
	21.4.5.5 Arbitration and Matching Timing

	21.4.6 Modes of Operation Details
	21.4.6.1 Freeze Mode
	21.4.6.2 Module Disabled Mode

	21.4.7 Interrupts
	21.4.8 Bus Interface

	21.5 Initialization and Application Information
	21.5.1 FlexCAN2 Initialization Sequence
	21.5.2 FlexCAN2 Addressing and RAM Size

	Chapter 22 Voltage Regulator Controller (VRC) and POR Module
	22.1 Introduction
	22.1.1 Block Diagram

	22.2 External Signal Description
	22.3 Memory Map and Register Definition
	22.4 Functional Description
	22.4.1 Voltage Regulator Controller
	22.4.2 POR Circuits
	22.4.2.1 1.5 V POR Circuit
	22.4.2.2 3.3 V POR Circuit
	22.4.2.3 RESET Power POR Circuit

	22.5 Initialization and Application Information
	22.5.1 Voltage Regulator Example
	22.5.2 Compatible Power Transistors
	22.5.3 Power Sequencing Requirements
	22.5.3.1 Power-Up Sequence If VRC33 Grounded
	22.5.3.2 Power-Down Sequence If VRC33 Grounded
	22.5.3.3 Input Value of Pins During POR Dependent on VDD33
	22.5.3.4 Pin Values after POR Negates

	Chapter 23 IEEE 1149.1 Test Access Port Controller (JTAGC)
	23.1 Introduction
	23.1.1 Block Diagram
	23.1.2 Overview
	23.1.3 Features
	23.1.4 Modes of Operation
	23.1.4.1 Reset
	23.1.4.2 IEEE 1149.1-2001 Defined Test Modes
	23.1.4.3 Bypass Mode
	23.1.4.4 TAP Sharing Mode

	23.2 External Signal Description
	23.3 Memory Map/Register Definition
	23.3.1 Instruction Register
	23.3.2 Bypass Register
	23.3.3 Device Identification Register
	23.3.4 Boundary Scan Register

	23.4 Functional Description
	23.4.1 JTAGC Reset Configuration
	23.4.2 IEEE 1149.1-2001 (JTAG) Test Access Port
	23.4.3 TAP Controller State Machine
	23.4.3.1 Enabling the TAP Controller
	23.4.3.2 Selecting an IEEE 1149.1-2001 Register

	23.4.4 JTAGC Instructions
	23.4.4.1 BYPASS Instruction
	23.4.4.2 ACCESS_AUX_TAP_x Instructions
	23.4.4.3 CLAMP Instruction
	23.4.4.4 EXTEST-External Test Instruction
	23.4.4.5 HIGHZ Instruction
	23.4.4.6 IDCODE Instruction
	23.4.4.7 SAMPLE Instruction
	23.4.4.8 SAMPLE/PRELOAD Instruction

	23.4.5 Boundary Scan

	23.5 Initialization and Application Information

	Chapter 24 Nexus Development Interface
	24.1 Introduction
	24.1.1 Block Diagram
	24.1.2 Features
	24.1.3 Modes of Operation
	24.1.3.1 Nexus Reset Mode
	24.1.3.2 Full-Port Mode
	24.1.3.3 Reduced-Port Mode
	24.1.3.4 Disabled-Port Mode
	24.1.3.5 Censored Mode

	24.2 External Signal Description
	24.2.1 Detailed Signal Descriptions
	24.2.1.1 Event Out (EVTO)
	24.2.1.2 Event In (EVTI)
	24.2.1.3 Message Data Out (MDO[3:0] or [11:0])
	24.2.1.4 Message Start/End Out (MSEO[1:0])
	24.2.1.5 Ready (RDY)
	24.2.1.6 JTAG Compliancy (JCOMP)
	24.2.1.7 Test Data Output (TDO)
	24.2.1.8 Test Clock Input (TCK)
	24.2.1.9 Test Data Input (TDI)
	24.2.1.10 Test Mode Select (TMS)

	24.3 Memory Map
	24.4 NDI Functional Description
	24.4.1 Enabling Nexus Clients for TAP Access
	24.4.2 Configuring the NDI for Nexus Messaging
	24.4.3 Programmable MCKO Frequency
	24.4.4 Nexus Messaging
	24.4.5 System Clock Locked Indication

	24.5 Nexus Port Controller (NPC)
	24.5.1 Overview
	24.5.2 Features

	24.6 Memory Map and Register Definition
	24.6.1 Memory Map
	24.6.2 Register Descriptions
	24.6.2.1 Bypass Register
	24.6.2.2 Instruction Register
	24.6.2.3 Nexus Device ID Register (DID)
	24.6.2.4 Port Configuration Register (PCR)

	24.7 NPC Functional Description
	24.7.1 NPC Reset Configuration
	24.7.2 Auxiliary Output Port
	24.7.2.1 Output Message Protocol
	24.7.2.2 Output Messages
	24.7.2.3 IEEE‚ 1149.1-2001 (JTAG) TAP
	24.7.2.4 Nexus Auxiliary Port Sharing
	24.7.2.5 Nexus JTAG Port Sharing
	24.7.2.6 MCKO
	24.7.2.7 EVTO Sharing
	24.7.2.8 Nexus Reset Control

	24.8 NPC Initialization and Application Information
	24.8.1 Accessing NPC Tool-Mapped Registers

	24.9 Nexus Single eTPU Development Interface (NSEDI)
	24.10 e200z3 Class 3 Nexus Module (NZ3C3)
	24.10.1 Introduction
	24.10.2 Block Diagram
	24.10.3 Overview
	24.10.4 Features
	24.10.5 Enabling Nexus3 Operation
	24.10.6 TCODEs Supported by NZ3C3

	24.11 NZ3C3 Memory Map and Register Definition
	24.11.1 Port Configuration Register (PCR)
	24.11.2 Development Control Registers 1 and 2 (DC1, DC2)
	24.11.3 Development Status Register (DS)
	24.11.4 Read/Write Access Control and Status (RWCS)
	24.11.5 Read/Write Access Address (RWA)
	24.11.6 Read/Write Access Data (RWD)
	24.11.7 Watchpoint Trigger Register (WT)
	24.11.8 Data Trace Control Register (DTC)
	24.11.9 Data Trace Start Address Registers 1 and 2 (DTSAn)
	24.11.10 Data Trace End Address Registers 1 and 2 (DTEAn)
	24.11.11 NZ3C3 Register Access via JTAG / OnCE

	24.12 Ownership Trace
	24.12.1 Ownership Trace Messaging (OTM)
	24.12.2 OTM Error Messages
	24.12.3 OTM Flow

	24.13 Program Trace
	24.13.1 Branch Trace Messaging (BTM)
	24.13.1.1 e200z3 Indirect Branch Message Instructions (Power Architecture Book E)
	24.13.1.2 e200z3 Direct Branch Message Instructions (Power Architecture Book E)
	24.13.1.3 BTM Using Branch History Messages
	24.13.1.4 BTM Using Traditional Program Trace Messages

	24.13.2 BTM Message Formats
	24.13.2.1 Indirect Branch Messages (History)
	24.13.2.2 Indirect Branch Messages (Traditional)
	24.13.2.3 Direct Branch Messages (Traditional)
	24.13.2.4 Resource Full Messages
	24.13.2.5 Debug Status Messages
	24.13.2.6 Program Correlation Messages
	24.13.2.7 BTM Overflow Error Messages

	24.13.3 Program Trace Synchronization Messages

	24.14 BTM Operation
	24.14.1 Enabling Program Trace
	24.14.2 Relative Addressing
	24.14.3 Branch and Predicate Instruction History (HIST)
	24.14.4 Sequential Instruction Count (I-CNT)
	24.14.5 Program Trace Queueing
	24.14.5.1 Program Trace Timing Diagrams

	24.14.6 Data Trace
	24.14.6.1 Data Trace Messaging (DTM)
	24.14.6.2 DTM Message Formats
	24.14.6.3 DTM Operation
	24.14.6.4 Data Trace Timing Diagrams (Eight MDO Configuration)

	24.14.7 Watchpoint Support
	24.14.7.1 Overview
	24.14.7.2 Watchpoint Messaging
	24.14.7.3 Watchpoint Error Message
	24.14.7.4 Watchpoint Timing Diagram (Two MDO and One MSEO Configuration)

	24.14.8 NZ3C3 Read/Write Access to Memory-Mapped Resources
	24.14.8.1 Single Write Access
	24.14.8.2 Block Write Access (Non-Burst Mode)
	24.14.8.3 Block Write Access (Burst Mode)
	24.14.8.4 Single Read Access
	24.14.8.5 Block Read Access (Non-Burst Mode)
	24.14.8.6 Block Read Access (Burst Mode)
	24.14.8.7 Error Handling
	24.14.8.8 Read/Write Access Error Message

	24.14.9 Examples
	24.14.10 IEEE‚ 1149.1 (JTAG) RD/WR Sequences
	24.14.10.1 JTAG Sequence for Accessing Internal Nexus Registers
	24.14.10.2 JTAG Sequence for Read Access of Memory-Mapped Resources
	24.14.10.3 JTAG Sequence for Write Access of Memory-Mapped Resources

	Appendix A MPC5534 Register Map
	A.1 MPC5534 Register Map
	A.2 e200z3 Core SPR Numbers

	Appendix B Calibration
	B.1 Overview
	B.2 Calibration Bus Interface
	B.3 Device-Specific Information
	B.4 Signals and Pads
	B.5 Power Supplies
	B.6 Integration Logic Functionality
	B.7 Application Information

	Appendix C MPC5534RM Revision History
	C.1 Changes between Rev. 1 and Rev. 2

