P409 Series, Integrated Resistor, Metallized Impregnated Paper, Class X2, 275 VAC #### **Overview** The P409 Series is constructed of multilayer metallized paper encapsulated and impregnated in self-extinguishing material meeting the requirements of UL 94 V–0. ### **Applications** Typical applications include worldwide use in contact protection, contact interference suppression and transient suppression. #### Benefts · Approvals: ENEC, UL, cUL Rated voltage: 275 VAC 50/60 Hz Capacitance range: 0.047 – 0.47 µF Capacitance tolerance: ±20% Resistance range: 22 – 470 Ω Resistance tolerance: ±30% Lead spacing: 15.2 – 25.4 mm Climatic category: 40/085/56/B, IEC 60068–1 • Tape and reel packaging in accordance with IEC 60286-2 · RoHS Compliant and lead-free terminations • Operating temperature range of -40°C to +85°C • Excellent self-healing properties which ensure long life even when subjected to frequent over voltages · Good resistance to ionization due to impregnated paper dielectric High dV/dt capability Impregnated paper ensures excellent stability and reliability properties, particularly in applications with continuous operation ### Part Number System | Р | 409 | Q | M | 473 | M | 275 | А | H470 | |---|-----|---|---|-----|---|-----|---|------| # **Ordering Options Table** | Lead
Spacing
Nominal
(mm) | Type of Leads and Packaging | Lead Length
(mm) | Part Number
(Insert at 14th
character) | |------------------------------------|-------------------------------------|------------------------------|--| | | Standard Lead and Packaging Options | | | | | Bulk – Short Leads | 6 +0/-1 | С | | 15.2 | Bulk - Maximum Length Leads | 30 +5/-0 | А | | 15.2 | Tape & Reel (Standard Reel) | H ₀ = 18.5 +/-0.5 | L | | | Other Lead and Packaging Options | | | | | Tape & Reel (Large Reel) | H ₀ = 18.5 +/-0.5 | Р | | | | | | | | Standard Lead and Packaging Options | | | | | Tray – Short Leads | 6 +0/-1 | С | | 20.3 | Bulk - Maximum Length Leads | 30 +5/-0 | A | | 20.3 | Tape & Reel (Standard Reel) | H ₀ = 18.5 +/-0.5 | L | | | Other Lead and Packaging Options | | | | | Tape & Reel (Large Reel) | H ₀ = 18.5 +/-0.5 | Р | | | | | | | | Standard Lead and Packaging Options | | | | 25.4 | Bulk – Short Leads | 6 +0/-1 | С | | | Bulk – Maximum Length Leads | 30 +5/-0 | A | #### **Dimensions – Millimeters** | Size Code | р | | В | | Н | | L | | d | | | | | |-----------|---------|-----------|---------------|--|---------|-----------|---------|-----------|---------|-----------|--|--|--| | | Nominal | Tolerance | | | | | QM | 15.2 | +/-0.4 | 7.3 | Maximum | 13.0 | Maximum | 18.5 | Maximum | 0.8 | +/-0.05 | | | | | CE | 20.3 | +/-0.4 | 7.6 | Maximum | 14.0 | Maximum | 24.0 | Maximum | 0.8 | +/-0.05 | | | | | СР | 20.3 | +/-0.4 | 11.3 | Maximum | 16.5 | Maximum | 24.0 | Maximum | 0.8 | +/-0.05 | | | | | EJ | 25.4 | +/-0.4 | 12.1 | Maximum | 19.0 | Maximum | 30.5 | Maximum | 1.0 | +/-0.05 | | | | | EL | 25.4 | +/-0.4 | 15.3 | Maximum | 22.0 | Maximum | 30.5 | Maximum | 1.0 | +/-0.05 | | | | | | | | Note: See Ord | Note: See Ordering Options Table for lead length (LL) options. | | | | | | | | | | #### **Performance Characteristics** | Pated Voltage | 275 VAC 50/60 Hz | | | | |--------------------------------|--|----------------------------------|--|--| | Rated Voltage | | | | | | Capacitance Range | 0.047 – 0.47 μF | | | | | Capacitance Tolerance | ±20% | | | | | Resistance Range | 22 – 470 Ω | | | | | Resistance Tolerance | ±30% | | | | | Temperature Range | -40°C to +85°C | | | | | Climatic Category | 40/085/56/B | | | | | Approvals | ENEC, UL, cUL | | | | | Peak Pulse Voltage | 1,000 V | | | | | Series Resistance | The series resistance is defined at kHz for RC < 50 µs | 1 kHz for RC ≥ 50 μs and at 100 | | | | | Minimum Values E | Between Terminals | | | | Insulation Resistance | C ≤ 0.33 μF | ≥ 3,000 MΩ | | | | | C > 0.33 µF | ≥ 1,000 MΩ • µF | | | | Pulse Current | Maximum 12 A repetitive. Maximum | n 20 A peak for occasional | | | | Test Voltage Between Terminals | transients. The 100% screening factory test is carried out at 1,800 VDC. The voltage level is selected to meet the requirements in applicable equipment standards. All electrical characteristics are checked after the test. | | | | | In DC Applications | Recommended voltage ≤ 630 VDC | | | | | Power Ratings | The average losses may reach 0.5 temperature does not exceed + 85° dissipation vs. temperature, see De | C. For maximum permitted power | | | | Derating Curves | Maximum Allowable Power Dissipa Case Sizes. | tion vs. Ambient Temperature and | | | #### **Environmental Test Data** | Test | IEC Publication | Procedure | |------------------------|-------------------------|--| | Endurance | IEC 60384-14 | 1.25 x V_R Vac 50Hz, once every hour increase to 1,000 Vac for 0.1 second, 1,000 hours at upper rated temperature. | | Vibration | IEC 60068-2-6 Test Fc | 3 directions at 2 hours each, 10 – 500 Hz at 0.75 mm or 98 m/s ² | | Bump | IEC 60068-2-29 Test Eb | 4,000 bumps at 390 m/s ² | | Change of Temperature | IEC 60068-2-14 Test Na | Upper and lower temperature 5 cycles | | Active Flammability | IEC 60384-14 | V _R + 20 surge pulses at 2.5 kV (pulse every 5 seconds) | | Passive Flammability | IEC 60384-14 | IEC 60384-1, IEC 60695-11-5 Needle-fame test | | Damp Heat Steady State | IEC 60068-2-78 Test Cab | +40°C and 93% RH, 56 days | # **Approvals** | Certification Body | Mark | Specification | File Number | |--------------------|----------------|-------------------------------------|-------------| | Intertek Semko AB | | EN/IEC 60384-14 | SE/0140-33A | | UL | c Al us | UL 60384-14
CAN/CSA-E60384-14-09 | E73869 | # **Environmental Compliance** All KEMET EMI capacitors are RoHS Compliant. Table 1 – Ratings & Part Number Reference | Lead | Capacitance | Resistance (Ω) | Maximu | m Dimension | s in mm | KEMET | |---------------------|---------------------------|-----------------------|--------|-------------|---------|----------------------| | Spacing (p) | Value (μF) | Nesistance (22) | В | Н | L | Part Number | | 15.2 | 47 | 47 | 7.3 | 13.0 | 18.5 | P409QM473M275(1)H470 | | 15.2 | 47 | 100 | 7.3 | 13.0 | 18.5 | P409QM473M275(1)H101 | | 20.3 | 0.1 | 22 | 7.6 | 14.0 | 24.0 | P409CE104M275(1)H220 | | 20.3 | 0.1 | 33 | 7.6 | 14.0 | 24.0 | P409CE104M275(1)H330 | | 20.3 | 0.1 | 47 | 7.6 | 14.0 | 24.0 | P409CE104M275(1)H470 | | 20.3 | 0.1 | 68 | 7.6 | 14.0 | 24.0 | P409CE104M275(1)H680 | | 20.3 | 0.1 | 100 | 7.6 | 14.0 | 24.0 | P409CE104M275(1)H101 | | 20.3 | 0.1 | 150 | 11.3 | 16.5 | 24.0 | P409CP104M275(1)H151 | | 20.3 | 0.1 | 220 | 11.3 | 16.5 | 24.0 | P409CP104M275(1)H221 | | 20.3 | 0.1 | 330 | 11.3 | 16.5 | 24.0 | P409CP104M275(1)H331 | | 20.3 | 0.1 | 470 | 11.3 | 16.5 | 24.0 | P409CP104M275(1)H471 | | 20.3 | 0.22 | 22 | 11.3 | 16.5 | 24.0 | P409CP224M275(1)H220 | | 20.3 | 0.22 | 33 | 11.3 | 16.5 | 24.0 | P409CP224M275(1)H330 | | 20.3 | 0.22 | 47 | 11.3 | 16.5 | 24.0 | P409CP224M275(1)H470 | | 20.3 | 0.22 | 68 | 11.3 | 16.5 | 24.0 | P409CP224M275(1)H680 | | 20.3 | 0.22 | 100 | 11.3 | 16.5 | 24.0 | P409CP224M275(1)H101 | | 20.3 | 0.22 | 150 | 11.3 | 16.5 | 24.0 | P409CP224M275(1)H151 | | 20.3 | 0.22 | 220 | 11.3 | 16.5 | 24.0 | P409CP224M275(1)H221 | | 25.4 | 0.22 | 330 | 12.1 | 19.0 | 30.5 | P409EJ224M275(1)H331 | | 25.4 | 0.22 | 470 | 15.3 | 22.0 | 30.5 | P409EL224M275(1)H471 | | 25.4 | 0.47 | 33 | 15.3 | 22.0 | 30.5 | P409EL474M275(1)H330 | | 25.4 | 0.47 | 47 | 15.3 | 22.0 | 30.5 | P409EL474M275(1)H470 | | 25.4 | 0.47 | 68 | 15.3 | 22.0 | 30.5 | P409EL474M275(1)H680 | | 25.4 | 0.47 | 100 | 15.3 | 22.0 | 30.5 | P409EL474M275(1)H101 | | 25.4 | 0.47 | 150 | 15.3 | 22.0 | 30.5 | P409EL474M275(1)H151 | | 25.4 | 0.47 | 220 | 15.3 | 22.0 | 30.5 | P409EL474M275(1)H221 | | Lead
Spacing (p) | Capacitance
Value (μF) | Resistance Ω | B (mm) | H (mm) | L (mm) | KEMET
Part Number | ⁽¹⁾ Insert lead and packaging code. See Ordering Options Table for available options. #### **Soldering Process** The implementation of the RoHS directive has resulted in the selection of SnAgCu (SAC) alloys or SnCu alloys as primary solder. This has increased the liquidus temperature from that of 183°C for SnPb eutectic alloy to 217 – 221°C for the new alloys. As a result, the heat stress to the components, even in wave soldering, has increased considerably due to higher pre-heat and wave temperatures. Polypropylene capacitors are especially sensitive to heat (the melting point of polypropylene is 160 – 170°C). Wave soldering can be destructive, especially for mechanically small polypropylene capacitors (with lead spacing of 5 mm to 15 mm), and great care has to be taken during soldering. The recommended solder profles from KEMET should be used. Please consult KEMET with any questions. In general, the wave soldering curve from IEC Publication 61760-1 Edition 2 serves as a solid guideline for successful soldering. Please see Figure 1. Refow soldering is not recommended for through-hole flm capacitors. Exposing capacitors to a soldering profle in excess of the above the recommended limits may result to degradation or permanent damage to the capacitors. Do not place the polypropylene capacitor through an adhesive curing oven to cure resin for surface mount components. Insert through-hole parts after the curing of surface mount parts. Consult KEMET to discuss the actual temperature profle in the oven, if through-hole components must pass through the adhesive curing process. A maximum two soldering cycles is recommended. Please allow time for the capacitor surface temperature to return to a normal temperature before the second soldering cycle. #### Manual Soldering Recommendations Following is the recommendation for manual soldering with a soldering iron. # Recommended Soldering Temperature The soldering iron tip temperature should be set at 350°C (+10°C maximum) with the soldering duration not to exceed more than 3 seconds. #### Wave Soldering Recommendations ### Soldering Process cont'd Wave Soldering Recommendations cont'd 1. The table indicates the maximum set-up temperature of the soldering process Figure 1 | Dielectric | | imum Pre
emperatu | | mum
oldering
erature | | |---------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------| | Film Material | Capacitor
Pitch
≤ 10 mm | Capacitor
Pitch
= 15 mm | Capacitor
Pitch
> 15 mm | Capacitor
Pitch
≤ 15 mm | Capacitor
Pitch
> 15 mm | | Polyester | 130°C | 130°C | 130°C | 270°C | 270°C | | Polypropylene | 100°C | 110°C | 130°C | 26 4 | | | | | | | | | | | | | | | | #### Construction #### **Winding Scheme** ## Mounting RC units are mounted in parallel with the contacts to be protected or in parallel with the inductive load (Fig. 1 and Fig. 2). RC units are generally mounted in parallel with the contacts to suppress radio interferences (Fig. 1). ### Marking ## **Packaging Quantities** | Lead
Spacing
(mm) | Thickness
(mm) | Height
(mm) | Length
(mm) | Bulk
Short
Leads | Bulk
Long
Leads | Standard
Reel
ø 360 mm | |-------------------------|-------------------|----------------|----------------|------------------------|-----------------------|------------------------------| | 15.2 | 7.3 | 13.0 | 18.5 | 500 | 100 | 600 | | | | | | | | | | 20.3 | 7.6 | 14.0 | 24.0 | 250 | 1500 | 250 | | 20.5 | 11.3 | 16.5 | 24.0 | 150 | 1000 | 180 | | | | | | | | | | 25.4 | 12.1 | 19.0 | 30.5 | 100 | 800 | | | 20.4 | 15.3 | 22.0 | 30.5 | 75 | 600 | | ### Lead Taping & Packaging (IEC 60286-2) ### Taping Specification | | Standard IEC 60286–2 | | | | | | | | |-------------------------------|----------------------|-------------------------------|---------------|---------|---------|---------|--------------------|--------------------| | Lead spacing | +6/-0.1 | F | Formed
7.5 | 10.2 | 15.2 | 20.3 | 22.5 | F | | Carrier tape width | +/-0.5 | W | 18 | 18 | 18 | 18 | 18 | 18+1/-0.5 | | Hold-down tape width | +/-0.3 | W_{0} | 9 | 12 | 12 | 12 | 12 | | | Position of sprocket hole | +/-0.5 | W ₁ | 9 | 9 | 9 | 9 | 9 | 9+0.75/-0.5 | | Distance between tapes | Maximum | W ₂ | 3 | 3 | 3 | 3 | 3 | 3 | | Sprocket hole diameter | +/-0.2 | D ₀ | 4 | 4 | 4 | 4 | 4 | 4 | | Feed hole lead spacing | +/-0.3 | P ₀ ⁽¹⁾ | 12.7(4) | 12.7 | 12.7 | 12.7 | 12.7 | 12.7 | | Distance lead – feed hole | +/-0.7 | P ₁ | 3.75 | 7.6 | 5.1 | 8.9 | 5.3 | P ¹ | | Deviation tape – plane | Maximum | Δр | 1.3 | 1.3 | 1.3 | 1.3 | 1.3 | 1.3 | | Lateral deviation | Maximum | Δh | 2 | 2 | 2 | 2 | 2 | 2 | | Total thickness | +/-0.2 | t | 0.7 | 0.7 | 0.7 | 0.7 | 0.9 ^{MAX} | 0.9 ^{MAX} | | Sprocket hole/cap body | Nominal | H ₀ ⁽²⁾ | 18+2/-0 | 18+2/-0 | 18+2/-0 | 18+2/-0 | 18.5+/-0.5 | 18+2/-0 | | Sprocket hole/top of cap body | Maximum | H ₁ ⁽³⁾ | 35 | 35 | 35 | 35 | 58 | 58 ^{MAX} | ⁽¹⁾ Maximum cumulative feed hole error, 1 mm per 20 parts. ^{(2) 16.5} mm available on request. ⁽³⁾ Depending on case size. ^{(4) 15} mm available on request. ### Lead Taping & Packaging (IEC 60286-2) cont'd # Ammo Specifications | Carina | Dimensions (mm) | | | | | |--------|-----------------|-----|----|--|--| | Series | Н | W | Т | | | | P409 | 330 | 330 | 50 | | | # Reel Specifications | Corios | Dimensions (mm) | | | | | |--------|-----------------|----|----------|--|--| | Series | D | Н | W | | | | P409 | 360
500 | 30 | 46 (Max) | | | # Manufacturing Date Code (IEC-60062) | Y = Year, Z = Month | | | | |---------------------|------|-----------|------| | Year | Code | Month | Code | | 2000 | M | January | 1 | | 2001 | N | February | 2 | | 2002 | Р | March | 3 | | 2003 | R | April | 4 | | 2004 | S | May | 5 | | 2005 | Т | June | 6 | | 2006 | U | July | 7 | | 2007 | V | August | 8 | | 2008 | W | September | 9 | | 2009 | X | October | 0 | | 2010 | Α | November | N | | 2011 | В | December | D | | 2012 | С | | | | 2013 | D | | | | 2014 | E | | | | 2015 | F | | | | 2016 | Н | | | | 2017 | J | | | | 2018 | K | | | | 2019 | L | | | | 2020 | M | | | # KEMET Corporation World Headquarters 2835 KEMET Way Simpsonville, SC 29681 Mailing Address: P.O. Box 5928 Greenville, SC 29606 www.kemet.com Tel: 864-963-6300 Fax: 864-963-6521 Corporate Offces Fort Lauderdale, FL Tel: 954-766-2800 #### North America Northeast Wilmington, MA Tel: 978-658-1663 Southeast Lake Mary, FL Tel: 407-855-8886 Central Novi, MI Tel: 248-994-1030 Irving, TX Tel: 972-915-6041 West Milpitas, CA Tel: 408-433-9950 Mexico Guadalajara, Jalisco Tel: 52-33-3123-2141 #### Europe Southern Europe Sasso Marconi, Italy Tel: 39-051-939111 Skopje, Macedonia Tel: 389-2-55-14-623 Central Europe Landsberg, Germany Tel: 49-8191-3350800 Kamen, Germany Tel: 49-2307-438110 Northern Europe Wyboston, United Kingdom Tel: 44-1480-273082 Espoo, Finland Tel: 358-9-5406-5000 #### Asia Northeast Asia Hong Kong Tel: 852-2305-1168 Shenzhen, China Tel: 86-755-2518-1306 Beijing, China Tel: 86-10-5877-1075 Shanghai, China Tel: 86-21-6447-0707 Seoul, South Korea Tel: 82-2-6294-0550 Taipei, Taiwan Tel: 886-2-27528585 Southeast Asia Singapore Tel: 65-6701-8033 Penang, Malaysia Tel: 60-4-6430200 Bangalore, India Tel: 91-806-53-76817 Note: KEMET reserves the right to modify minor details of internal and external construction at any time in the interest of product improvement. KEMET does not assume any responsibility for infringement that might result from the use of KEMET Capacitors in potential circuit designs. KEMET is a registered trademark of KEMET Electronics Corporation. #### Disclaimer All product specifications, statements, information and data (collectively, the "Information") in this datasheet are subject to change. The customer is responsible for checking and verifying the extent to which the Information contained in this publication is applicable to an order at the time the order is placed. All Information given herein is believed to be accurate and reliable, but it is presented without guarantee, warranty, or responsibility of any kind, expressed or implied. Statements of suitability for certain applications are based on KEMET Electronics Corporation's ("KEMET") knowledge of typical operating conditions for such applications, but are not intended to constitute – and KEMET specifically disclaims – any warranty concerning suitability for a specific customer application or use. The Information is intended for use only