Power MOSFET

40 V, 76 A, Single N-Channel, DPAK/IPAK

Features

- Low R_{DS(on)}
- High Current Capability
- Avalanche Energy Specified
- These are Pb-Free Devices

Applications

- CCFL Backlight
- DC Motor Control
- Class D Amplifier
- Power Supply Secondary Side Synchronous Rectification

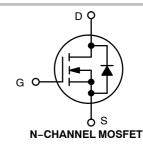
MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V_{DSS}	40	V
Gate-to-Source Voltage	e – Contir	nuous	V_{GS}	±20	V
Gate-to-Source Voltage - Non-Repetitive (t _p < 10 μS)			V_{GS}	±30	V
Continuous Drain		T _C = 25°C	I _D	76	Α
Current (R _{θJC}) (Note 1)	Steady State	T _C = 100°C		54	
Power Dissipation (R _{θJC}) (Note 1)	State	T _C = 25°C	P _D	83	W
Pulsed Drain Current	t _p =	= 10 μs	I _{DM}	228	Α
Operating Junction and Storage Temperature			T _J , T _{stg}	-55 to 175	°C
Source Current (Body I	I _S	76	Α		
Single Pulse Drain-to-Source Avalanche Energy (V _{DD} = 50 V, V _{GS} = 10 V, R _G = 25 Ω , I _{L(pk)} = 40 A, L = 0.3 mH)			E _{AS}	240	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			T _L	260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

THERMAL RESISTANCE MAXIMUM RATINGS

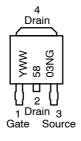
Parameter	Symbol	Value	Unit
Junction-to-Case (Drain)	$R_{\theta JC}$	1.8	°C/W
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	64	

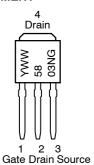

^{1.} Surface-mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces.

ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX	
40 V	10.1 mΩ @ 5.0 V	54 A	
	7.2 mΩ @ 10 V	76 A	




DPAK
CASE 369AA
(Surface Mount)
STYLE 2

IPAK
CASE 369D
(Straight Lead
DPAK)

MARKING DIAGRAMS & PIN ASSIGNMENT

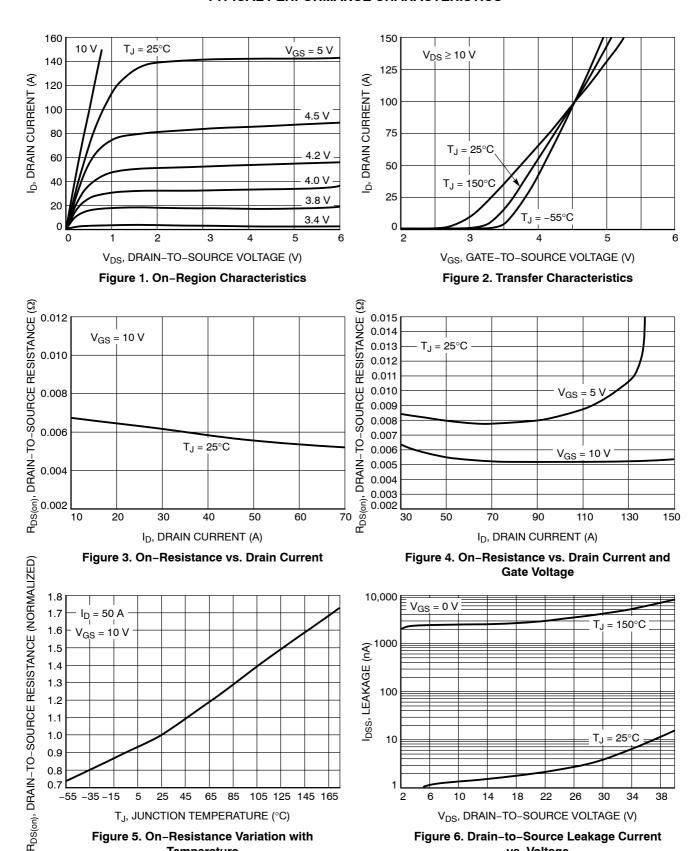
Y = Year WW = Work Week 5803N = Device Code G = Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS	·				-	-	-
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I_{D} = 250 μA		40			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	$V_{(BR)DSS}/T_{J}$				40		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V,	T _J = 25°C			1.0	μΑ
		$V_{DS} = 40 \text{ V}$	T _J = 150°C			100	
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 V, V_{GS}$	s = ±20 V			±100	nA
ON CHARACTERISTICS (Note 2)							-
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D$	= 250 μΑ	1.5		3.5	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				-7.4		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V, I _E	₎ = 50 A		4.9	7.2	mΩ
		V _{GS} = 5.0 V, I _D = 30 A			6.7	10.1	1
Forward Transconductance	gFS	V _{DS} = 15 V, I _E	₎ = 15 A		13.6		S
CHARGES, CAPACITANCES AND GA	TE RESISTANCE	S	•		•	•	•
Input Capacitance	C _{iss}				3220		pF
Output Capacitance	C _{oss}	$V_{GS} = 0 \text{ V, f} = 1.0 \text{ MHz,} $ $V_{DS} = 25 \text{ V}$			390		1
Reverse Transfer Capacitance	C _{rss}				270		1
Total Gate Charge	Q _{G(TOT)}				51		nC
Threshold Gate Charge	Q _{G(TH)}	$V_{GS} = 10 \text{ V}, V_{DS} = 20 \text{ V},$ $I_{D} = 50 \text{ A}$			3.8		1
Gate-to-Source Charge	Q_{GS}				12.7		1
Gate-to-Drain Charge	Q_GD				12.7		1
SWITCHING CHARACTERISTICS (Not	e 3)						-
Turn-On Delay Time	t _{d(on)}				12.6		ns
Rise Time	t _r	$V_{GS} = 10 \text{ V}, V_{D}$	n = 32 V,		21.4		1
Turn-Off Delay Time	t _{d(off)}	$I_D = 50 \text{ A, } R_G$	= 2.0 Ω		28.3		1
Fall Time	t _f				6.6		1
DRAIN-SOURCE DIODE CHARACTER	RISTICS		•		•	•	•
Forward Diode Voltage	V_{SD}	$V_{GS} = 0 \text{ V},$ $T_J = 25^{\circ}\text{C}$			0.88	1.2	V
		I _S = 30 A	T _J = 150°C		0.73		1
Reverse Recovery Time	t _{RR}	V _{GS} = 0 V, dls/dt = 100 A/μs, l _S = 30 A			27.2		ns
Charge Time	ta				14		1
Discharge Time	tb				13.2		1
Reverse Recovery Charge	Q _{RR}				17	<u> </u>	nC


ORDERING INFORMATION

Order Number	Package	Shipping [†]	
NTD5803NG	IPAK (Straight Lead DPAK) (Pb-Free)	75 Units / Rail	
NTD5803NT4G	DPAK (Pb-Free)	2500 / Tape & Reel	

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.

TYPICAL PERFORMANCE CHARACTERISTICS

T.J., JUNCTION TEMPERATURE (°C)

Figure 5. On-Resistance Variation with

Temperature

V_{DS}, DRAIN-TO-SOURCE VOLTAGE (V)

Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL PERFORMANCE CHARACTERISTICS

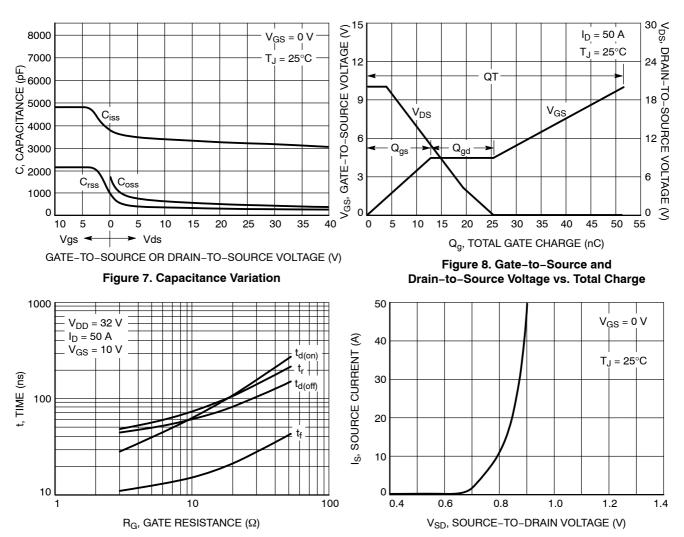


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

Figure 10. Diode Forward Voltage vs. Current

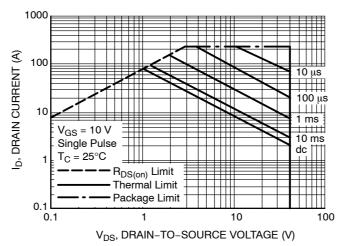


Figure 11. Maximum Rated Forward Biased Safe Operating Area

TYPICAL PERFORMANCE CHARACTERISTICS

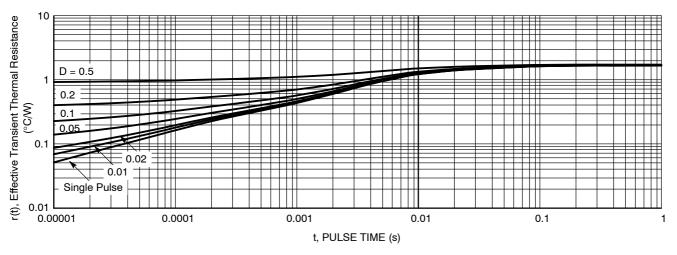
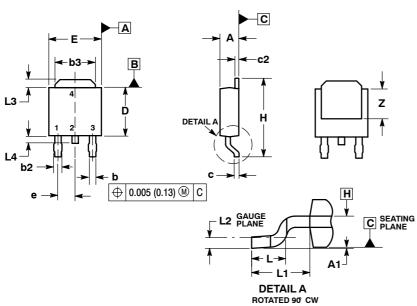



Figure 12. Thermal Response

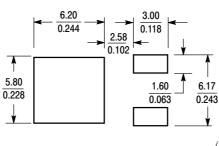
PACKAGE DIMENSIONS

DPAK (SINGLE GUAGE)

CASE 369AA-01 **ISSUE B**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: INCHES.
- 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DI-MENSIONS b3, L3 and Z.
- MENSIONS D. AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE.
- DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
 DATUMS A AND B ARE DETERMINED AT DATUM
- PLANE H.

	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.086	0.094	2.18	2.38	
A1	0.000	0.005	0.00	0.13	
b	0.025	0.035	0.63	0.89	
b2	0.030	0.045	0.76	1.14	
b3	0.180	0.215	4.57	5.46	
С	0.018	0.024	0.46	0.61	
c2	0.018	0.024	0.46	0.61	
D	0.235	0.245	5.97	6.22	
Е	0.250	0.265	6.35	6.73	
е	0.090	BSC	2.29 BSC		
Η	0.370	0.410	9.40	10.41	
L	0.055	0.070	1.40	1.78	
L1	0.108 REF		2.74 REF		
L2	0.020 BSC		0.51 BSC		
L3	0.035	0.050	0.89	1.27	
L4		0.040		1.01	
Z	0.155		3.93		

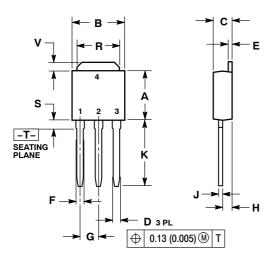

STYLE 2:

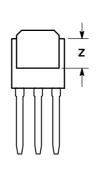
PIN 1. GATE 2. DRAIN DRAIN

SOURCE DRAIN

3.

SOLDERING FOOTPRINT*


 $\left(\frac{\text{mm}}{\text{inches}}\right)$ SCALE 3:1


^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

IPAK (STRAIGHT LEAD DPAK)

CASE 369D-01 ISSUE B

NOTES

- DIMENSIONING AND TOLERANCING PER
 ANSLY 14 FM 1982
- ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIMETER	
DIM	MIN	MAX	MIN	MAX
Α	0.235	0.245	5.97	6.35
В	0.250	0.265	6.35	6.73
С	0.086	0.094	2.19	2.38
D	0.027	0.035	0.69	0.88
E	0.018	0.023	0.46	0.58
F	0.037	0.045	0.94	1.14
G	0.090 BSC		2.29 BSC	
Н	0.034	0.040	0.87	1.01
J	0.018	0.023	0.46	0.58
K	0.350	0.380	8.89	9.65
R	0.180	0.215	4.45	5.45
S	0.025	0.040	0.63	1.01
٧	0.035	0.050	0.89	1.27
7	0.155		3.93	

STYLE 2:

PIN 1. GATE

- DRAIN
- 3. SOURCE
- 4. DRAIN

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675-2175 or 800–344–3860 Toll Free USA/Canada

Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910

Japan Customer Focus Center
Phone: 81–3–5773–3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative